
S A M P L E C H A P T E R

M A N N I N G

Dave Crane
Eric Pascarello

with Darren James

Ajax in Action
by Dave Crane

and Eric Pascarello
Sample Chapter 9

Copyright 2005 Manning Publications

Brief Contents
PART I RETHINKING THE WEB

APPLICATION
Chapter 1 ■ A new design for the Web
Chapter 2 ■ First steps with Ajax
Chapter 3 ■ Introducing order to Ajax

PART II CORE TECHNIQUES
Chapter 4 ■ The page as an application
Chapter 5 ■ The role of the server
Chapter 6 ■ The user experience

PART III PROFESSIONAL AJAX
Chapter 7 ■ Security
Chapter 8 ■ Performance

PART IV AJAX BY EXAMPLE
Chapter 9 ■ Dynamic double combo

Chapter 10 ■ Type-ahead suggest

Chapter 11 ■ The enhanced Ajax web portal
Chapter 12 ■ Live search using XSL
Chapter 13 ■ Building stand-alone applications with Ajax

Appendix A ■ The Ajax craftsperson’s toolkit
Appendix B ■ JavaScript for object-oriented programmers
Appendix C ■ Ajax frameworks

327

Dynamic double combo

This chapter covers
■ The client-side JavaScript
■ The server side in VB .NET
■ Data exchange format
■ Refactoring into a reusable component
■ Dynamic select boxes

328 CHAPTER 9
Dynamic double combo

If you have ever shopped for a new shirt online, you may have run into the fol-
lowing problem. You pick the shirt size from one drop-down list, and from the
next drop-down list you select the color. You then submit the form and get the
message in giant red letters: “Sorry, that item is not in stock.” Frustration sets in
as you have to hit the back button or click a link to select a new color.

 With Ajax we can eliminate that frustration. We can link the selection lists
together, and when our user selects the size option from the first list, all of the
available colors for that shirt can be populated to the second list directly from the
database—without the user having to refresh the whole page. People have been
linking two or more selection lists together to perform this action with either
hard-coded JavaScript arrays or server-side postbacks, but now with Ajax we have
a better way.

9.1 A double-combo script

In a double-combination linked list, the contents of one selection list are depen-
dent on another selection list’s selected option. When the user selects a value
from the first list, all of the items in the second list update dynamically. This func-
tionality is typically called a double-combo script.

 There are two traditional solutions for implementing the dynamic filling of
the second selection list: one is implemented on the client and the other on the
server. Let’s review how they work in order to understand the concepts behind
these strategies and the concerns developers have with them.

9.1.1 Limitations of a client-side solution

The first option a developer traditionally had was to use a client-side-only solu-
tion. It uses a JavaScript method in which the values for the selection lists are
hard-coded into JavaScript arrays on the web page. As soon as you pick a shirt
size, the script seamlessly fills in the next selection list by selecting the values from
the array. This solution is shown in figure 9.1.

 One problem with this client-side method is that, because it does not commu-
nicate with the server, it lacks the ability to grab up-to-date data at the moment
the user’s first selection is made. Another problem is the initial page-loading
time, which scales poorly as the number of possible options in the two lists grows.
Imagine a store with a thousand items; values for each item would have to be
placed in a JavaScript array. Since the code to represent this array would be part
of the page’s content, the user might face a long wait when first loading the page.
There is no efficient way to transmit all of that information to the client up-front.

A double-combo script 329

On the other hand, the JavaScript method has one benefit: after the initial load
time, it is fast. There is no major lag between selecting an option from the first
selection list and the second list being populated. So this method is only usable if
you have just a few double-combination options that will not impact the page-
loading time significantly.

9.1.2 Limitations of a server-side solution

The next traditional solution is the submission of a form back to the server, which
is known as a page postback. In this method, the onchange event handler in the first
selection list triggers a postback to the server, via the submit() method of the
form’s JavaScript representation. This submits the form to the server, transmit-
ting the user’s choice from the first select element. The server, in turn, queries a
database based on the value that the user selected, and dynamically fills in the
new values for the second list, as it re-renders the page. You can see the process of
the server-side method in figure 9.2.

 A drawback to the server-side method is the number of round-trips to the
server; each time the page is reloaded, there is a time delay, since the entire page

Request
page

Page
rendering

Server

JavaScript
Add options

Handles request

Browser
Figure 9.1
The client-side solution

Request
page

Page
rendering

Server

JavaScript
postback

Handles request

Browser

Build select and
rebuild document

Page
rendering

Figure 9.2
The server-side postback method

330 CHAPTER 9
Dynamic double combo

has to re-render. Figure 9.2 shows all of the extra processing required. Additional
server-side code is also needed to reselect the user’s choice on the first select ele-
ment of the re-rendered page. Moreover, if the page was scrolled to a particular
spot before the form was submitted, the user will have to scroll back to that loca-
tion after the page reloads.

9.1.3 Ajax-based solution

We can avoid the problems of the JavaScript and server-side solutions by using
Ajax to transfer data to the server and obtain the desired information for the sec-
ond selection list. This allows the database to be queried and the form element to
be filled in dynamically with only a slight pause. Compared with the JavaScript
method, we are saving the extra page-loading time that was required to load all of
the available options into the arrays. Compared with the server-side postback
solution, we are eliminating the need to post the entire page back to the server;
instead, we are passing only the information necessary. The page is not reloaded,
so you do not have to worry about the scroll position of the page or what option
was selected in the first drop-down field. The initial page loading time is also
shortened since the JavaScript arrays do not have to be included in the page.

 This example will involve two selection lists. The first selection list contains
the sales regions for a company. The second selection list displays the related ter-
ritories for the selected region, as shown in figure 9.3.

 When the user selects a region from the first selection list, the client sends a
request to the server containing only the necessary information to identify both
the selected region, and the form control to populate with the list of territories.
The server queries the database and returns an XML document containing the
names of the territories in the selected region, and also the names of the form
and the control that the client needs to update. Let’s see how this works.

 The first step in building the Ajax solution takes place on the client.

Request
page

Page
rendering

Server

Send
request

Handles request

Browser

Options built

Options
returnedAjax

Figure 9.3
The Ajax solution

The client-side architecture 331

9.2 The client-side architecture

The client-side architecture is foreign territory to most developers who normally
write server-side code. In this case, it is not that scary since we need to take only a
few steps to get the options into our second selection list. If you have imple-
mented the JavaScript or server-side solutions for a double combo before, then
you have already have experience with part of the processes involved.

 As you can see in figure 9.4, this application’s client-side interaction does not
require many steps. The first step is to build the initial form. The user then selects
an item from the form’s first select. This initiates the second step of the client-
side architecture, which is to create an XMLHttpRequest object to interact with
the server. This transmits the user’s selection to the server, along with the names
of the form and the control that will be updated when the server’s response is
received. The third part requires us to add the contents of the server’s XML
response to the second select element. JavaScript’s XML DOM methods are used
to parse the XML response.

