
23
J2EE Packaging, Enhanced EARs,
and the Application Server Toolkit

A s you learned about in Chapter 1, WebSphere Application Server V6 supports the
full Java 2 Platform, Enterprise Edition (J2EE) 1.4 programming model. The

J2EE specification consists of several functional subspecifications. However, it isn’t
always obvious how you should put together the different elements to form a complete
J2EE application. In this chapter, we take a closer look at J2EE packaging and explain
the role IBM Enhanced EAR files and the WebSphere Application Server Toolkit (AST)
play in creating a J2EE application.

J2EE Packaging at a Glance
The J2EE specification provides guidelines for the structuring and creation of J2EE
applications, and one of the major ones relates to packaging. Individual specifications
provide guidelines for the packaging of individual components, such as Enterprise
JavaBeans (EJBs), Java Server Pages (JSPs), and servlets. The J2EE specification then
dictates how these heterogeneous components are themselves to be packaged together.

This section provides an analysis of the J2EE packaging mechanism, focusing on the
relationships these components have within an Enterprise Application Archive (EAR) file
and the process involved in building EAR files. Some of the questions we’ll ask are

What are the rules for using J2EE packaging as opposed to component 
packaging?

What can you place into a J2EE package?

Is J2EE packaging necessary, and are there behavioral changes that occur as a
result of using J2EE packaging?

699



700

As we answer these questions, you’ll learn

how J2EE class loading schemes work
how to create EAR files
how to deal with dependency and utility classes

J2EE Packaging Overview
A J2EE application is composed of

one or more J2EE components
a J2EE application deployment descriptor

When one or more heterogeneous J2EE components need to use one another, you must
create a J2EE application. When building a J2EE application, you must take into
account many considerations, including

the types of J2EE components you can package into a J2EE application

the roles people play when creating J2EE packages

the current limitations of J2EE packaging

the class loading approaches different vendors use to meet the needs of J2EE
component interactions

What Can Be Packaged?
The J2EE specification differentiates between resources that run within a container and
resources that can be packaged into a J2EE EAR file:

“An EAR file is used to package one or more J2EE modules into a single
module so that they can have aligned classloading and deployment into a
server.”

J2EE clarifies the difference between runtime containers and deployment modules.
Runtime containers are request-level interceptors that provide infrastructure services
around components of the system. A deployment module is a packaging structure for
components that will ultimately execute in a runtime container. Recall how J2EE
containers are structured:

EJB container — The EJB container provides containment and request-level
interception for business logic. The EJB container lets EJBs access Java
Message Service (JMS), Java Authentication and Authorization Service (JAAS),
the Java Transaction API (JTA), JavaMail (which uses JavaBeans Activation

CHAPTER 23: J2EE Packaging, Enhanced EARs, and the Application Server Toolkit



Framework, or JAF), the Java API for XML Processing (JAXP), Java Database
Connectivity (JDBC), and the Connector architecture.

Web container — The Web container provides interception for requests sent over
HTTP, File Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP),
and other protocols. Most Web containers support only HTTP (and HTTPS) but
could support a broader range of protocols. The Web application container lets
JSPs and servlets have access to the same resources the EJB container provides.

Application client container — An application client container provides request-
level interception for standalone Java applications. These applications run
remotely, in a different JVM from that in which the Web container and the EJB
container operate.

A program running in an application client container is similar to a Java program
with a main() method. However, instead of a JVM controlling the application, a
wrapper controls the program. This wrapper is the application client container.
Application client containers are a new concept in the J2EE specification, your
application server provider should provide them.

An application client container can optimize access to a Web container and an
EJB container by providing direct authentication, performing load balancing,
allowing failover routines, providing access to server-side environment vari-
ables, and properly propagating transaction contexts. Programs that run within
an application client container have access to JAAS, JAXP, JDBC, and JMS
resources on a remote application server.

Applet container — An applet container is a special type of container that pro-
vides request-level interception for Java programs running in a browser. An
important point to remember is that an applet container doesn’t provide access 
to any additional resources, such as JDBC or JMS.

