
Foreword

Leveraging the iSeries with XML

In a relatively short time, XML has earned its place in business and Web appli-
cations by providing a common format that allows disparate computer systems
to exchange information. Within two years of XML’s inception, information
technology vendors including Microsoft, IBM, and Netscape have incorporated
XML support into their browsers and applications. Even on the IBM iSeries plat-
form, which tends to wait for new technologies to mature before embracing
them, XML is beginning to make headway, particularly in the area of Electronic
Data Interchange (EDI).

In the past, a lot of information stored on computers became obsolete because
the applications used to store and process that information were using propri-
etary formats understood only by those applications. Those of us who have been
using the iSeries and its predecessors, the AS/400 and System/38, understand the
value in being able to migrate information to new hardware and applications
without conversion. This capability is not common on other platforms; for

ix

example, it would be very difficult and costly to extract the information con-
tained in a spreadsheet created just 15 years ago using version 1 of Lotus 1-2-3.
XML uses a simple nonproprietary format that transcends these limitations,
allowing data to live beyond the applications used to create the files in which it
is stored.

XML is proving to be a versatile language, capable of describing and delivering
rich, structured data from any source. With the advancement of XML standards
and technologies, the benefits of using XML are obvious. The iSeries is the per-
fect companion for XML; capable of using every technology. Together, they will
leverage the platform to new heights.

This book is geared toward those who are new to XML and familiar with the
iSeries. It explains the basic concepts of XML and continues to dive into more
advanced topics, including XML Schemas, namespaces, security, and Web serv-
ices. It also takes a look at the available technologies for the iSeries and how
they work together in using XML.

By the time you finish this book, you will not only know the basics of XML;
you will also be able to validate data and structures, secure XML data, and pro-
gram for XML documents. All of this will help position you to take advantage of
XML technology on the iSeries.

—Steve Bos

Foreword

x

XML: Where Did It Come From?
Where Is It Going?

In this chapter you will learn:
What XML is
Why XML was created
The history of XML
How XML is used on the iSeries (formerly AS/400) platform
Where XML is going in the future

This chapter provides an introduction to XML, explaining why XML is impor-
tant, its history, and uses for it. I will also introduce you to some ways in which
you can use XML on your iSeries platform to exchange information and create
Web applications. Finally, in this chapter, I will give you some insight into
where XML is going.

1

11

Defining XML
Extensible Markup Language (XML) is a dialect of Standardized Generalized
Markup Language (SGML). The World Wide Web Consortium created this new
dialect of SGML to provide a simple and easy-to-use alternative to SGML for
describing data exchanged between software applications. Although XML is a
simplified version of SGML, it is powerful enough to describe almost any data
in a format understood by the majority of computers in use today.

In a relatively short time, XML earned its place in business and Web applica-
tions by providing a common format that allows disparate computer systems to
exchange information. Within two years of XML’s inception, computer vendors
such as Microsoft, IBM, and Netscape have incorporated XML support into their
browsers and applications. Even on the iSeries platform, which tends to wait for
new technologies to mature before embracing them, XML is beginning to make
headway, particularly in the area of Electronic Data Interchange (EDI).

A lot of information stored on computers in the past has become obsolete because
applications used proprietary formats understood only by similar applications.
Those of us that have been using the iSeries and its predecessors, the AS/400 and
System 38, understand the value in being able to migrate information to new
hardware and applications without conversion. This capability is not common on
other platforms. For example, it would be very difficult and costly to extract the
information contained in a spreadsheet created just 15 years ago using version 1
of Lotus 1-2-3. XML uses a simple, nonproprietary format that transcends these
limitations, allowing data to live beyond the applications used to create it.

The main difference between XML and other markup languages is that XML is a
meta-markup language. In other words, it describes information about the
markup, but it does not describe the domain-specific implementation. This char-
acteristic allows XML to be adapted to fit many more needs than other markup
languages such as HTML. The ability to adapt to new uses makes XML much
more powerful than HTML.

With XML, you define document elements and attributes, which are then used to
mark up your information. An element can represent some piece of information

CHAPTER 1: XML: Where Did It Come From? Where Is It Going?

