
Introduction

Service-Oriented Architecture (SOA) is a way of organizing software so that
companies can respond quickly to the changing requirements of the market-

place. The technology is based on services, which are customized units of
software that run in a network.

A service

• handles a business process such as calculating an insurance quote or
distributing email, or handles a relatively technical task such as accessing a
database, or provides business data and the technical details needed to
construct a graphical interface

• can access another service and, with the appropriate runtime technology, can
access a traditional program and respond to different kinds of requesters —
for example, to Web applications

• is relatively independent of other software so that changes to a requester
require few or no changes to the service, while changes to the internal logic
of a service require few or no changes to the requester

The relative independence of the service and other software is called loose
coupling. The flexibility offered by loose coupling protects your company from
excessive costs when business or technical requirements change.

A service can handle interactions within your company, as well as between your
company and its suppliers, partners, and customers. The location of service

C H A P T E R 11

Chapter-1.qxd 4/27/2007 12:58 PM Page 1

requesters can extend worldwide, depending on security issues and on the runtime
software used to access a particular service.

In most cases, the requesting code has no details on the service location. Like the
requester, the service can be almost anywhere. The location is set when the net-
work is configured, and changes to the location are sometimes possible at network
run time.

SOA implies a style of development, with concern for the business as a whole and
with an increased focus on modularity and reuse. SOA isn’t only for new code,
though. Migration of existing applications is especially appropriate in the
following cases:

• The applications are monolithic, combining the logic of user interface,
business processing, and data access, with update of one kind of logic
requiring your company to test multiple kinds of behavior.

• The applications are hard to understand — first, because the logic is
monolithic, but second, because logic was repeatedly patched rather than
rewritten as requirements changed. Updates take extra time as developers try
to decipher the logic, and as the complexity grows, additional errors
accompany updates.

• The application inventory has duplicate logic. Requests for change are
unnecessarily disruptive, requiring changes in several places.

From the point of view of a business developer, a change to SOA is a change in
emphasis, and many aspects of the job are unaffected. Consider the task of
function invocation, for example. When you invoke a function, you aren’t
concerned with the internal logic of the invoked code or with how the function
receives arguments or returns a value. Similarly, when you code a service request,
you care only about the syntax for requesting the service. At best, service requests
are as easy as function invocations.

Open Standards

In many industries, companies adhere to standards that allow for greater prosperity
than would be possible if each company followed its own proprietary rules.
Standards in housing construction, for example, ensure that manufacturers of pipes

2 Chapter 1: Introduction

Chapter-1.qxd 4/27/2007 12:58 PM Page 2

can benefit from economies of scale in pursuit of a larger market than would be
available in the absence of industry-wide standards.

The primary benefit of SOA standards is that they make services interoperable,
which means that services can communicate with one another, even if each
implementation is written in a different computer language or is accessed by way
of a different transport protocol (software that oversees the runtime transmission
of data).

Standards also ensure that an SOA runtime product can support Quality of Service
features, as described in Chapter 2.

SOA standards are open in the sense that any software manufacturer has the right
to use those standards when developing an SOA-related product. In addition, the
process of creating and revising the standards is based on a political process that is
more or less democratic. Any interested party has the right to participate in all
meetings that lead to decisions about a standard.

Each company that works on an open standard seeks a text that matches the
company’s marketplace strengths. The competition among those companies is one
reason for the long delay in making a standard final.

Several major organizations oversee development of open standards for SOA:

• Open Grid Forum (http://www.ogf.org)

• Organization for the Advancement of Structured Information Standards
(OASIS; http://www.oasis-open.org)

• Web Services Interoperability Organization (WS-I; http://www.ws-i.org)

• World Wide Web Consortium (W3C; http://www.w3.org)

Later chapters give you practical insight into standards that are in effect or under
consideration, and Appendix A describes several others.

Open standards are distinct from open source, which is source code that you can
learn from and use in your own projects, with certain legal restrictions. Open-
source implementations of Service Component Architecture (SCA) and Service

Open Standards 3

Chapter-1.qxd 4/27/2007 12:58 PM Page 3

Data Objects (SDO), for example, are being developed in the Tuscany incubator
project of the Apache Software Foundation. For details and code, see the following
Web sites: http://incubator.apache.org/tuscany and http://www.apache.org.

Structure of a Service-Oriented Application

A service-oriented application is an application composed largely of services.
Often, the invoked services are in a hierarchy, as Figure 1.1 illustrates.