Applets running within an applet container are expected to request resources
directly from an application server (as opposed to making the request to the con-
tainer and letting the container ask the application server). The EJB specification
doesn’t regulate how an applet should communicate with an EJB container, but
the J2EE specification does. J2EE requires applets that want to directly use an
EJB to use the HTTP(S) protocol and tunnel Remote Method Invocation (RMI)
invocations. Many application server vendors support a form of HTTP tunneling
to support this functionality.

701

J2EE Packaging at a Glance



702

The components you can package into a J2EE EAR file don’t directly correlate to the
components that contain containers. There are no basic requirements for what an EAR
file must minimally include. An EAR file consists of any number of the following 
components:

EJB application JAR files — An EJB application JAR file contains one or more
EJBs.

Web application WAR files — A WAR file contains a single Web application.
Because an EAR file can contain multiple Web applications, each Web applica-
tion in an EAR file must have a unique deployment context. The deployment
mechanism for EAR files allows just such a specification of different contexts.

Application client JAR files — The application client JAR file contains a single,
standalone Java application that’s intended to run within an application client
container. The application client JAR file contains a specialized deployment
descriptor and is composed similarly to an EJB JAR file. The JAR file also con-
tains the classes required to run the standalone client as well as any client
libraries needed to access JAAS, JAXP, JDBC, JMS, or an EJB client.

Resource adapter RAR files — The resource adapter RAR file contains Java
classes and native libraries required to implement a Java Connector Architecture
(JCA) resource adapter to an enterprise information system. Resource adapters
don’t execute within a container; rather, they’re designed to execute as a bridge
between an application server and an external enterprise information system.

Each of these components is developed and packaged individually apart from the EAR
file and its own deployment descriptor. A J2EE EAR file combines one or more of these
components into a unified package with a custom deployment descriptor.

Packaging Roles
During the building, deployment, and use of an EJB, Web application, or other com-
ponent, different people will play different roles. The J2EE specification defines broad
platform roles that developers play during the creation of an enterprise application. Even
though there are many roles individuals assume during the development and deployment
process, these roles are nothing more than logical constructs that let you better plan and
execute an application. It’s likely (and expected) that a single individual or organization
will perform multiple roles.

The common roles involved in building, deploying, and using an EAR file include the
following:

CHAPTER 23: J2EE Packaging, Enhanced EARs, and the Application Server Toolkit



J2EE product provider — The J2EE product provider supplies an implementation
of the J2EE platform, including all appropriate J2EE APIs and other features
defined in the specification. The J2EE product provider is typically an application
server, Web server, or database system vendor who provides an appropriate
implementation by mapping the specifications and components to network 
protocols.

Application component provider — The application component provider pro-
vides a J2EE component — for example, an EJB application or a Web applica-
tion. Many roles within the J2EE specification can also be characterized as
application component providers, including document developers, JSP authors,
enterprise bean developers, and resource adapter developers.

Application assembler — The application assembler is responsible for combin-
ing one or more J2EE components into an EAR file to create a J2EE application.
This person is also responsible for creating the J2EE application deployment
descriptor and identifying any external resources (e.g., class libraries, security
roles, naming environments) on which the application may depend. The applica-
tion assembler will commonly use tools provided by the J2EE product provider
and the tool provider (described next).

Tool provider — A tool provider furnishes utilities to automate the creation,
packaging, and deployment of a J2EE application. A tool provider can provide
tools that automate the generation of deployment descriptors for an EAR file,
the creation of an EAR file, and the deployment of an EAR file into an appli-
cation server. Utilities supplied by a tool provider can be either platform-
independent (i.e., work with all EAR files irrespective of the environment) or
platform-dependent (working with the native capabilities of a particular 
environment).

Deployer — The deployer is responsible for deploying Web applications and
EJB applications into the server environment, producing container-ready Web
applications, EJB applications, applets, and application clients that have been
customized for the target environment of the application server.