Let’s go over the first two steps, which happen before the Ajax request is sent to
the server. We’ll explain the third step (the DOM interaction with the server’s XML
response document) in more detail in section 9.4, since we need to talk about the
server before we can implement the client-side architecture completely.

9.2.1 Designing the form

The form in this example involves two select elements. The first select element
will initially contain values, while the second selection list will be empty.
Figure 9.5 shows the form.

Server

onchange XMLHttpRequest XML DOM

Figure 9.4 Client-side architecture, showing the Ajax interaction

Figure 9.5
Available options in the first select element

332 CHAPTER 9
Dynamic double combo

The first form element can be filled in three separate ways initially, as shown in
table 9.1.

The first method is to hard-code the values into the select element. This method
is good when you have a few options that are not going to change. The second
method is to fill in the values by using a server-side script. This approach fills in
the options as the page is rendered, which allows them to be pulled from a data-
base or XML file. The third method is to use Ajax to fill in the values; this method
posts back to the server to retrieve the values but does not re-render the entire page.

 In this example, we are hard-coding the values into the selection list since there
are only four options and they are not dynamic. The best solution for dynamically
loading values into the first selection list is to use a server-side script that fills the
list as the page is loaded. Ajax should not be used to populate the first selection list
unless its contents depend on other values the user selects on the form.

 The first selection list needs to have an onchange event handler added to its
select element, as shown in listing 9.1. This event handler calls the JavaScript
function FillTerritory(), which initiates the process of filling the second selec-
tion list by sending a request to the server.

<form name="Form1">
 <select name="ddlRegion"

onchange="FillTerritory(this,document.Form1.ddlTerritory)">
 <option value="-1">Pick A Region</option>
 <option value="1">Eastern</option>
 <option value="2">Western</option>
 <option value="3">Northern</option>
 <option value="4">Southern</option>

Table 9.1 Three ways to populate a form element

Method Advantages Disadvantages

Hard-code the values into the select element. No server-side
processing.

Options cannot be
dynamic.

Fill in the values by using a server-side script. Options can be dynamic
and pulled from the
database.

Requires extra
processing on the server.

Use Ajax to fill in the values; this method posts
back to the server to retrieve the values.

Can be linked to other
values on the page.

Requires extra
processing on the server.

Listing 9.1 The double-combo form

The client-side architecture 333

 </select>
 <select name="ddlTerritory"></select>
</form>

The code in listing 9.1 creates a form that initiates the FillTerritory() process
when an item is chosen in the first selection list. We pass two element object ref-
erences to the FillTerritory() function. The first is the selection list object that
the event handler is attached to, and the second is the selection list that is to be
filled in. The next step for us is to develop the client-side code for FillTerri-
tory(), which submits our request to the server.

9.2.2 Designing the client/server interactions

The FillTerritory() function’s main purpose is to gather the information that is
needed to send a request to the server. This information includes the selected
option from the first list, the name of the form, and the name of the second selec-
tion list. With this information we can use the Ajax functions in our JavaScript
library to send a request to the server. The first thing we need to do is add our
Ajax functionality. The code needed to link to the external JavaScript file, net.js,
which defines the ContentLoader object, is trivial. Just add this between the head
tags of your HTML document:

<script type="text/javascript" src="net.js"></script>

The ContentLoader object does all of the work of determining how to send a
request to the server, hiding any browser-specific code behind the easy-to-use
wrapper object that we introduced in chapter 3. It allows us to send and retrieve
the data from the server without refreshing the page.

 With the Ajax functionality added, we are able to build the function Fill-
Territory(), shown in listing 9.2, which we also add between the head tags of
our document.

<script type="text/javascript">
function FillTerritory(oElem,oTarget){
 var strValue = oElem.options[
 oElem.selectedIndex].value;
 var url = "DoubleComboXML.aspx";
 var strParams = "q=" + strValue +
 "&f=" + oTarget.form.name +
 "&e=" + oTarget.name;

Listing 9.2 The function FillTerritory() initializes the Ajax request.

b Obtain value from
selection list

c Set the target URL

d Build the
parameter
string

334 CHAPTER 9
Dynamic double combo

 var loader1 = new
 net.ContentLoader(url,FillDropDown,null,
 "POST",strParams);
}

The FillTerritory() function accepts two parameters, passed in this case from
the onchange event handler on the first selection list. These are references to the
first and second select elements. b We access the value that the user selected in
the first list. c We set the URL of our target server-side script. d We then build
the parameters to be sent to the server by creating a string that has the same type
of syntax as a querystring, using an ampersand to separate each name-value pair.
For this example we are sending the value representing the selected region as q,
the name of the form as f, and the name of the second select as e. The server-
side code will use the selected region value to query the database, and it will send
the names of the form and the select element back to the client in its XML
response document. The client will use that information to determine which form
and control to update. Once the parameter string is built, the only thing left is to
initiate the Ajax process.

 e To start the process, we call the ContentLoader() constructor, and pass in
the target URL, the function to be called when the server’s response is received,
the error-handler function, the HTTP method to use, and the parameters to be
sent. In this case, the FillDropDown() function will be called when the data is
returned from the server, we will rely on ContentLoader’s default error-handler
function, and we are using a POST request.

 At this point, the ContentLoader will wait for the server to return an XML doc-
ument. The client-side code continues in section 9.4, but first, the server has
some work to do.

9.3 Implementing the server: VB .NET

The server-side code needs to retrieve the territories belonging to the user’s
selected region from the database, and return them to the client in an XML
document. The result set from the SQL query is used to create an XML docu-
ment that is returned to the client side. Figure 9.6 shows the flow of the server-
side process.

 The server-side code is invoked by the request sent from the client-side Con-
tentLoader object. The server-side code first retrieves the value of the request
parameter q, representing the selected region. The value of q is used to create a

e Initiate the
content
loader

Implementing the server: VB .NET 335

dynamic SQL query statement, which is run against the database to find the text/
value pairs for the second drop-down list. The data that is returned by the data-
base query is then formatted as XML and returned to the client. Before we write
the code to do this, we need to define the basic XML document structure.

9.3.1 Defining the XML response format

We need to create a simple XML document to return the results of our database
query to the client. It will contain the options to populate the second selection
list. A pair of elements is needed to represent each option, one to contain the
option text, and one to contain the option value.

 The XML document in our example has a root element named selectChoice,
containing a single element named selectElement, followed by one or more
entry elements. selectElement contains the names of the HTML form and selec-
tion list that the results will populate on the client. Each entry element has two
child elements, optionText and optionValue, which hold values representing
each territory’s description and ID. Listing 9.3 shows this structure.

