
.NET 3.0 vs. IBM WebSphere 6.1

Benchmark Results
Microsoft .NET StockTrader and IBM WebSphere Trade 6.1 Benchmark

Introduction
This paper is a summary of extensive benchmark testing of two functionally and behaviorally

equivalent performance-driven sample applications: IBM WebSphere Trade 6.1 (developed by

IBM) and the Microsoft .NET StockTrader (developed by Microsoft). While the paper specifically

discusses the benchmark testing results, readers should also be aware that .NET StockTrader can be

seamlessly integrated with the J2EE-based Trade 6.1 application, providing bi-directional

interoperability via Web Services with no code changes required to either application. The IBM

Trade 6.1 front-end JSP application can seamlessly utilize the Windows Communication Foundation

(WCF) C# services exposed by the .NET middle tier; and the ASP.NET Web client and the Windows

Presentation Foundation (WPF) smart client can both seamlessly utilize the J2EE/Java middle-tier

services within IBM WebSphere 6.1.

Background
IBM’s Trade 6.1 performance application is a J2EE-based application developed entirely by IBM as a

benchmark application, best-practice performance sample, and capacity testing tool for IBM

WebSphere 6.1. The application is available for free download from the IBM WebSphere

performance site, and is used extensively by IBM throughout many of the IBM enterprise Redbooks

for WebSphere. Since the application was designed specifically as a performance-driven

application by IBM for WebSphere, it presents a good opportunity to compare the performance of

IBM WebSphere to the performance of .NET 3.0/Windows Server 2003 running an equivalent

application server workload.

Towards that end, Microsoft migrated the IBM application to .NET using best-practice performance

practices for the .NET platform, and performed extensive benchmark testing and comparative

analysis on Windows Server 2003 and Red Hat Linux. The complete testing details, tuning

parameters for all platforms and configurations compared are detailed in the paper .NET

3.0/Windows Communication Foundation and IBM WebSphere 6.1 Service-Oriented Performance

and Scalability Benchmark, available for download at http://msdn.microsoft.com/stocktrader. Full

source code and Visual Studio solutions for the .NET StockTrader benchmark application are also

available at this site.

http://msdn.microsoft.com/stocktrader

Trade 6.1 and .NET StockTrader Configurations

Hardware Configurations
Complete hardware configurations are detailed in the detailed benchmark paper referenced above. For

every test, the hardware used for Trade 6.1 and .NET StockTrader is the exact same hardware. The

primary test server is a 4-way AMD Opteron system with 16GB RAM and 1.8 GHz processors. For the

Web Service tests, additionally four 2-proc blades (2.2 Ghz Intel XEONs w/ 4 GB RAM) were used as the

Web Service clients. The backend database for all tests was a 64-bit dual-core (4 CPUs total) AMD

Opteron server with 16GB RAM and 2.2 GHz CPUs.

Data Access Technology

IBM WebSphere Trade 6.1 has two modes of operation that equate to two ways to access the

backend DB/2 database: EJB mode using a stateless session bean front-ending entity beans using

container-managed persistence (CMP); and a JDBC-direct mode, with JSP/Servlets driving data

access without the use of entity beans. The test results include performance data for both of these

Trade 6.1 configurations. For .NET StockTrader, database access is always performed using

ADO.NET and a data access layer, as entity-beans and CMP are a Java-only construct. The

EJB/entity bean design remains IBM’s recommended design pattern for enterprise WebSphere

applications.

The Trade 6.1 application is tested as an ‘all-IBM’ configuration with DB/2 V9 as the backend

database; the .NET StockTrader is tested as an ‘all-Microsoft’ configuration using SQL Server 2005

Enterprise edition as the backend database.

Web Service Modes

IBM Trade 6.1 uses the latest IBM WebSphere 6.1 Web Services SOAP engine, based on

Apache/Axis. Microsoft WCF, a core component of .NET 3.0, offers a variety of different

configurations for service hosting, and several different Web service configurations were

compared. WCF consolidates all remoting technologies (ASMX, WSE, SOAP Web Services, WS-*,

.NET binary remoting) into a single new service-oriented programming model and runtime, based

on open industry standards. While the WCF modes tested are not comprehensive, they do provide

a good picture of relative performance available with IIS-hosted services, self-hosted services, and

both HTTP/Text-XML encoding and TCP/Binary encoding using the pluggable binding architecture

of WCF.

Test Software and Script Flow

For all tests, Mercury LoadRunner was used to generate load, with a one-second think time between

requests. Clients simulate real users logging into the application, with client connections closed

between iterations. 40 distributed client machines were used to generate high concurrent loads, and

each platform was tuned to achieve peak throughput and full server CPU saturation. Once peak

throughput concurrent user loads were determined based on iterative testing and tuning of each

configuration, Mercury LoadRunner captured and average sustained peak TPS over a 30 minute test

interval after a 15 minute warmup period.