The deployer isn’t responsible for deploying a resource adapter archive or an
application client archive but may be responsible for additional configuration of
these components. These components, although packaged as part of a J2EE EAR
file, aren’t considered when the enterprise application is deployed. They’re part
of the J2EE application but don’t group through the runtime “activation” process
that Web application and EJB containers go through during deployment.

703

J2EE Packaging at a Glance



704

Resource adapter archives are simply libraries that are dropped into a valid JCA
implementation. Although packaged as part of a J2EE EAR file, they don’t oper-
ate within the context of a J2EE container. Therefore, because resource adapter
archives don’t have a J2EE container, they don’t need to have a J2EE deployer
involved with their activation.

Application client programs do operate within the context of a J2EE container,
but they aren’t deployed into an application server. Application client programs
run standalone, and the deployer isn’t responsible for configuring the container
environment for these programs.

System administrator — The system administrator is responsible for configuring
the networking and operational environment within which application servers
and J2EE applications execute. The system administrator is also responsible for
the monitoring and maintenance of J2EE applications.

In this chapter, when we discuss the creation of EAR files and the resolution of conflicts,
we’ll be acting in the roles of application assembler and deployer.

The Limitations of Packaging
EAR files meet the basic requirements for packaging an application because most Web-
based J2EE applications consist solely of Web and EJB applications. However, EAR
files lack the capability to package complicated J2EE applications. For example, you
can’t declare the following components in an EAR file, but they are often used in J2EE
applications:

JDBC DataSource objects

JMS ConnectionFactory and Destination objects

Java Management Extensions (JMX) MBeans

some JMS consumers that run within an application server, such as a
MessageConsumer, which runs as part of a ServerSession

classes triggered when an application is deployed or undeployed (these classes
are vendor-provided proprietary extensions not defined in the J2EE specifica-
tion; however, all vendors generally supply them)

At present, these components must be manually configured and deployed via an admin-
istration interface provided by the implementation vendor and are the system administra-
tor’s responsibility. The use of these items will increase over time, and it will be
important for EAR files to support the packaging of these components to enable applica-

CHAPTER 23: J2EE Packaging, Enhanced EARs, and the Application Server Toolkit



tion portability. Starting with WebSphere V6, you can include these components in an
EAR. This form of EAR file is called an Enhanced EAR.

Understanding Class Loading Schemes
At runtime, when a class is referenced, it needs to be loaded by the Java Virtual
Machine. The JVM uses a standard class loading structure to load classes into memory.
A class loader is a Java class that’s responsible for loading Java classes from a source.
Java classes can be loaded from disk or some other media; they can reside anywhere.
Class loaders are hierarchical in the sense that they can be chained together in a parent-
child relationship. Classes loaded by a child class loader have visibility (i.e., can use)
classes loaded by any of the parent class loaders. Classes loaded by a parent class loader
don’t have visibility to classes loaded by any of the parent’s children’s class loaders.
Class loaders and EAR files are important because application server vendors can deploy
application modules using common or different class loaders.

If, within an application, a Web application needs to access an EJB, the Web application
will need to be able to load those classes it requires. Because of this implied dependency
between different modules, application server vendors must consider different
approaches for structuring EAR class loaders to resolve these dependencies.

A standalone application is deployed in its own class loader. This means that if you
deploy a Web application archive and an EJB application archive separately, the respec-
tive classes for each application will be loaded in different class loaders that are siblings
of one another. The classes in the Web application class loader won’t be visible to the
classes loaded by other class loaders. This circumstance creates a problem for Web
applications that want to use EJBs that have been deployed separately.

Before the advent of EAR files, many developers would deploy an EJB and then repack-
age the same EJB JAR file as part of the WEB-INF\lib directory of the Web application.
The same class files would exist in two different places so that the overall application
could work correctly — a situation to be avoided. EAR applications were introduced to
solve this problem. EAR files aren’t just a convenient packaging format; they also pro-
vide a special class loading scheme that lets applications within the EAR file access the
classes of other applications.

The J2EE 1.3 specification makes no specific requirements as to how an EAR class
loader should work, giving application server vendors the flexibility to determine how 
to load classes. Before implementing an EAR class loader, a vendor must decide the fol-
lowing questions:

705

J2EE Packaging at a Glance



706

Will all classes in all applications in the EAR file be loaded by a single class
loader, or will separate files be loaded by different class loaders?