<?xml version="1.0" ?>
<selectChoice>
 <selectElement>
 <formName>Form1</formName>
 <formElem>ddlTerritory</formElem>
 </selectElement>
 <entry>
 <optionText>Select A Territory</optionText>
 <optionValue>-1</optionValue>
 </entry>
 <entry>
 <optionText>TerritoryDescription</optionText>
 <optionValue>TerritoryID</optionValue>
 </entry>
</selectChoice>

Database

Posted
form

Return
document

Build XML
document

Dynamic
SQL

Figure 9.6
Server-side process flow diagram

Listing 9.3 Example of the XML response format

336 CHAPTER 9
Dynamic double combo

Notice in the example XML document in listing 9.3 that there is an entry contain-
ing the option text “Select A Territory”. This is the first option shown in the selec-
tion list, prompting the user to choose a value. The server-side code includes this
value at the start of every response document, before the dynamic options are
obtained from the database.

 Now that we have our response document defined, we can develop the code
that dynamically creates the XML and returns it to the client.

9.3.2 Writing the server-side code

The VB .NET server-side code is straightforward. We perform a query on a data-
base, which returns a record set. We then loop through the record set to create our
XML document and send the XML back to the client. If we do not find any
records, then we do not create any entry elements, also omitting the static “Select
A Territory” option. As you can see in listing 9.4, the server-side code is not very
complicated. It simply contains statements to retrieve the form values posted to
the server, set the content type, perform a search, and output the XML document.

 This example uses the Northwind sample database from Microsoft’s SQL
Server.

Private Sub Page_Load(_
 ByVal sender As System.Object, _
 ByVal e As System.EventArgs) _
 Handles MyBase.Load

 Response.ContentType = "text/xml"

 Dim strQuery As String
 strQuery = Request.Form("q")
 Dim strForm As String
 strForm = Request.Form("f")
 Dim strElem As String
 strElem = Request.Form("e")

 Dim strSql As String = "SELECT " & _
 "TerritoryDescription, " & _
 "TerritoryID" & _
 " FROM Territories" & _
 " WHERE regionid = " & _
 strQuery & " ORDER BY " & _
 "TerritoryDescription"

Listing 9.4 DoubleComboXML.aspx.vb: Server-side creation of the XML response

Implement
Page_Load
method

b Set the content type

c Retrieve the
posted data

d Create the SQL
statement

Implementing the server: VB .NET 337

 Dim dtOptions As DataTable
 dtOptions = FillDataTable(strSql)

 Dim strXML As StringBuilder
 strXML = New StringBuilder("<?xml " & _
 "version=""1.0"" ?>")
 strXML.Append("<selectChoice>")
 strXML.Append("<selectElement>")
 strXML.Append("<formName>" & _
 strForm & _
 "</formName>")
 strXML.Append("<formElem>" & _
 strElem & _
 "</formElem>")
 strXML.Append("</selectElement>")

 If dtOptions.Rows.Count > 0 Then

 strXML.Append("<entry>")
 strXML.Append("<optionText>" & _
 "Select A Territory" & _
 "</optionText>")
 strXML.Append("<optionValue>-1" & _
 "</optionValue>")
 strXML.Append("</entry>")

 Dim row As DataRow
 For Each row In dtOptions.Rows
 strXML.Append("<entry>")
 strXML.Append("<optionText>" & _
 row("TerritoryDescription") & _
 "</optionText>")
 strXML.Append("<optionValue>" & _
 row("TerritoryID") & _
 "</optionValue>")
 strXML.Append("</entry>")
 Next

 End If

 strXML.Append("</selectChoice>")
 Response.Write(strXML.ToString)

End Sub

Public Function FillDataTable(_
 ByVal sqlQuery As String) _
 As DataTable

e Execute the SQL statement

f Begin XML
document

g Verify there are results

h Add first
selection
element

i Loop through
result set and
add XML
elements

j Return the
XML document

338 CHAPTER 9
Dynamic double combo

 Dim strConn As String = _
 "Initial Catalog = Northwind; " & _
 "Data Source=127.0.0.1; " & _
 "Integrated Security=true;"
 Dim cmd1 As _
 New SqlClient.SqlDataAdapter(sqlQuery, _
 strConn)

 Dim dataSet1 As New DataSet
 cmd1.Fill(dataSet1)
 cmd1.Dispose()
 Return dataSet1.Tables(0)
End Function

Setting the page’s content type b to text/xml ensures that the XMLHttpRequest
will parse the server response correctly on the client.

 We obtain the value of the selected region, the HTML form name, and the ele-
ment name from the request parameters c received from the client. For added
safety, we could add a check here to make sure that these values are not null. If the
check does not find a value for each, the script could return an error response. We
should also add checks for SQL injection before the application enters a produc-
tion environment. This would ensure that the database is protected from mali-
cious requests sent by attackers.

 Having obtained the selected region’s value, the next step is to generate a SQL
string so we can retrieve the corresponding territories from the database d. The
two columns we are interested in are TerritoryDescription and TerritoryID,
from the database table Territories. We insert the region value into the SQL
statement’s WHERE clause. To ensure that the results appear in alphabetical order
in our selection list, we also set the SQL ORDER BY clause to TerritoryDescription.
Next, we must execute the SQL statement e. In this case, we call the function
FillDataTable() to create a connection to the database server, perform the query,
and return the results in a data table.

 Now that we have obtained the result of the SQL query, we need to create the
first part of the XML document f, which was discussed in listing 9.2. We begin
the document and add the selectElement, containing the values of formName and
formElem obtained from the request parameters.

 A check is needed to verify if any results were returned by the SQL query g.
If there are results, we add the preliminary “Select A Territory” option h to
the XML.

Presenting the results 339

 Next we loop through the results represented in the DataTable i, populating
the value of the TerritoryDescription column into the optionText tag and the
value of the TerritoryID column into the optionValue tag. By nesting each
description/ID pair inside an entry tag, we provide an easier means to loop through
the values on the client, with JavaScript’s XML DOM methods. After we finish pop-
ulating our results into the XML document, we need to close the root selectChoice
element and write the response to the output page j. The XML response docu-
ment is returned to the client, and the ContentLoader object is notified that the
server-side process is complete. The ContentLoader calls the function FillDrop-
Down() on the client, which will process the XML that we just created.

 Let’s recap what we’ve done on the server. We have taken the value from a
selected item in a selection list and have run a query against a database without
posting back the entire page to the server. We have then generated an XML doc-
ument and returned it to the client. The next step in the process takes us back to
the client side, where we must now convert the XML elements into options for our
second selection list.

9.4 Presenting the results

We now have the results of our database query in an XML document, and we are
going to navigate through its elements using JavaScript’s DOM API. We can easily
jump to a particular element in the document using a function called getEle-
mentsByTagName(). This function uses the element’s name to look it up in the
DOM, somewhat like the alphabetical tabs that stick out in an old-fashioned Rolo-
dex. Since many elements in an XML document can have the same name, getEle-
mentsByTagName() actually returns an array of elements, in the order that they
appear in the document.