The topmost level contains one or more integration services, each of which
controls a flow of activities such as processing an applicant’s request for insurance
coverage. Each integration service invokes one or more business services.

The second level is composed of services that each fulfill a relatively low-level
business task. For example, an integration service might invoke such business
services to verify the details provided by an insurance-policy applicant. If the
business services return values that are judged to mean “issue a policy,” the
integration service invokes yet another business service, which calculates a quote
and returns the quote to the software (for example, a Web application) that invoked
the service-oriented application.

4 Chapter 1: Introduction

Figure 1.1: Service-oriented application

Chapter-1.qxd 4/27/2007 12:59 PM Page 4

The third level consists of data-access services, each of which handles the
relatively technical task of reading from and writing to data-storage areas such as
databases and message queues. A data-access service is most often invoked from
the business layer.

Great complexity is possible. Some integration services, for example, provide
different operations to different requesters, and some invoke other integration
services and are said to be composed of those services. Many applications,
however, fulfill the three-level model described here.

Web and Binary-Exchange Services

This book also classifies services by the format of the data exchanged between a
service and its requesters. A Web service exchanges data in a format based on
Extensible Markup Language (XML). The W3C Web site suggests that the use of
XML for data transfer is the only defining characteristic of a Web service. In
many cases, the following description also applies:

• Details on the data are described in Web Services Description Language
(WSDL).

• The format of the transmitted data is Simple Object Access Protocol (SOAP).

• The transport protocol is Hypertext Transfer Protocol (HTTP), the primary
mechanism for exchanging program data over the Internet or a corporate
intranet.

In contrast to a Web service, a binary-exchange service exchanges data in a format
associated with a particular computer language or a specific vendor. Although a
service written with Enterprise Generation Language (EGL) can be deployed as a
Web service, for example, the logic also can be deployed as a service that
exchanges binary data.

The use of binary-exchange services provides several benefits:

• allows a faster runtime response than is possible with Web services

• avoids the need to maintain WSDL definitions and related files

• avoids the need to learn the Web-service technologies

Web and Binary-Exchange Services 5

Chapter-1.qxd 4/27/2007 12:59 PM Page 5

The cost, however, is reduced accessibility. A binary-exchange service is directly
accessible only to software that transmits data in the binary format expected by the
service.

Business Implications

SOA has several important implications for business. First, to the extent that loose
coupling is in effect, changes made to the service logic won’t force significant
changes to requesters of that software. When each component is a relatively stand-
alone unit, your company can respond to business or technological changes more
quickly and with less expense and confusion. At best, a service can even be re-
deployed to another machine without changing logic or recompiling the code. A
further implication is that your company can develop services for different plat-
forms and with different implementation languages, letting the organization use
the best available technologies.

In general, a company’s ability to respond quickly and well to change is known as
agility. The main promise of service-oriented architecture is that a well-crafted
SOA will increase agility over time.

SOA also has an important effect on how people work together. Aside from the
most technical services, a well-written service is coarse-grained, meaning that the
area of concern is broad enough so business people can understand the purpose of
the service even if they know little about software. To the extent that a collection
of coarse-grained services handles your company’s business procedures, the firm’s
business analysts and software professionals can share information knowledgeably,
can include end users in early deliberations about the purpose and scope of each
service, and can understand all the implications of changing a business procedure.
Ease of human communication is an important benefit of SOA and suggests that
the architecture will become the primary organizing principle for business
processing.

Last, well-designed services are more likely to be reusable. Your company benefits
from reuse in at least two ways: first, by avoiding the expense of developing new
software, and second, by increasing the reliability of the software inventory over
time. The firm can do less extensive testing if an existing service is placed in a
new application, in comparison to the testing required to deploy software that was
written from scratch.

6 Chapter 1: Introduction

Chapter-1.qxd 4/27/2007 12:59 PM Page 6

Criteria for SOA Implementation

A company is most likely to develop an SOA if the firm anticipates substantial
change, has problems with existing applications or application access, and is
willing to make the initial investment in analysis and planning.

A company is most likely to embrace an SOA based on Web services if it wants its
software to be accessed by partners and customers — specifically, partners and
customers that lack the binary-exchange solutions the company might otherwise
favor. A Web service implementation is also the approach of choice for companies
that want to depend less on particular software vendors.