2

such as an address, a telephone number, or a person’s name. Attributes are asso-
ciated with an element and identify information that is typically not printed or
displayed. For example, a payment type might be stored as an attribute for a
payment element.

Figure 1.1 shows how a payment is defined using XML:

In this example there are three elements: payment, amount, and unit. The pay-
ment element contains the amount and unit elements and has a type attribute.
This example also shows how XML elements are nested. Unlike HTML tags,
XML tags must be opened and closed in order. The unit closing tag in this exam-
ple, which is nested in the payment tag, has to be closed before the payment tag
is closed. Another difference between HTML and XML is that XML is case sen-
sitive. A <Unit> tag is not the same as a <unit> tag.

The X in XML
The X in XML stands for the x in extensible. For this reason “Extensible Markup
Language” is frequently written as “eXtensible Markup Language” and helps
justify the XML acronym; apparently, e is out and X, as in X-treme, is in. This
new technology with the hip acronym is supported by all of the major software
vendors and describes data in a widely recognized, platform-independent man-
ner. Although this book focuses on using XML on the iSeries platform, the plat-
form-independent nature of XML is one of its chief strengths.

When comparing XML to Hypertext Markup Language (HTML), you find many
similarities. Both are used in Web-based applications, and both use a similar
syntax to describe the content of documents. Unlike most other markup languages
including HTML, which restrict you to a fixed set of tags, XML allows you to
create new tags. Like HTML, XML tags describe the elements within a document,

Defining XML

3

<payment type=“ET”>
<amount>500.00</amount>
<unit>USD</unit>

</payment>

Figure 1.1: XML defined payment.

but XML is a meta-markup language, which allows you to use XML to describe
your own domain-specific elements. Domain-specific elements are elements that
are useful in describing content related to a specific area. For example, there is a
domain-specific Chemical Markup Language (CML) that allows chemists to
describe data in a way that facilitates the exchange of chemical information.

You can create new elements that meet your needs and use them internally, or you
can work within your industry to create a universally recognized markup. There are
several organizations helping industry develop and publish new markups. The two
largest of these are XML.ORG, sponsored by the non-profit Organization for the
Advancement of Structured Information Standards (OASIS), and BizTalk, which is
a Microsoft subsidiary. The URLs for these two organizations are www.xml.org and
www.bizztalk.org. The goal of XML.ORG and BizTalk is to accelerate the adoption
of XML as the standard way of exchanging data electronically.

As you have seen, XML allows you to create your own markup tags. If you go to
the XML.Org or BizTalk Web sites, you will find complete, industry-specific
markups. You can use and even extend these markups with your own elements.
To prevent the possibility of name collisions, XML uses a concept called a name-
space. An XML namespace associates elements and attributes with Universal
Resource Identifiers (URI). A URI looks a lot like a Universal Resource Locator
(URL) and like a URL, a URI describes a universally unique domain.

Describing Document Content
The syntax provided by XML allows you to describe the content of a document.
This capability allows you to describe the content of any document and, just as
important, to separate the content of a document from the document’s presenta-
tion. Style is another term for the presentation format.

It is time for you to see a document that has been marked up using XML. The
following example compares a recipe encoded with HTML (Figure 1.2) to the
same recipe encoded with XML. I could have created my own markup for the
XML version of the recipe; instead, I used Recipe Markup Language (recipeML),
which is a full-blown XML markup developed to facilitate describing and
exchanging recipes. The recipeML Web site is www.formatdata.com/recipeml/.

CHAPTER 1: XML: Where Did It Come From? Where Is It Going?

4

If you are familiar with HTML, the example shown in Figure 1.2 should be easy
to follow. If you are not, the following description should help. In this document,
the <h1> tag describes a top-level heading, the tag describes an unordered
list, tags are list items, the <p> tag begins a paragraph, and
 is a line

Defining XML

5

<recipe>
<head>

<title>Smores</title>
</head>
<ingredients>

<ing>
<amt><qty>2</qty></amt>
<item>Graham crackers</item>

</ing>
<ing>

<amt><qty>2</qty></amt>
<item>Marshmallows</item>

</ing>
<ing>

<amt><qty>2</qty></amt>
<item>Chocolate squares</item>

</ing>
</ingredients>
<directions>

<step>Place two marshmallows on a graham cracker.</step>
<step>Place chocolate square on each marshmallow.</step>
<step>Cover with graham cracker.</step>
<step>Bake in 300 degree oven for 5 minutes.</step>

</directions>
</recipe>

Figure 1.3: The same recipe as in Figure 1.2, but marked up using XML.