9.4.1 Navigating the XML document

Now we will finish the client-side script that adds the options to the selection list.
The names of the form and the selection element that we are going to populate
are specified in the XML document along with all of the available options for the
list. We need to traverse the document’s elements in order to locate the options
and insert them into our select element.

 Once the ContentLoader receives the XML document from the server, it will
call the FillDropDown() function that appears in listing 9.2. In FillDropDown(),
we navigate the entry elements of the XML document, and create a new Option
object for each. These Option objects represent the text and value pairs that

340 CHAPTER 9
Dynamic double combo

will be added to the selection list. Listing 9.5 shows the FillDropDown() func-
tion in full.

function FillDropDown(){
 var xmlDoc = this.req.responseXML.documentElement;

 var xSel = xmlDoc.
 getElementsByTagName('selectElement')[0];
 var strFName = xSel.
 childNodes[0].firstChild.nodeValue;
 var strEName = xSel.
 childNodes[1].firstChild.nodeValue;

 var objDDL = document.forms[strFName].
 elements[strEName];
 objDDL.options.length = 0;

 var xRows = xmlDoc.
 getElementsByTagName('entry');
 for(i=0;i<xRows.length;i++){
 var theText = xRows[i].
 childNodes[0].firstChild.nodeValue;
 var theValue = xRows[i].
 childNodes[1].firstChild.nodeValue;
 var option = new Option(theText,
 theValue);
 try{
 objDDL.add(option,null);
 }catch (e){
 objDDL.add(option,-1);
 }
 }
}

The FillDropDown() function is called by the ContentLoader once it has received
and parsed the server’s XML response. The ContentLoader object is accessible
within FillDropDown() through the this reference, and we use it to obtain the
response document, responseXML. Once we have a reference to the response’s
documentElement b, we can begin using JavaScript’s DOM functions to navigate
its nodes. The first information we want to obtain is the target select list to which
we will add the new options. We look up the element named selectElement using
getElementsByTagName(), taking the first item from the array it returns. We can
then navigate to its child nodes c. The first child contains the form’s name and
the second child the select list’s name.

Listing 9.5 Updating the page with data from the XML response

b Get response XML
document

c Get name of
form and
select element

d Obtain a
reference the
select element

e Loop through the
XML document
adding options

Presenting the results 341

 Using these two values, we reference the target selection list itself d, and clear
any existing options by setting the length of its options array to 0. Now we can add
the new options to the list. We need to access the XML’s document entry elements,
so we call on getElementsByTagName() once again. This time we need to loop
through the array of elements it returns, and obtain the text and value pairs from
each e. The first child node of each entry is the option text that is to be displayed
to the user, and the second child node is the value. Once these two values are
obtained, we create a new Option object, passing the option text as the first con-
structor parameter and the option value as the second. The new option is then
added to the target select element, and the process is repeated until all the new
options have been added. The method signature for select.add() varies between
browsers, so we use a try...catch statement to find one that works. This completes
the coding for our double combo box. We can now load up our HTML page, select
a region, and see the second drop-down populated directly from the database.

 Figure 9.7 shows the double-combo list in action. In this example, the Eastern
region is selected from the first list, and the corresponding territories are
retrieved from the database and displayed in the second list. The Southern
region is then selected from the first list, and its corresponding territories fill in
the second list.

Figure 9.7 The double-combo list in action

342 CHAPTER 9
Dynamic double combo

As you can see in figure 9.7, we still have one job left: changing the selection list’s
appearance to make it more appealing. The second selection list’s size expands as
it is populated with options. We can fix this shift in size by applying a Cascading
Style Sheet (CSS) rule to the element.

9.4.2 Applying Cascading Style Sheets

Cascading Style Sheets allow for changes in the visual properties of the selection
element. We can change the font color, the font family, the width of the element,
and so on. In figure 9.7 we saw that our second select element is initially only a
few pixels wide since it contains no options. When the Eastern region is chosen
from the first selection list, our second select element expands. This change of
size is visually jarring and creates an unpleasant user experience.

 The way to fix this issue is to set a width for the selection list:

<select name="ddlTerritory" style="width:200px"></select>

However, there may still be a problem if one of the displayed values is longer than
the width we set. In Firefox, when the element is in focus the options under the
drop-down list expand to display their entire text. However, in Microsoft Internet
Explorer, the text is chopped off and is not visible to the user, as shown in
figure 9.8.

 To avoid the problem with Internet Explorer, we need to set the width of the
selection list to the width of the longest option. Most of the time the only way to
determine the number of pixels required to show the content is by trial and error.

Figure 9.8 Cross-browser differences in how a select
element is rendered

Advanced issues 343

Some developers use browser-specific hacks in their CSS only to set the width
wider for IE:

style="width:100px;_width:250px"

Internet Explorer recognizes the width with the underscore, while other browsers
ignore it. Therefore, IE’s selection box will be 250 pixels wide, while the other
browsers’ selection width will be 100 pixels wide. However, it’s inadvisable to rely
on browser bugs such as this one, as they may be fixed in a future version of the
browser and break the way your page is displayed.

 Let’s look now at ways to add more advanced features to our double-combo
script.

9.5 Advanced issues

In this chapter, we have built a simplified version of a double-combo script. We
send a single parameter to the server, and we return a set of results for the single
selected item. You may find that you need to change the way that this application
works. You may want to add another element to the form so that you have a triple
combo. You may even want to allow the user to select multiple items in the first
list. If this is the case, then the following sections will give you ideas on how to
implement them.

9.5.1 Allowing multiple-select queries

The code we have discussed so far is a simple example, allowing a user to select
only one option from each selection list. In some cases, a user may be required to
select more than one option from the first list. That means the second list in our
combination will be populated with values corresponding to each selected option
in the first list. With some simple changes to our client-side and server-side code,
we can make this happen.

 The first thing to do is to set up the first selection list to allow multiple items to
be chosen. To do this, we need to add the multiple attribute to the select tag. To
specify how many options to display, we can add the size attribute. If size is
smaller than the number of options, the selection list will be scrollable to reveal
those that are not visible.

<select name="ddlRegion" multiple size="4"
onchange="FillTerritory(this,document.Form1.ddlTerritory)">

 <option value="1">Eastern</option>
 <option value="2">Western</option>

344 CHAPTER 9
Dynamic double combo

 <option value="3">Northern</option>
 <option value="4">Southern</option>
</select>

The next step is to change the FillTerritory() function. Instead of just referenc-
ing the selected index of the select element, we need to loop through all the
options and find each of the selected values. We add the value of each selected
option to the parameter string:

function FillTerritory(oElem,oTarget){
 var url = 'DoubleComboMultiple.aspx';
 var strParams = "f=" + oTarget.form.name +
 "&e=" + oTarget.name;
 for(var i=0;i<oElem.options.length;i++){
 if(oElem.options[i].selected){
 strParams += "&q=" + oElem.options[i].value;
 }
 }

 var loader1 = new

net.ContentLoader(url,FillDropDown,null,"POST",strParams);
}

The last thing to do is change the code of the server-side script to handle the mul-
tiple values passed in the request. In .NET, the multiple values are represented in
a single string, separated by commas. In order to get each item individually, we
need to split the string into an array. We can then build our WHERE clause for the
SQL statement by looping through the array.