Should there be any parent-child class loader relationships between different
applications in the EAR file? For example, if two EJB applications depend on
log4j.jar, should appropriate visibility be maintained by loading log4j.jar in a
parent class loader and loading the EJB applications in a child class loader so
that the JAR file is visible to both applications?

If a hierarchy of class loaders is created, to what depth will the hierarchy be
allowed to extend?

EJBs have inherent relationships with one another but Web applications don’t.
So, will EJB applications be loaded differently from Web applications so that
Web application integrity can be maintained?

Class Loading Starting with EJB 2.0
The EJB 2.0 Public Final Draft 2 specification introduced the concept of local interfaces
and placed an interesting twist on the EAR class loading problem. Local interfaces let
colocated clients and EJBs be accessed using pass-by-reference semantics instead of
pass-by-value semantics.

Having visibility to the public interfaces and stub implementation classes of an EJB is
not sufficient for a client of an EJB to perform pass-by-reference invocations. The client
needs to have a direct reference to the implementation classes of the EJB’s container.
With local interfaces, clients of EJBs need access to much more than before. This
restriction means that the class loading scheme used before EJB 2.0 won’t work. To
solve this problem, the class loaders of any applications that act as clients to an EJB
must be loaded as children of the EJB class loader.

In this model, Web application class loaders are children of the EJB class loader. This
arrangement enables all Web applications to have visibility to the files they need to
allow them to behave as clients of the EJBs. Each Web application is still loaded in a
custom class loader to achieve isolation, though. The overall structure of this implemen-
tation is simpler to understand because it doesn’t require the EJB class loader to export
any files to the EAR class loader.

An Ambiguity in the J2EE Specification
Certain implementations have exposed an ambiguity in the J2EE specification. The
ambiguity arises because the J2EE specification is unclear about how dependency

CHAPTER 23: J2EE Packaging, Enhanced EARs, and the Application Server Toolkit



libraries of a Web application should be loaded. It’s very clear that a utility library speci-
fied by WEB-INF\lib should remain isolated and be loaded by the class loader of the
Web application only. However, the specification doesn’t state whether a utility library
specified as a dependency library of the Web application should be loaded by the Web
application’s class loader or exported to the EAR class loader. This distinction can have
a behavioral impact. If it’s known that a dependency utility library will be loaded only
once for all Web applications, the Web applications can take advantage of knowing that
a singleton class will create one object that all the Web applications can share. But if
each Web application’s class loader isolated the utility library, a singleton class (which is
a class intended to create only a single instance in the virtual machine) will create one
object in each Web application.

At present, WebSphere loads any utility library specified as a dependency library of a
Web application at the EAR class loader level. This approach makes sense because you
can always achieve Web application isolation by placing utility libraries in WEB-
INF\lib. This solution provides the best of both worlds: a dependency library loaded at
the EAR class loader level or a dependency library loaded at the Web application class
loader level.

Configuring J2EE Packages
Now that you have a basic grasp of how the J2EE architecture is implemented — specif-
ically, of the different roles and the behavior of class loaders — you’re ready to config-
ure and deploy enterprise applications. To do so, you need to understand the process of
EAR file creation and the contents of the deployment descriptors that describe the EAR
file contents.

The Enterprise Application Development Process
The overall process used to build an enterprise application is as follows:

1. Developers build individual components. These components can be EJBs, JSP
pages, servlets, and resource adapters.

2. Some number of components is packaged into a JAR file along with a deploy-
ment descriptor to a J2EE module. A J2EE module is a collection of one or more
J2EE components of the same component type, so an EJB module can contain
more than one EJB, a Web application module can consist of multiple JSP pages
and servlets, and a resource adapter archive can consist of multiple resource
adapters.

