
Memory Leaks in Java Technology-
Based Applications: Different Tools
for Different Types of Leaks

Gregg Sporar
Senior Staff Engineer

Sun Microsystems, Inc.

Goal

To understand the different types of tools
available for finding memory leaks.

Agenda

Observing the Problem
What's the Problem?

Inspecting the Heap
Using Instrumentation
Lessons Learned

Q&A
An Additional Problem...

Disclaimers

Using Sun's JDK

 The demos use example code

Mostly talking about JDK5

Agenda

What's the Problem?

Observing the Problem

Inspecting the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Have You Ever Seen This?

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

And Then Do Your Users Do This?

So What Do You Do?

 Increase the size of the heap

And hope that the problem is fixed....

-Xmx64m -Xmx80m

But If That Does Not Fix the Problem....

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
 at app.leaking.UhOh(leaking.java:41)
 at app.leaking.WeHadHoped(leaking.java:51)
 at app.leaking.IfWeKeptIncreasing(leaking.java:55)
 at app.leaking.TheHeapSize(leaking.java:59)
 at app.leaking.ThenMaybeThisProblemWouldGoAway(leaking.java:63)
 at app.leaking.LooksLikeItHasNotGoneAway(leaking.java:67)
 at app.leaking.Bummer(leaking.java:61)
 at app.leaking.main(leaking.java:31)

Result: Users Might Get Even Angrier....

Agenda

What's the Problem?

Observing the Problem

Inspecting the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Observing the Problem
 java -verbose:gc YourApp

 [GC 189K->128K(1984K), 0.0016829 secs]

[Full GC 128K->128K(1984K), 0.0108424 secs]
[GC 10378K->10368K(12228K), 0.0004978 secs]

[Full GC 10368K->10368K(12228K), 0.0097568 secs]
[GC 20633K->20608K(28872K), 0.0002025 secs]

[Full GC 20608K->20608K(28872K), 0.0097892 secs]
[GC 30896K->30848K(36972K), 0.0002380 secs]

[Full GC 30848K->30847K(36972K), 0.0641433 secs]

Observing the Problem (continued)

Observing the Problem (continued)
java -Dcom.sun.management.jmxremote YourApp

Observing the Problem (continued)

More Tools in JDK6:

• Stack trace on OutOfMemoryError

• -XX:+HeapDumpOnOutOfMemoryError
 (Also available in JDK 1.4.2 and JDK 5)

• jhat

• jmap for Windows

Agenda

What's the Problem?

Observing the Problem

Inspecting the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Case Study: A Swing Application
Production Planning application

Developed during 1999-2002

 JDK 1.2 (later moved to JDK 1.3 and then 1.4)

~263,000 LOCs

~1,600 Classes

Memory leak found during QA, right before

going live

 Easy to reproduce the problem, with the right
data, but still not obvious what the cause was

DEMO

Inspecting the Heap With a Profiler

So What Happened?

A bug in someone else's code prevented
garbage collection of my objects

4215796: RepaintManager DoubleBuffer can
cause leak...

Swing var My Swing control Tree model Domain model

Agenda
What's the Problem?

Observing the Problem

Inspecting the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Case Study: A Web Application
Hardware/software analysis system

Developed during 2000-2004

 JDK 1.? (Later moved to JDK 1.4)

>150,000 LOCs, which does not include:

• the JSPs

• a subsystem written in Perl

Memory leak found in the live, production

system

Hard to reproduce the problem - seemed to

occur randomly

DEMO

Using Instrumentation

So What Happened?
Multiple places in the code were allocating

AnalysisResults objects, but only some of
those allocations were causing leaks.

 HashMap

: AnalysisResult allocated by the background process
: AnalysisResult allocated by the foreground process

So What Happened? (continued)

 The foreground code always removed its
entries from the HashMap. The background
code never removed its entries.

 HashMap

: AnalysisResult allocated by the background process

How Does “Generation Count” Help?

One Example of Healthy Behavior:

Long-lived objects.

Example: Three object
instances created at
startup.