Dim strQuery As String = Request.Form("q")
Dim strWhere As String = ""
Dim arrayStr() As String = strQuery.Split(",")
Dim i As Integer
For Each i In arrayStr
 If strWhere.Length > 0 Then
 strWhere = strWhere & " OR "
 End If
 strWhere = strWhere & " regionid = " & i
Next

Dim strSql As String = "SELECT " & _
 " TerritoryDescription, " & _
 " TerritoryID" & _
 " FROM Territories" & _
 " WHERE " & strWhere & _
 " ORDER BY TerritoryDescription"

Refactoring 345

With these changes, a user to can select multiple regions from the first selection
list, and the territories corresponding with every selected region will appear in
the second list.

9.5.2 Moving from a double combo to a triple combo

Moving to a double combo to a triple combo requires only a small number of
changes, depending on how we want to handle the logic on the server. The
first option is to move our logic into multiple server-side pages so that we can
run a different query in each. That would mean adding another parameter to
each selection list’s onchange handler, representing the URL of the server-side
script to call.

 The other option can be as simple as adding an if-else or a switch-case
statement to the server-side code. The if-else structure needs a way to deter-
mine which query to execute in order to return the appropriate values. The sim-
plest check is to decide which SQL query to use based on the name of the select
element to be populated. So, when we are performing a triple combo, we can
check that the value of the strElem variable. This way, we do not need to make any
changes to the onchange event handlers in the client-side code.

Dim strSql As String
If strElem = "ddlTerritory" Then
 strSql = "SELECT TerritoryDescription, " & _
 " TerritoryID" & _
 " FROM Territories" & _
 " WHERE " & strWhere & _
 " ORDER BY TerritoryDescription"
Else
 strSql = "SELECT Column1, Column2" & _
 " FROM TableName" & _
 " WHERE " & strWhere & _
 " ORDER BY Column2"
End If

With this solution, as long as the drop-down lists have unique names, you will be
able to have multiple combination elements on the page without having to sepa-
rate all of the logic into different server-side pages.

9.6 Refactoring

So what do you think is lacking at this point? I suspect I know what you’re think-
ing—generality. This is an extremely cool, jazzed-up technique for implement-
ing double combos, but it needs a little polish to be a generalized component.

346 CHAPTER 9
Dynamic double combo

We’ll get there, so hang tight. But first, let’s address something even more funda-
mental: encapsulation of some of the Ajax plumbing itself. The net.Content-
Loader introduced briefly in chapter 3, and more thoroughly in chapter 5, is a
good start. Let’s build on this object to make our handling of AJAX even more
seamless. Ideally we should be able to think of this entity as an Ajax “helper”
object that does all the heavy lifting associated with Ajax processing. This will
allow our component to focus on double combo–specific behaviors and reduce
the amount of code required by the rest of our components as well. Our
improved net.ContentLoader object should ideally encapsulate the state and
behavior required to perform the following tasks:

■ Creation of the XMLHttpRequest object in a cross-browser fashion, and as
an independent behavior from sending requests. This will allow callers to
use the creation method independently from the rest of the object. This is
useful if the caller is using another idiom, framework, or mechanism for
request/response activities.

■ Provide a more convenient API for dealing with request parameters. Ide-
ally the caller should just be able to pass state from the application and let
the net.ContentLoader “helper” worry about creating querystrings.

■ Routing the response back to a component that knows how to handle it
and performing appropriate error handling.

So let’s start our refactoring of net.ContentLoader, and then we’ll move on to
repackaging our double combo as a component.

9.6.1 New and improved net.ContentLoader

Let’s start by thinking about how the constructor should be changed. Consider
the following constructor:

net.ContentLoader = function(component, url, method, requestParams) {
 this.component = component;
 this.url = url;
 this.requestParams = requestParams;
 this.method = method;
}

The constructor shown here is called with four arguments. The first, component,
designates the object that is using the services of this helper. The helper object will
assume that component has an ajaxUpdate() method to handle responses and a
handleError() method to handle error conditions. More about that later. Second,
as before, url designates the URL that is invoked by this helper to asynchronously

net.ContentLoader
state

Refactoring 347

get data from the server. The method parameter designates the HTTP request
method. Valid values are GET and POST. Finally, the requestParameters argument is
an array of strings of the form key=value, which designate the request parameters
to pass to the request. This allows the caller to specify a set of request parameters
that do not change between requests. These will be appended to any additional
request parameters passed into the sendRequest method discussed below. So our
helper can now be constructed by a client as follows:

 var str = "Eastern";
 var aComp = new SomeCoolComponent(...);
 var ajaxHelper = new net.ContentLoader(aComp,
 "getRefreshData.aspx", "POST",
 ["query=" + str, "ignore_case=true"]);

Now let’s consider the rest of the API. One thing I should mention at this point is
the stylistic nature of the code sample. The methods of this object are scoped to
the prototype object attached to the constructor function. This is a common tech-
nique when writing object-oriented JavaScript, as it applies the method defini-
tions to all instances of the object. However, there are several ways of syntactically
specifying this. One of my favorites (a pattern I picked up from the prototype.js
library packaged within Ruby On Rails) is to create the prototype object literally,
as shown here:

net.ContentLoader.prototype = {

 method1: function(a, b, c) {
 },

 method2: function() {
 },

 method3: function(a) {
 }

};

The thing we like about this syntactically is that it is expressed minimally. The way
to read this is that the outermost open and close curly braces represent an object
literal, and the content is a comma-delimited list of property-value pairs within
the object. In this case our properties are methods. The property-value pairs are
specified as the name of the property, followed by a colon, followed by the value
of the property. In this case the values (or definitions if you prefer) are function
literals. Piece of cake, huh? Just bear in mind that the methods shown from here
on out are assumed to be contained within the prototype object literal as shown

First method attached
to prototype

Second method

348 CHAPTER 9
Dynamic double combo

here. Also, note that the last property doesn’t need—indeed can’t have—a
comma after it. Now let’s go back to the task at hand: refactoring the API.