707

The Enterprise Application Development Process



708

3. One or more J2EE modules are combined into an EAR file along with an enter-
prise application deployment descriptor to create a J2EE application. The sim-
plest J2EE application is composed of a single J2EE module. Multiple J2EE
modules make up more complicated J2EE applications. A complex J2EE appli-
cation consists of multiple J2EE modules and dependency libraries that are used
by the classes contained within the modules. A J2EE application may also con-
tain help files and other documents to aid the deployer.

4. The J2EE application is deployed into a J2EE product. You install the applica-
tion on the J2EE platform and then integrate it with any infrastructure that exists
on an application server. As part of the J2EE application deployment process,
each J2EE module is individually deployed according to the guidelines specified
for deployment of that respective type. Each component must be deployed into
the correct container that matches the type of the component.

For example, if you have a my.ear file with a my.jar and a my.war contained
within it, when you deploy the application, the application server’s deployment
tool will copy the my.ear file into the application server. Next, the application
server’s deployment mechanism will extract the my.jar and my.war modules and
deploy them separately following the class loading guidelines of that platform. If
each module is deployed successfully, the J2EE application is considered to
have been deployed successfully.

The Structure of a J2EE Package
The structure of a J2EE enterprise application package is straightforward; it is composed
of one or more J2EE modules and a deployment descriptor named application.xml in a
directory named META-INF\. The files are packaged using the JAR file format and
stored in a file with an .ear extension. You can optionally include dependency libraries
within the EAR file. The general structure of an EAR file is

EJB .jar files
Web application .war files
Resource adapter .rar files
Application client .jar files
Dependency library .jar files
META-INF\

application.xml

Issues with Dependency Packages
Given the standard definition of J2EE, where are dependency libraries supposed to be
placed so that they can be redeployed with an application at run time? There are two cre-
ative, yet ultimately undesirable, solutions.

CHAPTER 23: J2EE Packaging, Enhanced EARs, and the Application Server Toolkit



In the first approach, you can place dependency libraries that are packaged as JAR files in
the WEB-INF\lib directory of a Web application. In general, you should use WEB-INF\lib
primarily for the storage of servlet classes, but servlets and JSP pages will look for classes
in this directory when loading new ones. If only your servlets and JSP pages need the util-
ity libraries you’re using, this solution will be sufficient. However, if EJBs, JMS con-
sumers, or startup and shutdown classes also need the same libraries, this option won’t
work because the WEB-INF\lib directory isn’t visible to these items.

In the second approach, you place a complete copy of all the utility libraries in each EJB
JAR file as well as in the WEB-INF\lib directory. When you deploy an EJB, an EJB
class loader will look only within its own JAR file for any utility classes that are refer-
enced. It won’t look in the JAR files of other EJB applications that have been deployed
or in WEB-INF\lib. If all your EJB applications require the use of the same library, plac-
ing a copy of that library’s classes in each JAR file will meet your needs. The utility
classes will be redeployable along with the EJB.

Although the second scenario achieves redeployability of dependency libraries, it is
incredibly inefficient. The purpose of having multiple JAR files for packaging is to pro-
mote application modularity, and placing the same class in multiple JAR files destroys
this benefit. In addition, having multiple copies of the same classes unnecessarily bloats
your applications. Last, the build process requires an extra step because you need to
rebuild every JAR file if you want to change even a single library.

With the release of Java Development Kit (JDK) 1.3, Sun Microsystems redefined the
“extension mechanism,” which is the functionality necessary to support optional pack-
ages. The extension mechanism is designed to support two things:

JAR files can declare their dependency on other JAR files, enabling an applica-
tion to consist of multiple modules.

Class loaders are modified to search optional packages and application paths for
classes.

In addition, the J2EE 1.3 specification mandates that application servers support the
extension mechanism as defined for JAR files. This requires any deployment tool that
references a JAR file to be capable of loading any optional libraries defined through the
extension mechanism. It also implies that if an application server or deployment tool
supports runtime undeployment and redeployment of EJB applications that use libraries
via the extension mechanism, that tool or application server must also support undeploy-
ment and redeployment of any dependent libraries.