<h1>Smores</h1>

2 Graham crackers
2 Marshmallows
2 Chocolate squares

<p>Place two marshmallows on a graham cracker.

Place chocolate square on each marshmallow.

Cover with graham cracker.

Bake in 300 degree oven for 5 minutes.</p>

Figure 1.2: HTML recipe for smores.

break. I did not have to include the final </p> tag, because HTML does not
require you to close a paragraph; the browser can insert the paragraph close,
which can lead to problems and inconsistent results among different browsers.

The XML representation of the smores recipe shown in Figure 1.3 is quite a bit
longer than the HTML representation shown in Figure 1.2. The extra informa-
tion helps describe the data in a more meaningful way.

These two examples show how XML focuses on describing content rather than
presentation. The recipeML example has a distinct structure and uses the descrip-
tive <ing> tag to identify an ingredient. The HTML example uses generic tags,
such as to describe list items without regard to whether they are ingredients or
some other element, and has no discernable structure. Also, XML follows a stricter
set of rules. All tags in XML must be properly nested and have tags, whereas
HTML tags can appear in any order, and in some cases closing tags are optional.

The XML example does not contain the heading and style tags that help a browser
determine how to display this recipe. I will be covering these items in detail (and
provide examples) when we get to syntax in Chapter 2 and style in Chapter 8.

Ensuring Documents’ Integrity
One important feature of XML is that it provides built-in assurances that the
form and content of information is correct and reliable. There are several ways
that XML provides this assurance:

■ Documents must be well-formed, adhering to XML’s syntax.

■ Documents can conform to a Document Type Definition (DTD) or a
Schema.

■ XML is prohibited from attempting to fix or understand malformed
documents.

Although XML gives you the flexibility to create new tags and content as neces-
sary, all XML documents, as well as your extensions must conform to XML’s
rules. There are two sets of rules; the first set ensures that the basic syntax and

CHAPTER 1: XML: Where Did It Come From? Where Is It Going?

6

structure of a document are correct, the second set of rules is provided by a DTD
or an XML Schema and applies domain-specific validation.

When a document follows certain XML rules, the document is considered to be
well-formed. Programs that process XML documents check for conformance to
these basic rules and are allowed to identify errors, but the XML specification
specifically prohibits the correction of errors or interpretation of any document
that is not well-formed. In addition, programs that process XML documents can-
not ignore errors.

A well-formed document begins with an XML declaration and contains elements
that are properly nested. The document must also have one and only one root
element. In addition, attribute values must be surrounded by double quotes (“),
and the characters < and & may be used only at the beginning of tags and entity
references.

DTDs provide another type of validation. A DTD provides rules ensuring that
the actual tags, attributes, entities, and content meet certain criteria. The rules
applied by a DTD can enforce the use and order of an XML document’s compo-
nents. For example, the DTD for recipeML specifies that a recipe must have
ingredients but nutritional information is optional. Furthermore, the recipeML
DTD specifies that ingredients must appear before directions and nutritional
information. Chapter 3 describes DTDs in detail.

A Schema is similar to a DTD in the validations it can perform, but it goes a
step further in supporting type checking. Unlike a DTD, which can check the
structure and order of tags, a Schema can make sure that the data contained
within an element conforms to certain rule. For example, with a Schema you can
validate a date element to be a valid date in a pre-defined format. One drawback
to using a Schema over a DTD is that it takes a lot more typing to build a
Schema.

Comparing XML and HTML
Many of the same people contributed to the development of both XML and
HTML. The languages are also both subsets of Standardized Generalized

Defining XML

7

Markup Language (SGML). Because of this, their syntax and structure are simi-
lar; where they differ is in purpose. HTML’s primary purpose was the exchange
of information over the Web. XML is designed for the exchange of information
by any means.