 The API should address the requirements that we mentioned above, so let’s
take each one in turn. The first thing we need is an independent behavior to han-
dle the creation of the XMLHttpRequest object in a cross-browser fashion. That
sounds like a method. Fortunately, we’ve implemented this one a few times
already. All we need to do is create it as a method of our helper, as shown in
listing 9.6, and we’ll never have to write it again.

 getTransport: function() {
 var transport;
 if (window.XMLHttpRequest)
 transport = new XMLHttpRequest();
 else if (window.ActiveXObject) {
 try {
 transport = new ActiveXObject('Msxml2.XMLHTTP');
 }
 catch(err) {
 transport = new ActiveXObject('Microsoft.XMLHTTP');
 }
 }
 return transport;
 },

There’s not much explanation required here, since we’ve covered this ground
many times, but now we have a cleanly packaged method to provide a cross-browser
Ajax data transport object for handling our asynchronous communications.

 The second requirement we mentioned was to provide a more convenient API
for dealing with request parameters. In order for it to be used across a wide vari-
ety of applications, it is almost certain that the request being sent will need run-
time values as parameters. We’ve already stored some initial state that represents
request parameters that are constant across requests, but we’ll also need runtime
values. Let’s decide on supporting a usage such as the following code:

 var a,b,c;
 var ajaxHelper = new net.ContentLoader(...);
 ajaxHelper.sendRequest("param1=" + a, "param2=" + b,
 "param3=" + c);

So given this usage requirement, sendRequest is defined as shown in listing 9.7.

Listing 9.6 The getTransport method

Native
object

IE ActiveX
object

Assume initialized with runtime values

Refactoring 349

 sendRequest: function() {

 var requestParams = [];
 for (var i = 0 ; i < arguments.length ; i++) {
 requestParams.push(arguments[i]);
 }

 var request = this.getTransport();
 request.open(this.method, this.url, true);
 request.setRequestHeader('Content-Type',
 'application/x-www-form-urlencoded');

 var oThis = this;
 request.onreadystatechange = function() {
 oThis.handleAjaxResponse(request) };
 request.send(this.queryString(requestParams));
 },

This method splits the process of sending a request into four steps. Let’s look at
each step of the process in detail:
This step takes advantage of the fact that JavaScript creates a pseudo-array
named arguments that is scoped to the function. As the name suggests, arguments
holds the arguments that were passed to the function. In this case the arguments
are expected to be strings of the form key=value. We just copy them into a first-
class array for now. Also, note that all variables created in this method are pre-
ceded by the keyword var. Although JavaScript is perfectly happy if we leave the
var keyword off, it’s very important that we don’t. Why? Because, if we omit the
var keyword, the variable is created at a global scope—visible to all the code in
your JavaScript universe! This could cause unexpected interactions with other
code (for example, someone names a variable with the same name in a third-
party script you have included). In short, it’s a debugging nightmare waiting to
happen. Do yourself a favor and get accustomed to the discipline of using locally
scoped variables whenever possible.
Here our method uses the getTransport method we defined in listing 9.6 to cre-
ate an instance of an XMLHttpRequest object. Then the request is opened and its
Content-Type header is initialized as in previous examples. The object reference
is held in a local variable named request.
This step takes care of the response-handling task. I’ll bet you’re wondering why
the variable oThis was created. You’ll note that the following line—an anonymous
function that responds to the onreadystatechange of our request object—refer-
ences oThis. The name for what’s going on here is a closure. By virtue of the inner

Listing 9.7 The sendRequest method

b Store
arguments
in an array

c Create the
request

dSpecify the
callback

e Send the request

 b

 c

 d

350 CHAPTER 9
Dynamic double combo

function referencing the local variable, an implicit execution context or scope is
created to allow the reference to be maintained after the enclosing function exits.
(See appendix B for more on closures.) This lets us implement handling of the
Ajax response by calling a first-class method on our ajaxHelper object.
Finally, we send the Ajax request. Note that the array we created in step 1 is
passed to a method named queryString that converts it to a single string. That
string becomes the body of the Ajax request. The queryString method isn’t really
part of the public contract we discussed earlier, but it’s a helper method that
keeps the code clean and readable. Let’s take a look at it in listing 9.8.

 queryString: function(args) {

 var requestParams = [];
 for (var i = 0 ; i < this.requestParams.length ; i++) {
 requestParams.push(this.requestParams[i]);
 }
 for (var j = 0 ; j < args.length ; j++) {
 requestParams.push(args[j]);
 }

 var queryString = "";
 if (requestParams && requestParams.length > 0) {
 for (var i = 0 ; i < requestParams.length ; i++) {
 queryString += requestParams[i] + '&';
 }
 queryString = queryString.substring(0, queryString.length-1);
 }
 return queryString;
 },

This method takes the request parameters that our net.ContentLoader was con-
structed with, along with the additional runtime parameters that were passed into
the sendRequest method, and places them into a single array. It then iterates over
the array and converts it into a querystring. An example of what this achieves is
shown here:

var helper = new net.ContentLoader(someObj, someUrl,
 "POST", ["a=one", "b=two"]);
var str = ajaxHelper.queryString(["c=three", "d=four"]);

str => "a=one&b=two&c=three&d=four"

Listing 9.8 The queryString method

 e

Constant
parameters

Runtime
parameters

Refactoring 351

The last thing we need to do to have a fully functional helper object is to collab-
orate with a component to handle the response that comes back from Ajax. If
you’ve been paying attention, you probably already know what this method will
be named. Our sendRequest method already specified how it will handle the
response from the onreadystatechange property of the request:

 request.onreadystatechange = function(){
 oThis.handleAjaxResponse(request)
 }

That’s right, kids; all we need to do is implement a method named handleAjax-
Response. Listing 9.9 contains the implementation.

 handleAjaxResponse: function(request) {
 if (request.readyState == net.READY_STATE_COMPLETE) {
 if (this.isSuccess(request))
 this.component.ajaxUpdate(request);
 else
 this.component.handleError(request);
 }
 },

 isSuccess: function(request){
 return request.status == 0
 || (request.status >= 200 && request.status < 300);
 }

All the method does is check for the appropriate readyState of 4 (indicating
completion) and notifies the this.component that the response is available. But
we’re not quite finished yet. The other requirement we said we would address is
to handle errors appropriately. But what is appropriate? The point is, we don’t
know what’s appropriate. How to handle the error is a decision that should be
deferred to another entity. Therefore we assume that our client, this.component,
has a handleError method that takes appropriate action when the Ajax response
comes back in a way we didn’t expect. The component may in turn delegate the
decision to yet another entity, but that’s beyond the scope of what we care about
as a helper object. We’ve provided the mechanism; we’ll let another entity pro-
vide the semantics. As mentioned earlier, we’re assuming that this.component
has an ajaxUpdate and a handleError method. This is an implicit contract that
we’ve created, since JavaScript isn’t a strongly typed language that can enforce
such constraints.

Listing 9.9 The Ajax response handler methods

Message component
with response

Message component
with error

352 CHAPTER 9
Dynamic double combo

 Congratulations! You’ve morphed net.ContentLoader into a flexible helper to
do all the Ajax heavy lifting for your Ajax-enabled DHTML components. And if
you have a DHTML component that’s not yet Ajax-enabled, now it’ll be easier!
Speaking of which, we have a double-combo component to write.