709

The Enterprise Application Development Process



710

Support for the extension mechanism doesn’t exist for EAR or resource adapter applica-
tions as defined in the J2EE specification because these applications aren’t directly loaded
by an instance of ClassLoader. Web applications have the freedom to use the extension
mechanism or the WEB-INF\lib directory when specifying a dependency library. As we
discussed earlier, the way a dependency library is loaded can vary depending on whether
you specify the library using the extension mechanism or WEB-INF\lib.

Enterprise applications need to repackage any libraries required by the Web application or
EJB application as part of the EAR file. After this repackaging, the extension mechanism
provides a standard way for Web application WAR files and EJB application JAR files to
specify which dependency libraries in the enterprise application EAR file they need.

How does the extension mechanism work with EJB applications? A JAR file can refer-
ence a dependent JAR file by adding a Class-Path attribute to the manifest file contained
in every JAR file. The jar utility automatically creates a manifest file to place in a JAR
file and names it manifest.mf by default. You can edit this file to include a Class-Path
attribute entry in addition to the other entries that already exist in the file.

The Class-Path manifest attribute lists the relative URLs to search for utility libraries.
The relative URL is always from the component that contains the Class-Path entry (not
the root of the EAR file). You can specify multiple URLs in a single Class-Path entry,
and a single manifest file can contain multiple Class-Path entries. The general format for
a Class-Path entry is

Class-Path: list-of-jar-files-separated-by-spaces

Inside a Sample EAR File
WebSphere Application Server provides an example of a packaged J2EE application
named WebSphere Bank, delivered as a sample in the WebSphere SamplesGallery. Like
every J2EE application, the WebSphere Bank sample is packaged in an EAR. Go ahead
and open it with a utility such as WinZip. You’ll see that the EAR contains these J2EE
modules:

Web modules:
BankCMRQLWeb.war, DepositJCAWeb.war, BankGallery.war

EJB modules:
BankCMRQLEJB.jar

CHAPTER 23: J2EE Packaging, Enhanced EARs, and the Application Server Toolkit



Connector modules:
BankRA.rar

Dependent JAR modules:
BankAdapterInterface.jar, WsaEJBDeployUtility.jar

Application client JAR modules:
TransferJMSClient.jar, GetAccounts.jar, FindAccounts.jar

Remember that each module contains deployment descriptor files you can locate and
view. Another thing to note is that EARs configured for WebSphere can have IBM pro-
prietary deployment descriptor files. These files are always named ibm-application-
bnd.xmi and ibm-application-ext.xmi. These files, when present, contain proprietary
parameters for the WebSphere Application Server platform.

If you’re viewing the contents of WebSphereBank.ear, you’ll notice many files packaged
in a directory called Database. These files contain the Cloudscape files to support the
WebSphere Bank sample. This approach is a common practice when packaging an EAR.
The technique lets any files be packaged with the EAR and be available relative to
where the EAR is deployed.

Configure an Enhanced EAR
One oversight, some might say, of J2EE packaging is that there is no standard way to
package all the parameters for all the J2EE resources a J2EE application might require.
If there were, these parameters could be used to automatically create the resources when
you deploy the application. Instead, you must script this step (or perform it manually),
and the process differs for each J2EE environment (e.g., WebSphere, WebLogic).

IBM has tried to address this issue with the advent of Enhanced EARs. Using the
WebSphere Application Server Toolkit, you can enhance your EAR with files that will
be used to create the resources for the EAR when you deploy it.

Within the AST, you use the WebSphere Enhanced EAR editor to edit server configura-
tions for WebSphere Application Server V6. The server configuration data you specify in
this editor is embedded within the application itself. By preserving the existing server
configuration, this technique improves the administration process of publishing to
WebSphere when you install a new application to an existing local or remote WebSphere
server.

711

The Enterprise Application Development Process



712

As of Version 6, server-specific configurations for WebSphere Application Server are set
in the WebSphere administrative console. You can use the Enhanced EAR editor to set
the configuration settings specific to an enterprise application. The Enhanced EAR editor
is available on the deployment page of the AST’s Application Deployment Descriptor
editor. Use this editor to configure the following elements that are specific to an enter-
prise application:

data sources
resource adapters and connection factories
substitution variables
authentications
shared libraries
virtual hosts
class loader policies

When you enhance an EAR with the above configurations, several XML files are added
to your EAR directory. Table 23-1 lists these files.