Because both HTML and XML use similar syntax and structure to mark up
documents, anyone familiar with HTML has a head start in understanding
XML. HTML and XML also use the same Universal Character Set (UCS)
specified by the Unicode Consortium. The use of this character set makes it
easier to translate documents between languages. Finally, both HTML and
XML can use Cascading Style Sheets (CSS) to apply a consistent look and feel,
or style, to documents. Cascading Style Sheets are a simple mechanism that
associates display formatting (such as fonts, colors, and spacing) with document
tags.

Now let’s look at some of the differences. First and foremost is purpose. HTML
was designed to “mark up” information displayed using a Web browser. XML is
designed to structure information and does not care how the information is used.
HTML directly supported formatting using tags like , <emphasis>, and
<bold>, whereas XML does not. With XML, you must use CSS to format a
document for display using a browser.

Browsers have ignored many HTML errors (for example, missing end
tags). When these errors are encountered, the browser would do its best to
display what it could. A parser interpreting an XML document, on the other
hand, can report errors but is prohibited from processing any document with
errors.

You may have notice that I refer to HTML in the past tense. The reason is that
XML is replacing HTML. A new hybrid version of HTML that is part HTML
and part XML began replacing HTML back in 1999. This reformulated version
of HTML known as XHTML retains HTML’s functionality while conforming to
XML’s rigid syntax. Documents marked up using XHTML are validated using
one of three DTDs. These DTDs define the HTML-like elements of an XHTML
document and ensure compliance.

CHAPTER 1: XML: Where Did It Come From? Where Is It Going?

8

Why XML was Created
Documents marked up with XML have many benefits over documents that are
stored as plain text or are marked up using a less capable markup like HTML.
The following list describes some of those benefits:

■ Data marked up with XML is self-describing.

■ Organizations can exchange data in a common predefined format.

■ Search engines can search documents intelligently.

■ XML can be extended to new domains.

■ Document presentation is independent of a document’s data.

■ Most browsers in use today support XML directly.

■ Widespread support ensures tools availability.

XML simplifies many Web development tasks that are difficult to do in HTML.
One example of this is the ability to search a document intelligently. With XML,
you can search for specific content rather than trying to discern meaning from
the words contained within an HTML document. For example, you could search
a Web catalog site for blue 18-speed mountain bikes priced between $500 and
$1,000. There is little danger this search will get a hit for Blue Mountain coffee
priced at $18 per pound.

When you need to exchange information over the Internet, XML is often the best
answer. With XML, you do not need specialized import and export support to
handle the conversion of data from one format to another. It is easy to transform
data described using XML from one format to another format. This ability to
transform data is one of XML’s most important features and helps facilitate the
exchange of information between different databases running on more than one
platform.

Another benefit of XML is that it is more rigidly structured. Because XML edi-
tors check documents to ensure that their structure is valid, browsers do not have
to waste time trying to figure out the intention of a document that contains

Defining XML

9

unmatched or invalid tags. The requirement that documents be valid helps
ensure that browsers from different vendors display data more consistently.

Building Perspective: The History of XML
Thousands of people have contributed to the development of XML. Many of
those people came up with similar ideas at similar times. Because of this, it is
impossible to give a single unified history of XML, and it is likely that I have
not given credit to some important contributors and their accomplishments. Keep
this in mind as you read the following and remember that XML is the result of
the dedicated work of many and not one person’s brainchild. The following
timeline shows the sequence of events leading up to today’s XML:

■ 1945 Bush describes foundation of hypertext markups

■ 1965 Nelson coins term hypertext

■ 1967 Tunnicliffe evangelizes use of generalized markup

■ 1967 Rice develops GenCode

■ 1969 IBM researchers led by Goldfarb develop GML

■ 1986 SGML recognized as an ANSI standard

■ 1987 Apple introduces HyperCard

■ 1990 World Wide Web proposed

■ 1993 Mosaic browser released

■ 1996 XML’s initial working draft released by W3C

■ 1998 XML 1.0 working draft becomes recommendation

■ 1999 XML new working groups formed, namespaces recommended

The concept of markup languages began with Vannevar Bush’s July 1945
Atlantic Monthly article “As We May Think,” which described his vision of a
hypertext system he called memex. Later, around 1965, Theodor Holm Nelson
coined the terms hypertext and hypermedia. Later he wrote the book Computer

CHAPTER 1: XML: Where Did It Come From? Where Is It Going?