9.6.2 Creating a double-combo component

We’ve laid some groundwork with our net.ContentLoader to make our task here
much easier, so let’s get started. Let’s assume that our assignment as a rock-star
status developer is to create a double-combo script that can be reused in many
contexts across an application, or many applications for that matter. We need to
consider several features in order to meet this requirement:

■ Let’s assume that we may not be able or want to directly change the HTML
markup for the select boxes. This could be the case if we are not responsi-
ble for producing the markup. Perhaps the select is generated by a JSP or
other server-language-specific tag. Or perhaps a designer is writing the
HTML, and we want to keep it as pristine as possible to avoid major
reworks caused by a round or two of page redesigns.

■ We want a combo script that is able to use different URLs and request
parameters to return the option data. We also want the design to accom-
modate further customization.

■ We want to be able to apply this double-combo behavior potentially across
multiple sets of select tags on the same page, also potentially setting up
triple or quadruple combos, as discussed earlier.

Starting from the perspective of our first task, keeping the HTML markup as pris-
tine as possible, let’s assume the markup shown in listing 9.10 is representative of
the HTML on which we will be operating.

<html>
<body>

<form name="Form1">
 <select id="region" name="region" >
 <options...>
 </select>
 <select id="territory" name="territory" />
</form>

Listing 9.10 Double-combo HTML markup listing

Refactoring 353

</body>
</html>

What we need is a DoubleCombo component that we can attach to our document to
perform all of the double-combo magic. So let’s work backwards and consider
what we would want our markup to look like; then we’ll figure out how to imple-
ment it. Let’s change the markup to look something like listing 9.11.

<html>
<head>
 ...
 <script>
 function injectComponentBehaviors() {
 var doubleComboOptions = {};
 new DoubleCombo('region',
 'territory',
 'DoubleComboXML.aspx',
 doubleComboOptions);
 }
 </script>
</head>

<body onload="injectComponentBehaviors()">

<form name="Form1">
 <select id="region" name="region" >
 <option value="-1">Pick A Region</option>
 <option value="1">Eastern</option>
 <option value="2">Western</option>
 <option value="3">Northern</option>
 <option value="4">Southern</option>
 </select>
 <select id="territory" name="territory" />
</form>

</body>
</html>

The markup has now changed in the following ways:

■ A function has been created that injects all desired component behaviors
into our document.

■ An onload handler has been added to the body element that calls this
function.

Listing 9.11 Double-combo HTML modified markup listing

DoubleCombo
component

354 CHAPTER 9
Dynamic double combo

Note that nothing within the body section of the page has been modified. As
stated earlier, this is a good thing. We’ve already satisfied our first requirement.
But, looking at our injectComponentBehaviors() function, it’s apparent that we
have some more work to do. Namely, we need to create a JavaScript object named
DoubleCombo that, when constructed, provides all the behaviors we need to sup-
port double-combo functionality.

DoubleCombo component logic
Let’s start by looking more closely at the semantics of our component creation.
Our injectComponentBehaviors() function creates a DoubleCombo object by call-
ing its constructor. The constructor is defined in listing 9.12.

function DoubleCombo(masterId, slaveId, url, options) {
 this.master = document.getElementById(masterId);
 this.slave = document.getElementById(slaveId);
 this.options = options;
 this.ajaxHelper = new net.ContentLoader(this, url, "POST",
 options.requestParameters || []);

 this.initializeBehavior();
}

This should be a familiar construct at this point; our constructor function initial-
izes the state of our DoubleCombo. A description of the arguments that should be
passed to the constructor is shown in table 9.2.

Consider the nature of the state maintained by the DoubleCombo object—partic-
ularly the URL and options. These two pieces of state satisfy the second functional

Listing 9.12 DoubleCombo constructor

Table 9.2 Description of arguments

Argument Description

masterId The ID of the element in the markup corresponding to the master select ele-
ment. The selection made in this element determines the values displayed by a
second select element.

slaveId The ID of the element in the markup corresponding to the slave select element.
This is the element whose values will be changed when the user makes a choice
from the master select.

options A generic object that provides other data required by the double combo.

Initialize
state

Initialize behavior

Refactoring 355

requirement mentioned earlier. That is, our component can accommodate any
URL for data retrieval and is customizable via the options parameter. Currently
the only thing we assume we’ll find within the options object is a requestParame-
ters property. But, because the options parameter is just a general object, we
could set any property on it needed to facilitate further customizations down the
road. The most obvious kinds of properties we could place in our options object
are such things as CSS class stylings and the like. However, the style and function
of the double combo are fairly independent concepts, so we’ll leave the styling to
the page designer.

 To many of you, we’re sure, the more interesting part of the constructor comes
in the last two lines. Let’s look at each in turn:

 this.ajaxHelper = new net.ContentLoader(this, url, "POST",
 options.requestParameters || []);

Obviously, we know that our component requires Ajax capabilities. As fortune
and a little planning would have it, we already have an object to perform the
lion’s share of our Ajax-related work—that is, the net.ContentLoader we cleverly
refactored earlier. The DoubleCombo simply passes itself (via this) as the compo-
nent parameter to the ContentLoader helper. The url parameter is also passed
through to the helper as the target URL of Ajax requests, and the HTTP request
method is specified with the string "POST". Finally, the requestParameters prop-
erty of the options object, or an empty array if none was defined, is passed as the
“constant” parameter array to send with every Ajax request. Also recall that
because we passed this as a component argument, the DoubleCombo object is
obligated to implement the implied contract with the net.ContentLoader object
we discussed earlier. That is, we must implement an ajaxUpdate() and a han-
dleError() method. We’ll get to that in a bit, but first let’s look at the last line of
our constructor:

 this.initializeBehavior();

Finally our constructor is doing something that looks like behavior. Yes, the
moment we’ve all been waiting for: the behavior implementation. Everything
we’ll do from here on out is directly related to providing double-combo function-
ality. So without further ado, let’s take a look at this method along with all the
other DoubleCombo methods that will be required. Thanks to all of the infra-
structure we’ve put in place, our task is far from daunting at this point. Keep in
mind that all the methods that appear throughout the rest of the example are
assumed to be embedded within a prototype literal object, exactly as we did for
the net.ContentLoader implementation.