The test script defined the following operations and flow of the simulated users for all configurations

tested:

 Login random registered user (1 to 500,000 users loaded in database; the login includes in both

apps a redirect to the Home page, and hence all the logic to login and display the Home

page/market summary)

 Request four random quotes (1 to 100,000 distinct quotes loaded in database; one html form

post performed with 4 stocks requested)

 Request four random quotes (1 to 100,000 distinct quotes loaded in database; one post

performed with 4 stocks requested)

 Visit Portfolio page

 Visit View Account page

 Visit Home page

 Logout the registered user via logout URL

 Register a new user/submit registration form (this also logs new user in with redirect/display of

Home page)

 Visit Portfolio page

 Buy a random stock symbol (1 to 100,000 stock symbols in database; buy operation involves a

direct post/submit to the order submission pages, which submit the order for all backend

processing)

 Visit Home page

 Buy a random stock

 Visit Account page

 Get quotes for 4 random stocks (one post performed with 4 stocks requested)

 Buy a random stock

 Buy a random stock

 Visit Portfolio page

 Visit Home page

 Logout

Web Service Benchmark Results

This configuration uses four Web Service client machines hosting the JSP and ASP.NET front end

applications, each configured to make requests to the single 4-Proc Web Service host machine. The

test is designed to provide enough front-end capacity (4 x 2-proc Web application servers) to

ensure the system under test (limiting resource) remains the 4-proc Web Service host application

server. In this configuration, WebSphere 6.1 Web service performance across a realistic workload

is compared to ASMX 2.0, and the various WCF/.NET 3.0 configurations supported by .NET

StockTrader middle tier business services.

375 412

563
630

856
922

1340

2422

0

500

1000

1500

2000

2500

3000

P
e

ak
 S

u
st

ai
n

e
d

 T
P

S
.Net StockTrader and IBM WebSphere Trade6.1

Web Service Interface From Web App To
Remote Backend Services

Web App Servers: (Web Service Clients) : Four 2 x 2.2 Ghz Xeon, 4GB RAM
Web Service Host: One 4 x 1.8 GHz Opteron, 16GB R

Higher Bar is Better, as this is Peak Throughput in TPS

Summary

 .NET 3.0 hosted on IIS with an Http binding and XML encoding offers 124% better throughput

than the fastest WebSphere/EJB Web Service implementation tested; and 46% better

throughput than the JDBC (no entity beans) WebSphere implementation tested.

 .NET 3.0 self-hosted over Http/XML offers 225% better throughput than the fastest

WebSphere/EJB Web Service implementation tested; and 113% better throughput than the

JDBC WebSphere implementation tested.

 .NET 3.0 with binary encoding over a TCP binding offers 488% better throughput than the

fastest WebSphere EJB Web service implementation tested; and 284% better throughput than

the JDBC WebSphere implementation tested. Using Tcp/binary encoding with WCF is an

interesting option, as (per the design of StockTrader) the service host can listen on both

http/xml and Tcp/binary endpoints simultaneously, still supporting any platform as a client with

no extra programming required for the service. Significant performance gains are possible with

.NET 3.0 and binary encoding, with the same Web Service programming model utilized. The

WCF Tcp/Binary binding functionally replaces the previous .NET 2.0 binary remoting technology.

Asynchronous Order Processing/Assured Message Delivery Benchmark Results

This configuration uses a single server hosting both the Web application and the asynchronous

order processing services. For Trade 6.1, asynchronous order mode utilized JMS/MDBs and an IBM

Service Integration Bus (SIB) durable message queue, with a two-phase commit distributed

transaction between the message queue and the DB/2 database. This configuration tests a basic

IBM “Enterprise Service Bus” configuration, although other remote configurations are possible.

On the .NET side, the equivalent functionality for assured message delivery is accomplished using a

WCF service-oriented design with an MSMQ binding to a transacted (durable) MSMQ, and a two-

phase commit performed by Microsoft Transaction Coordinator (MS DTC) across the queue and the

database. This configuration tests a basic loosely-coupled message-oriented architecture for .NET

StockTrader, although other remote configurations with replicated MSMQ messaging engines are

possible with .NET StockTrader. Again, the exact same hardware and hardware configuration is

compared.

554

490

790

717

918

0

100

200

300

400

500

600

700

800

900

1000

P
ea

k
Su

st
ai

n
ed

 T
P

S

.Net StockTrader and IBM WebSphere Trade6.1
Asynchronous Message-Based Order Processing

Persistent Message Queue - Assured Delivery
Application Server: 4 x 1.8 GHz Opteron, 16GB RAM

Higher Bar is Better, as this is Peak Throughput in TPS

Summary

WCF over a durable MSMQ message queue offers 67% better throughput than the IBM

WebSphere JMS/SIB message queue configuration using EJB/entity beans; and 16.2% better

throughput than the JMS/SIB message queue configuration using JDBC.

More Information
The complete benchmark paper with all tuning details and results for other configurations tested is

available at http://msdn.microsoft.com/stocktrader, along with downloadable code for the .NET

StockTrader service-oriented application so that customers can perform their own testing and

capacity comparisons on the hardware of their choosing.

http://msdn.microsoft.com/stocktrader

	.NET 3.0 vs. IBM WebSphere 6.1 Benchmark Results
	Introduction
	Background
	Trade 6.1 and .NET StockTrader Configurations
	Hardware Configurations
	Data Access Technology
	Web Service Modes
	Test Software and Script Flow
	Web Service Benchmark Results
	Summary

	Asynchronous Order Processing/Assured Message Delivery Benchmark Results
	Summary

	More Information