10

Lib/Dream Machines, published in 1974, which helped influence the develop-
ment of the World Wide Web.

Several independent groups laid the foundation for XML late in the 1960s, when
they began using descriptive markup tags to supplement written information.
Before this, specialized codes were used that did not describe the type of data,
but rather a specific typeface, font, or style. One person who recognized the
value in separating document content from format was William Tunnicliffe, who
evangelized this concept in a presentation that he gave to the Canadian
Government Printing Office in 1967.

Shortly after Tunnicliffe’s speech, a group led by book designer Stanley Rice
developed GenCode, which defined a set of generic markup tags. Norman
Scharpf recognized the significance of GenCode and created the Gencode
Committee to oversee its development. This committee went on to contribute to
the development of Standardized General Markup Language (SGML).

At about the same time, another research group at IBM led by Charles
Goldfarb, with Edward Mosher and Raymond Lorie developed the Generalized
Markup Language (GML). If you are ever going to be tested on this, remem-
ber that this acronym also happens to reflect their initials. One significant
feature of this new markup is that it introduced the concept of a nested
element structure.

Combining the concepts of GenCode and GML, the American National
Standards Institute (ANSI) presented a working draft of the first version of
Standardized Generalized Markup Language (SGML) in 1980. This final version
of SGML became a recognized international standard in 1986 with the publica-
tion of ISO 8879.

Following Bush and Nelson’s initial activity, hypertext development faded until
1987, when Apple introduced HyperCard. Developers quickly saw that hyper-
linked text was a much better way to organize and navigate text stored on com-
puters. Apple and Microsoft incorporated this feature of hypertext links into both
the Macintosh and Windows help systems.

Building Perspective: The History of XML

11

In the late 1980s, Tim Berners-Lee, working with Robert Cailliau at the
European Particle Physics Laboratory (CERN), began work on a distributed
information system. In 1990, they proposed a distributed information system
based on hypertext that they called the World Wide Web. They also created the
first Web browser and introduced the initial version of Hypertext Markup
Language (HTML). In 1993, Marc Andreessen, working for the National Center
for Supercomputing Applications at the University of Illinois, released the first
easy-to-install and easy-to-use Web browser, Mosaic for X.

David Raggett at Hewlett-Packard Laboratories created HTML+ in 1993 to sup-
port forms, tables, and figures. In 1995, the HTML Working Group proposed
HTML 2.0, which was the first version of HTML described by a formal specifi-
cation. Late in 1999, the World Wide Web Consortium (W3C) recommended
version 4.01 of HTML. This was the final version of HTML; XHTML, an
XML-compliant HTML derivative, is HTML’s replacement.

In 1996, the W3C Generic SGML Editorial Review Board, chaired by Jon Bosak
of Sun Microsystems, with support from the W3C’s Generic SGML Working
Group, began the first phase of XML and developed the original XML specifica-
tions. Soon after this, two new XML groups were formed: an XML Working
Group and an XML Special Interest Group.

The first phase of XML culminated on February 10, 1998, when the W3C
issued the XML 1.0 Recommendation. Following this recommendation, the
second phase of work began. By late 1998 the W3C had restructured the XML
effort and directed it toward a new XML Coordination Group. The actual
definition was broken down and handled by five new working groups: the
XML Schema, XML Fragment, XML Linking, XML Information Set, and
XML Syntax Working Groups. These groups are part of the W3Cs Architecture
domain

The second phase of XML resulted in the Namespaces in XML Recommendation,
issued in January 1999, and the Style Sheet Linking Recommendation, issued
later that year in June. The third phase of development continues the work of the
second phase and adds a new working XML Query Working Group.

CHAPTER 1: XML: Where Did It Come From? Where Is It Going?