356 CHAPTER 9
Dynamic double combo

DoubleCombo.prototype = {
 // all of the methods….
};

So, let’s peek under the hood. First, the initializeBehavior() method is
shown here:

 initializeBehavior: function() {
 var oThis = this;
 this.master.onchange = function() { oThis.masterComboChanged(); };
 },

Short and sweet. This method puts an onchange event handler on the master
select element (formerly done in the HTML markup itself). When triggered, the
event handler invokes another method on our object, masterComboChanged():

 masterComboChanged: function() {
 var query = this.master.options[
 this.master.selectedIndex].value;
 this.ajaxHelper.sendRequest('q=' + query);
 },

Wow, also short and sweet. All this method has to do is create a request parameter
and send our Ajax request. Since the Ajax-specific work has been factored out
into another object, this is a single line of code. Recall that sendRequest() will cre-
ate and send an XMLHttpRequest, then route the response back to our ajaxUp-
date() method. So let’s write that:

 ajaxUpdate: function(request) {
 var slaveOptions = this.createOptions(
 request.responseXML.documentElement);
 this.slave.length = 0;
 for (var i = 0 ; i < slaveOptions.length ; i++)
 try{
 this.slave.add(slaveOptions[i],null);
 }catch (e){
 this.slave.add(slaveOptions[i],-1);
 }
 },

This method takes the response XML from the request object and passes it to a
method named createOptions(), which creates our slave select’s option ele-
ments. The method then simply clears and repopulates the slave select ele-
ment. The createOptions() method, although not part of any public contract, is
a helper method that makes the code cleaner and more readable. Its implemen-
tation, along with another helper method, getElementContent(), is shown in list-
ing 9.13.

Clear any existing options

Populate
new options

Refactoring 357

 createOptions: function(ajaxResponse) {
 var newOptions = [];
 var entries = ajaxResponse.getElementsByTagName('entry');
 for (var i = 0 ; i < entries.length ; i++) {
 var text = this.getElementContent(entries[i],
 'optionText');
 var value = this.getElementContent(entries[i],
 'optionValue');
 newOptions.push(new Option(text, value));
 }
 return newOptions;
 },

 getElementContent: function(element,tagName) {
 var childElement = element.getElementsByTagName(tagName)[0];
 return (childElement.text != undefined) ? childElement.text :
 childElement.textContent;
 },

These methods perform the hard work of actually fetching values from the XML
response document, and creating options objects from them. To recap, the XML
structure of the response is as follows:

<?xml version="1.0" ?>
<selectChoice>
 ...
 <entry>
 <optionText>Select A Territory</optionText>
 <optionValue>-1</optionValue>
 </entry>
 <entry>
 <optionText>TerritoryDescription</optionText>
 <optionValue>TerritoryID</optionValue>
 </entry>
</selectChoice>

The createOptions() method iterates over each entry element in the XML and
gets the text out of the optionText and optionValue elements via the get-
ElementContent() helper method. The only thing particularly noteworthy about
the getElementContent() method is that it uses the IE-specific text attribute of
the XML element if it exists; otherwise it uses the W3C-standardized text-
Content attribute.

Listing 9.13 Combo population methods

358 CHAPTER 9
Dynamic double combo

Error handling
We’re all finished. Almost. We’ve implemented all the behaviors needed to make
this component fully operational. But, dang, we said we’d handle error condi-
tions, too. You will recall that we have to implement a handleError() method in
order to play nicely with the net.ContentLoader. So let’s implement that, and
then we’ll really be finished. So what’s the appropriate recovery action if an error
occurs? At this point we still can’t really say. The application using our Double-
Combo component ultimately should decide. Sounds like a job for our options
object—remember the one we passed to the constructor? Let’s think about that
contract for a second. What if we constructed our double-combo component with
code that looks something like this?

 function myApplicationErrorHandler(request) {
 // Application function that knows how
 // to handle an error condition
 }

 var comboOptions = { requestParameters: [
 "param1=one", "param2=two"],
 errorHandler: myApplicationErrorHandler };

 var doubleCombo = new DoubleCombo('region',
 'territory',
 'DoubleComboXML.aspx',
 comboOptions);

In this scenario, we’ve let the application define a function called myApplication-
ErrorHandler(). The implementation of this method is finally where we can put
application-specific logic to handle the error condition. This could be an alert.
Or it could be a much less intrusive “oops” message a la GMail. The point is we’ve
deferred this decision to the application that’s using our component. Again,
we’ve provided the mechanism and allowed someone else to provide the seman-
tics. So now we have to write the DoubleCombo object’s handleError() method:

 handleError: function(request) {
 if (this.options.errorHandler)
 this.options.errorHandler(request);
 }

Component bliss
Congratulations are in order! We’re finally all done. We have a general compo-
nent that we can construct with the IDs of any two select elements and some con-
figuration information, and we have instant double-combo capability. And it’s just
so … door slams open!

Summary 359

 Enter pointy-haired manager, 2:45 P.M. Friday. “Johnson,” he says. “We have
to support subterritories! … And we need it by Monday morning!” Dramatic
pause. “Ouch!” you finally retort. Then you regain your composure and say, “I’ll
make it happen, sir. Even if I have to work all weekend.” He hands you the new
page design:

<form>
 <select id="region" name="region"><select>
 <select id="territory" name="territory"></select>
 <select id="subTerritory" name="subTerritory"></select>
</form>

Pointy-hair retreats. You open the HTML page in Emacs, because that’s the way
you roll. You go directly to the head section. The cursor blinks. You begin to type:

 <script>
 function injectComponentBehaviors() {
 var opts1 = { requestParameters: "master=region" };
 var opts2 = { requestParameters: "master=territory" };

 new DoubleCombo('region',
 'territory',
 'DoubleComboXML.aspx', opts1);
 new DoubleCombo('territory',
 'subTerritory',
 'DoubleComboXML.aspx', opts2);
 </script>

You press a key that runs a macro to nicely format your code. You save. You
exclaim over your shoulder, “I’ll be working from home,” as you pass by Pointy’s
office at 2:57. You plop down on the sofa and think to yourself, “Boy, I am a rock
star!” Okay, already. Enough of the fantasy. Let’s tie a bow around this thing and
call it a day.

9.7 Summary

The double combination select element is an efficient method to create dynamic
form elements for the user. We can use JavaScript event handlers to detect
changes in one select element and trigger a process to update the values in the
second element. By using Ajax, we are able to avoid the long page-loading time
that you would see using a JavaScript-only solution. Using Ajax, we can make a
database query without the entire page being posted back to the server and dis-
rupting the user’s interaction with the form. Ajax makes it easy for your web
application to act more like a client application.

360 CHAPTER 9
Dynamic double combo

 With this code, you should be able to develop more sophisticated forms with-
out having to worry about the normal problems of posting pages back to the
server. With the ability to extend this script to act on multiple combinations of
selection lists, your users can drill down more precisely through several layers of
options to obtain the information or products they are looking for.

 Finally, we did some refactoring of the code to build ourselves an industrial-
strength component to facilitate reuse and customization down the road. From
our perspective, we’ve encapsulated this functionality in a reusable component
and won’t ever need to write it again. From our users’ perspective, they won’t be
getting that screen that says the product is not available when buying items from
our online store. Everybody’s happy.