To illustrate how to locate the WebSphere Enhanced EAR editor, let’s test a sample data
source:

1. In the Application Server Toolkit, switch to the J2EE perspective.

2. In the Project Explorer view, expand the Enterprise Applications folder.

CHAPTER 23: J2EE Packaging, Enhanced EARs, and the Application Server Toolkit

Table 23-1: XML files added to the EAR directory
File name EAR directory

deployment.xml <AST_workspace>\<EAR_PROJECT>\META-INF\ibmconfig\cells\defaultCell\appli-
cations\defaultApp\deployments\defaultApp

resources.xml <AST_workspace>\<EAR_PROJECT>\META-INF\ibmconfig\cells\defaultCell\appli-
cations\defaultApp\deployments\defaultApp

variables.xml <AST_workspace>\<EAR_PROJECT>\META-INF\ibmconfig\cells\defaultCell\appli-
cations\defaultApp\deployments\defaultApp

libraries.xml <AST_workspace>\<EAR_PROJECT>\META-
INF\ibmconfig\cells\defaultCell\nodes\defaultNode\servers\defaultServer

security.xml <AST_workspace>\<EAR_PROJECT>\\META-INF\ibmconfig\cells\defaultCell

virtualhosts.xml <AST_workspace>\<EAR_PROJECT>\\META-INF\ibmconfig\cells\defaultCell



3. Under the enterprise application project folder for which you want to test the
data source, double-click Deployment Descriptor to open the Application
Deployment Descriptor editor. (We’re doing this to get to the Enhanced EAR
editor.)

4. At the bottom of the editor window, select the Deployment tab to open the
WebSphere Enhanced EAR editor.

Note: Before adding or removing J2EE modules using the Application
Deployment Descriptor editor’s MMoodduullee page, you must first click the
DDeeppllooyymmeenntt tab to activate the functions in the DDeeppllooyymmeenntt page. Then add or
remove your modules from the MMoodduullee page. You must complete this task for
each Application Deployment Descriptor editor session that you want to have
add or remove modules from the MMoodduullee page.
If the WebSphere Enhanced EAR editor is opened and you make changes to its
dependent files either on the file system or using another editor, the changes
aren’t reloaded on the DDeeppllooyymmeenntt page. To refresh the changes on this page,
you must close and reopen the Enhanced EAR editor.

Let’s step through the process of configuring an Enhanced EAR with the configuration
information for a new data source for the WebSphere Bank sample application. To begin,
you must start the AST (you can do so from the Windows Start menu). Then import the
EAR you want to enhance:

1. Select File|Import.

713

The Enterprise Application Development Process

Figure 23-1: WebSphereBank imported into an AST workspace



714

2. Select EAR File, and click Next.

3. Browse to the WebSphere Bank EAR file (<WASV6-
ROOT>\samples\lib\WebSphereBank\WebSphereBank.ear), and click Finish.

After you import the EAR, your Project Explorer should look as shown in Figure 23-1.

Now, double-click the WebSphere Bank EAR’s deployment descriptor to open up the
Application Deployment Descriptor editor. Then go to the Deployment tab. This is
where you’ll access the Enhanced EAR editor. Figure 23-2 shows the WebSphereBank
EAR’s deployment descriptor opened in the editor.

As a test, go ahead and add a new data source:

1. To the right of the panel labeled “Data source defined in the JDBC provider
selected above,” click the Add button (note that this button doesn’t appear in the
figure).

2. Select Cloudscape JDBC Provider (XA), and then click Finish, accepting all
defaults.

After adding enhanced parameters (as you just did), new enhanced EAR files will appear
in your Project Explorer; look for deployment.xml, resources.xml, variables.xml, and
security.xml. Depending on what you added (or didn’t add), some files may not be
created. Figure 23-3 shows sample results for our example.