12

Setting Standards
Like most Internet technologies, standards define XML. Several groups
contribute to the development of Internet standards, including the World Wide
Web Consortium (W3C), the Internet Engineering Task Force (IETF), and the
Organization for the Advancement of Structured Information Standards
(OASIS).

XML’s Creator, the W3C
The group credited with creating XML is the W3C. Their mission is to
provide an open forum for the discussion and promotion of interoperability
standards. In addition to the original XML standard, recommendations submitted
by the W3 include Mathematical Markup Language (mathML), XHTML,
versions of the Document Object Model (DOM), and XSL Transformations
(XSLT).

The W3C strives to achieve the following goals:

■ To promote technologies that provide for universal access to the Web

■ To develop a software environment conducive to effective Web use

■ To guide Web development to ensure that legal, commercial, and social
need are met

The membership of the W3C works within a set of guidelines. The member-
ship first approves proposals for new initiatives, known as activity proposals,
and assigns the activity to a W3C Working Group. The W3C organizes these
activities under four domains: the Architecture Domain, the User Interface
Domain, the Technology and Society Domain, and the Web Accessibility
Initiative.

The first stage of a new proposal in the W3C is a Working Draft. During the
Working Draft stage, changes are expected. Following the Working Draft, a pro-
posal evolves to become a Candidate Recommendation, then a Proposed
Recommendation, and finally a Recommendation.

Setting Standards

13

Guiding Internet Development at the IETF
The IETF is a loosely self-organized group that helps guide the development of
the Internet and its technologies. This group is the principal source of new
Internet standards and specifications. The mission statement of this group
includes the following items:

■ To identify and propose solutions and protocols that address Internet
problems

■ To make standards recommendations

■ To facilitate technology transfer from researchers to the Internet
community

■ To provide a forum for the exchange of Internet information

The IETF is open to anyone, and its participation has grown considerably from
twenty-one back in 1986 to thousands in more recent years. Each year they hold
three conferences to discuss and propose Internet standards, as well as working
group meetings and online discussion. Most standards start out as Internet Drafts
that, after discussion and approval, are published as Requests for Comment
(RFCs) and are refined until their recommendations are completed. The
processes for proposing and accepting these standards are very structured; this
structure reduces obstacles that might sidetrack and delay standards adoption.

OASIS: Promoting Interoperable Standards
Another group that has contributed to the development of XML and its related
standards is OASIS. This nonprofit consortium creates interoperable industry
specifications based on public standards such as XML, SGML, and HTML.
Members of OASIS are companies and individuals with a personal stake in fur-
thering the use of interoperability standards.

OASIS does not create and recommend new standards as the W3C and IETF do.
Instead, OASIS focuses on furthering the adoptions of standards. One function
of OASIS is the recommendation of specific application strategies that meet cer-
tain interoperability goals. The XML Cover Pages sponsored by OASIS provides

CHAPTER 1: XML: Where Did It Come From? Where Is It Going?

14

a comprehensive online reference for XML, SGML, and their related technolo-
gies. The XML Cover Pages Web site is located at xml.coverpages.org. Another
resource sponsored by OASIS is XML.ORG, which provides an independent
resource for the use of XML in industrial and commercial settings. The
XML.ORG Web site is located at www.xml.org.

Corporate and individual membership in OASIS is not cheap. Individual mem-
bership starts at $250 USD per year, and a corporate membership starts at
$2,500 USD for companies with fewer than ten employees.

Each of the standards groups mentioned here maintains a Web site. Their Web
sites are located at www.w3.org, www.ietf.org, and www.oasis-open.org. Each of
these Web sites provides a wealth of information related to XML and the
Internet. Visit these Web sites to read the original standards specifications or to
follow the development of Internet standards.

Transform and Style with XSL
Almost every computer program takes some sort of input and converts it to
another form of output. Sometimes the support for formatting the output is
embedded in the language, as in the venerable RPG cycle; added to the language,
like Java servlets; or defined by an open standard, such as the Common Gateway
Interface (CGI). Extensible Style Language (XSL) gives XML the ability to add
style to documents or transform information from one format to another.