Migration of Existing Applications

A company can develop an SOA to increase the rationality of its existing
applications. A migration can be costly, though, in part because the design team
must complete an analysis that reflects a concern for the business as a whole. A
business-wide focus means that the team is better able to isolate services for use in
multiple applications, including applications that are likely to arise in response to
future requirements. The need is for knowledge and vision, so that interaction with
business people can reduce the amount of duplicate logic in a company’s software
and can increase the ease of future updates.

Although planning for service development is essential, the actual development
can occur in stages, with the cost of work spread over time and over several
projects. As a start, a company might convert code that has strategic value, is
accessed by different systems, or is likely to change in any case.

An incremental migration lets the company learn from experience. Decision-mak-
ers may begin a migration to an SOA that’s based on Web services, for example,
and then turn to a binary-exchange solution. The company is likely to benefit from
whatever design was accomplished in the initial phase. It can even benefit from
completed Web services because in most cases, code that depends on binary-
exchange technology can access Web services.

Reasons to Reject Web Services

A company may require that its software respond more quickly than is possible
with Web services. In this case, the company can use a binary-exchange
technology and still gain the benefits of SOA. For example, if COBOL programs

Business Implications 7

Chapter-1.qxd 4/27/2007 12:59 PM Page 7

access one another, a firm may want to avoid the runtime overhead that comes
from converting data into XML and back to native COBOL.

Similarly, if a subsystem requires hardware or software from specific vendors, a
company may consider using binary-exchange services that continue the firm’s
reliance on these vendors. A cost of this strategy is that the company is vulnerable
to the vendors’ pricing and customer response.

Last, a company may avoid developing Web or binary-exchange services to
replace software that isn’t expected to require a lot of change. This consideration
applies when applications have fulfilled their mission for years and an appropriate
statement is, “If it ain’t broke, don’t fix it.”

Presentation Services

An important variation on the themes addressed in this book is the presentation
service, which provides business data along with a stream of technical detail for
constructing a graphical interface. The interface in turn lets the user interact with
the data and access remote services and other software.

Different kinds of presentation services are in use. Although a comprehensive
review is outside our scope, let us introduce a kind of presentation service that is
widely used.

8 Chapter 1: Introduction

Figure 1.2: Portal technology

Chapter-1.qxd 4/27/2007 12:59 PM Page 8

As Figure 1.2 illustrates, a portal is software that resides on a server and
coordinates different interfaces, each affecting a different area of a Web page.
From the perspective of a user, the output of a portal can provide a variety of
news, business interaction, and entertainment, although an employee who accesses
a company’s internal portal is working primarily with applications that support the
company’s business.

Each application is controlled by a portlet, which is a unit of software that
contributes sections of markup language such as Hypertext Markup Language
(HTML). The portal collects those sections and submits them to devices such as
Web browsers and personal digital assistants.

Portal technology empowers the user, who can select a subset of applications and
may be able to customize the runtime behavior of individual portlets. Portals can
even retain user preferences so that the experience is individualized as soon as a
user logs on.

Traditionally, the portlets resided on the same server as the portal. In a natural
extension of the technology, the portal requests data from a set of remote portlets,
each of which acts as a presentation service. The standard that guides the
interaction between portals and remote portlets is Web Services for Remote
Portlets, as referenced in Appendix A.

SOA Runtime Products

Software vendors are now creating SOA runtime products that oversee a network
of services. The general direction of that work is to allow a programmer, business
analyst, or network coordinator to change product-configuration settings that
affect (for example) the following issues:

• how security is handled

• which of several identical services at different locations is accessed by a
requester

• whether a set of services is invoked in response to a requester’s invocation of
a single service

• what log information is collected

SOA Runtime Products 9

Chapter-1.qxd 4/27/2007 12:59 PM Page 9

An SOA runtime product might allow the configuration of intermediaries, which
are processing centers that do administrative or technical tasks during the
transmission of data between a requester and a service. An intermediary might
reroute messages in response to network traffic or business priorities; might
reformat messages because the requester uses a transport protocol different from
the one used by the service; or might provide security — for example, by
authenticating requesters or by shielding the service from a flood of messages.

In the future, a subset of runtime products will incorporate guidelines from
Service Component Architecture, an emerging open standard that permits
flexibility at development, configuration, and run time.

10 Chapter 1: Introduction

Chapter-1.qxd 4/27/2007 12:59 PM Page 10