CHAPTER 23: J2EE Packaging, Enhanced EARs, and the Application Server Toolkit

Figure 23-2: WebSphereBank EAR’s deployment descriptor opened in editor



Once you’ve finished with the AST, you can export your EAR and deploy it as normal.
During the deployment, the enhanced EAR files will be detected, and the resources will
be created.

715

The Enterprise Application Development Process

Figure 23-3: Enhanced EAR’s added files





24
Manually Install 

WebSphere Bank 

In Chapter 4, you saw how to use a WebSphere –samples script from the command
line to install the WebSphere SamplesGallery application, one element of which is the

WebSphere Bank sample you learned about in Chapter 24. What you didn’t see are all
the resources that were created for you at that time. In this chapter, we review the
resources created for the WebSphere Bank application and explain how you can create
them yourself using the WebSphere administrative console.

Installing resources manually is a common requirement to successfully deploy any J2EE
application because the J2EE specification doesn’t define how to package this informa-
tion in the Enterprise Archive (EAR) file. As you learned in Chapter 23, IBM has solved
this issue in a proprietary way with Enhanced EARs. In that chapter, you used the
WebSphere Application Server Toolkit (AST) to create an enhanced WebSphere Bank
EAR. In most cases, however, the J2EE developer/packager will tell you which
resources the application requires, and, as the system administrator, you’ll need to create
these resources using either WebSphere’s admin console or the wsadmin command-line
tool.

As it turns out, WebSphere Bank needs the following resources to run:

a J2C resource adapter called WebSphere Relational Resource Adapter that,
luckily, is created automatically when you install WebSphere

a J2C authentication alias named IBM-79D6XZF0P9FNode01Cell/samples (note
that the first part of this name contains the name of the node/cell where the alias
is created and so will vary from node to node)

a JDBC provider named Samples Cloudscape JDBC Provider (XA)

717



718

a data source named BANKDS

a connection factory named BANKDS_CF (which, as you’ll see, is also created
automatically)

a service integration bus (SIBus) named IBM-79D6XZF0P9FNode01SamplesBus
(again, the first part of the name is the node name where the bus is created and
so will vary from node to node)

an SIBus member for the SIBus named IBM-79D6XZF0P9FNode01SamplesBus

an SIB Java Message Service (JMS) connection factory named
BankJMSConnFactory

an SIB JMS queue named BankJMSQueue

an SIB queue named BankJSQueue

an SIB JMS activation specification named BankActivationSpec

Last, but not least, you’ll need to enable the SIB service for the application server
(server1). Let’s walk through the steps to set up each required resource.

Verify the Existence of the J2C Resource Adapter
First, take the following steps to make sure the required J2C resource adapter,
WebSphere Relational Resource Adapter, has been created.

1. In the WebSphere admin console’s navigation tree, expand Resources, and click
Resource Adapters.

2. Verify that WebSphere Relational Resource Adapter appears in the list of
installed resource adapters.

Create the J2C Authentication Alias
Next, create the required J2C authentication alias, IBM-79D6XZF0P9FNode01Cell/
samples:

1. In the console, navigate to Security|Global Security to display the Global
Security panel.

2. Under the Authentication heading, select JAAS configuration|J2C authenti-
cation data to display the J2C Authentication Data Entries panel.

3. Click New.

CHAPTER 24: Manually Install WebSphere Bank



4. On the resulting configuration panel (shown in Figure 24-1), enter the required
values: a unique alias name (IBM-79D6XZF0P9FNode01Cell/samples), a valid
user ID (samples), a valid password (samples), and a short description (JAAS
Alias for WebSphere Samples).

5. Click Apply or OK.

Create the JDBC Provider
Next, create the JDBC provider resource, Samples Cloudscape JDBC Provider (XA):

1. Navigate to Resources|JDBC Providers.
2. On the resulting panel, make sure the scope is set to Server.
3. Click New.
4. Enter the values as shown in Figure 24-2 to create the JDBC provider.

719

Create the JDBC Provider

Figure 24-1: Creating a J2C authentication alias