Two specifications describe XSL. The first specification, which was the first
released and is the most widely adopted, is XSL Transformation (XSLT) language.
The second specification describes an XML vocabulary for specifying formatting
semantics, known as XSL Formatting Language. It is somewhat confusing, but
both XSL and the XSL Formatting Language share the same abbreviation (XSL).
Chapter 8 describes XSLT and XSL Formatting Language in more detail.

The initial 1.0 version of XSLT became a W3C Recommendation in November of
1999. Before becoming a Recommendation, XSLT was stable, so the preliminary
support that vendors provided for XSLT closely matched the Recommendation.

Transform and Style with XSL

15

Because of this, early adopters of XSL have used the transformation language.
The most common use of the transformation language is to take an XML docu-
ment and transform it to HTML for display on the Web.

Transforming XML to HTML is a workaround for the limited support of XML
in browser clients. Performing the transformation on a server and sending out
the result to a client gives consistent results and is a bridge between the new
XML technology and the majority of Web users, who do not run the latest
browser. I suspect that this may become a long-term strategy, especially for open
Internet applications, because it helps transcend the subtle differences among
various vendors’ browsers.

XSLT does not restrict you to converting XML to HTML. I have seen this tech-
nology used in very creative ways. For example, I have seen XSLT used to con-
vert database files described by XML to Structured Query Language (SQL)
statements, which actually created the tables, indexes, and views that the XML
data described. You can also use XSLT to transform data to different Electronic
Data Interchange (EDI) formats from a common XML format.

The second XSL specification, XSL Formatting Language, has not enjoyed the
same stability that XSLT has had. However, after several false starts, XSL
Formatting Language is finally on track to widespread adoption. The formatting
language describes how to present a document, and is much more capable than a
style sheet.The XSL Formatting Language uses formatting objects to take elements
described in an abstract tree-like representation of a document and renders those
elements in the document’s actual presentation. The formatting language and for-
matting objects are extremely powerful, supporting features such as sorting, expres-
sions, and complex document elements. With this power comes complexity. XML is
supposed to be a simple alternative to SGML; you may want to put off adopting
XSL Formatting Language until XML and CSS no longer meet your needs.

Tools of the Trade
For many people, a new project, whether Java, XML, or home improvement, is
an excuse to acquire and use new tools. I am one of these people; in my case a

CHAPTER 1: XML: Where Did It Come From? Where Is It Going?

16

home improvement project usually involves a couple of hours, some supplies,
and a new tool—a tape measure, handsaw, or if I am really lucky, a power tool.

XML is a tool lover’s dream. There are hundreds of cool new products to add to
your toolbox, which support every aspect of XML. I don’t understand why, but
the majority of these new tools are also free. The Internet is the best place to
find these XML tools and resources. Here are some sites with useful tools to get
you started:

www.alphaworks.ibm.com: This Web site provides access to IBM’s emerging
alpha-code technologies. At this site you will find dozens of XML tools,
including XML Interface for RPG, XML Lightweight Extractor, XML Parser
for Java (XMLJ), XML and Web Services Development Environment,
Xeena, and the XSL by Demo WebSphere Studio plug-in.

msdn.microsoft.com/xml/: Microsoft’s XML site contains XML fixes,
updates, and product previews for Internet Explorer (look for the
Xmlinst.exe Replace Mode Tool). On the downloads page you will find
tools such as Internet Explorer Tools for Validating XML and Viewing
XSLT as well as XML Notepad.

xml.apache.org: This Web site, which is related to the well-known Apache
Web server, contains quite a few open-source tools, including Xerces, Xalan,
Crimson, and Xang. Although the names are odd, these tools are some of the
best available; visit the Web site to find out whether Xerces is a markup lan-
guage for Greek mythology, or an XML parser written in Java.

java.sun.com/xml/: You will find several Java-related XML tools at Sun’s
XML site, including Java API for XML Processing (JAXP) and Java API for
XML Messaging (JAXM).

www.w3.org/People/Raggett/tidy/: XML Tidy is a handy freeware utility by
Dave Raggett that converts HTML to XHTML. Be sure to read the Getting
Started guide. If you prefer a Windows interface, download the TidyGUI
version, which is also on this page.