Their ages continue to
increase, but
generation count
remains stable (at 1)

How Does “Generation Count” Help?

Another Example of Healthy Behavior:

Short-lived objects

Example: Create an
object, use it and then
immediately let go of all
references to it.

Generation count
remains stable (at 1)

How Does “Generation Count” Help?

Unhealthy Behavior (a Memory Leak):

Example: Continue to
allocate objects without
letting go of all
references.

Ten objects with eight
different ages.

Generation count is
always increasing.

Agenda
What's the Problem?

Observing the Problem

Inspecting the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Lessons Learned

Plenty of good, free tools available that
provide a high-level view of the memory used
by a Java application

Beyond that, there are two broad categories:

• Inspecting the Heap

• Instrumentation

Lessons Learned (continued)

 Inspecting the Heap Instrumentation

•Strengths:
•Less impact on
performance
•Easy to see relationships
between objects

•Weaknesses:
•No information about how
the objects got onto the
heap – or whether they
should still be there
•Large heap size can lead
to information overload
•Can be tough to use if you
don't know the code

•Strengths:
•Identifies objects that are
candidate memory leaks
•Does not require as much
knowledge of the code
•Scales well

•Weaknesses:
•Introduces runtime overhead
•Does not show relationships
between the objects

Agenda
What's the Problem?

Observing the Problem

Walking the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Have You Ever Seen This?

Exception in thread "main" java.lang.OutOfMemoryError: PermGen full

These Guys Have....

http://blogs.sun.com/edwardchou/entry/javaone_bof
_on_memory_leaks

http://blogs.sun.com/fkieviet/entry/javaone_2007

The basics: heap memory generations

Young Tenured Permanent

Usually referred to as “the
heap.” Controlled by -Xmx
and -Xms

Used by the JVM to
store classes.
Controlled by -XX:
MaxPermSize and
-XX:PermSize

The basics: classes and classloaders
 Each object is an instance of a class

A class itself is an object (class object)

• instance of the class Class

 Each class object references its classloader

A classloader references all classes it loaded

Class objects hold static members
java.lang.Class

java.lang.Objectjava.lang.ClassLoader

*

1

1

statics

*

*

Why use classloaders?

Containers use classloaders to

• dynamically load applications

• isolate applications from each other

• dynamically unload applications

Example: empty servlet

package com.stc.test;
import java.io.*;
import java.net.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class Servlet1 extends HttpServlet {
 private static final String STATICNAME = "Simple";
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 // nothing
 }
}

Deployed

Undeployed

Classloader leaks

A classloader cannot be garbage collected if
any of the instances of any of the classes it
loaded are reachable.

Such a classloader keeps all its classes with
all their static members in memory.

• Not immediately apparent from a memory dump
what is a leak and what is not.

• Cause of the leak difficult to find.

Example: a leaking servlet

package com.stc.test;
import java.io.*;
import java.util.logging.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class LeakServlet extends HttpServlet {
 private static final String STATICNAME = "Leak!";
 static Level CUSTOMLEVEL = new Level("OOPS", 555) {};
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 // Log at a custom level
 Logger.getLogger("test").log(CUSTOMLEVEL, "x called");
 }
}

Deployed

java.util.logging.Level class

private static List known = new ArrayList();
protected Level(String name, int value) {
 this.name = name;
 this.value = value;
 synchronized (Level.class) {
 known.add(this);
 }
}

Undeployed

A Leak... These 2 are taking up space in PermGen

Reality:

Hundreds or Thousands of leaked classes

 Thousands of leaked objects

Bafflement...

Java Profilers

 Take memory snapshots

 Find reference chains to root objects

Most see class objects as root objects – so
they are not very helpful

DEMO

Inspecting the Heap With jhat

Agenda
What's the Problem?

Observing the Problem

Walking the Heap

Using Instrumentation

Lessons Learned

An Additional Problem...

Q&A

Resources

Both available at http://www.stpmag.com/

April, 2007 issue May, 2007 issue

Q & A

gregg.sporar@sun.com