You can use any text editor, such as Code/400 or Notepad, to edit your XML
documents, but eventually you will want to get an editor that helps you with the

Tools of the Trade

17

job. Quite a few are available; some are even free or have free trials. IBM’s
Alphaworks Web site has several editors, including Xeena. You can go to
Microsoft’s Web site and download XML Notepad; the direct URL is
msdn.microsoft.com/xml/notepad/intro.asp. If you want an open-source editor,
Conglomerate provides support for both Windows and Linux; their Web site is
www.conglomerate.org.

iSeries XML Solutions
The final section of this book describes two complete iSeries (formerly AS/400)
solutions. These solutions show how to use XML on the iSeries platform and
may give you some ideas on how XML can help you in your environment. In
addition to XML, these solutions use RPG IV, Java, servlets, and the Apache
Web server running on the iSeries. I include enough information to set up and
get started with these solutions. Where appropriate, I have listed resources
describing where you can get more details.

Building an XML File Viewer
The first solution describes an XML file viewer that uses XML to describe data-
base files in a manner similar to Data Description Specifications (DDS). This
solution allows you to create database files from this definition. After creating a
file, you can add some data to the file and then view the formatted data with a
Web browser. To view the data, a Java application builds an XML data stream
from the data and then displays the results in a browser.

This solution contains two parts. The first part shows how to describe database files
using XML. The first step creates an XML document that describes a database file.
A DTD ensures that the XML document is valid and conforms to several rules.
Next, a process converts the XML description to a DB2 database file residing on
your iSeries system. The actual conversion uses XSL Transformations (XSLT) to
convert the XML definition to the SQL statements used to create the table.

The second part is a file viewer that uses an XML database definition to display
database file information in a browser. First, information contained in a database

CHAPTER 1: XML: Where Did It Come From? Where Is It Going?

18

file is converted to an XML document using IBM’s XML Lightweight Extractor
(XLE). A Cascading Style Sheet helps to format the resulting XML document
for display using a JavaServer Page (JSP) in a browser.

The browser-based file viewer uses a simple Java servlet that runs on your
iSeries server. In order to focus on the XML parts of the application and not be
sidetracked by WebSphere’s complexities, I used the very capable and easy-to-
configure Jakarta servlet engine. The Jakarta servlet engine is an open-source
project supported by the Apache organization. There is nothing in the example
that is specific to Jakarta, so it will run just fine if you already have WebSphere
running and want to use WebSphere.

Building an XML Data Interchange
One application that many iSeries shops run is Electronic Data Interchange
(EDI). This solution describes how to create an industry-specific markup lan-
guage and DTD. This new markup language is used to exchange information in
a common format. The Timber Exchange (TIMEX) markup language is specific
to the timber and logging industry, but the concepts are valid for any industry-
specific solution.

I begin this example by describing the elements of the TIMEX markup
language. Following that, I show you how to create the TIMEX DTD, which
ensures TIMEX documents adhere to some rules. Trading partners use the
TIMEX DTD to ensure validity of information before sending the information.

On the receiving end, I show you how to use the XML Interface for RPG, which
is a free tool that validates and parses XML documents. After determining that
the information is correct, I show you how to interpret and write the XML-
formatted data to a DB2 database file.

This example walks you through the steps necessary to create a new markup that
supports the timber and logging industry, but these techniques apply to all
industry-specific markups. If someone has already defined a widely accepted
markup in your industry, use it; if none is available, now is your chance to
become an industry leader and define your own markup.

iSeries XML Solutions

19

Chapter Highlights
In this chapter, you learned about the problems that XML solves as well as some
XML history and background.

■ XML is extensible because it is a meta-markup language.

■ With XML, content is separated from style.

■ Well-formed documents comply with XML’s syntax and structure.

■ An XML document can use a DTD or Schema for additional validation.

■ Search engines search XML documents more effectively.

■ XHTML is now replacing HTML.

■ XML uses CSS, XSL, and XSLT to provide style.

In the next chapter, I will start to describe the parts and structure of an XML
document as well as basic XML syntax.

CHAPTER 1: XML: Where Did It Come From? Where Is It Going?

20

