
18
JavaScript and Embedded

Objects

Modern browsers support many technologies beyond (X)HTML, CSS, and JavaScript.
A wide variety of extra functionality is available in the form of browser plug-ins,
ActiveX controls, and Java applets. These technologies provide extended capabilities

that can make Web pages appear more like applications than marked-up text. Embedded
objects provide a natural complement to the limited capabilities of scripting languages like
JavaScript.

Embedded objects come in many forms, but the most popular are multimedia in nature.
A good example is Macromedia Flash files, which allow designers to add advanced vector
graphics and animation to Web sites. Various other types of embedded video, sound, and
live audio are also quite popular. Embedded Java applets are often included in pages that
require more advanced graphics, network, or processing functionality.

Browsers provide the bridge that facilitates communication between JavaScript and
embedded objects. The way this communication is carried out is essentially non-standardized,
although browser vendors adhere to their own ad hoc “standards,” which are in widespread
use. Even so, there are numerous concerns when dealing with embedded objects. First,
including them makes the assumption that the user’s browser has the capability to handle
such objects. Second, even if the user does have an appropriate extension installed, many
users find embedded objects annoying because they increase download time while only
occasionally improving the overall utility of the site. Third, users with older browsers and
users on non-Windows platforms are often unable to use embedded objects because of lack
of support.

This chapter introduces the way that JavaScript can be used to interact with embedded
objects in most major browsers. Complex integration of objects with JavaScript requires
more comprehensive information, which can be found at browser and plug-in vendor sites.

5 5 7

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18
Blind Folio 557

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Java
Many think that JavaScript is a boiled-down form of Java because of the similarity in their
names. The fact that JavaScript was originally called “LiveScript” suggests the mistake in
drawing such a conclusion. While Java and JavaScript are both object-oriented languages,
they are both commonly used on the Web, and the syntax of both resembles the syntax of
C, they are in truth very different languages. Java is a class-based object-oriented language,
whereas JavaScript is prototype-based. Java is strongly typed, whereas JavaScript is weakly
typed. Java is compiled into platform-independent bytecode before execution, while
JavaScript source code is generally interpreted directly by the browser. Java programs
execute in a separate context called a “sandbox,” whereas JavaScript is interpreted in the
context of the browser.

This last difference—in execution context—is very important. Java applets are nearly
platform-independent, stand-alone programs designed to run in a restricted execution
environment. There is a lot of theory that goes into the Java sandbox, but in essence applets
run in a “virtual machine” that is somewhat isolated from the user’s browser and operating
system. This isolation is designed to preserve platform independence as well as the security
of the client’s machine.

Java applets are most often used to implement applications that require comprehensive
graphics capabilities and network functionality. Java packages installed on the client machine
provide networking code, graphics libraries, and user interface routines, often making it a
much more capable language than JavaScript for some tasks. Common applications include
applets that display real-time data downloaded from the Web (for example, stock tickers),
interactive data browsing tools, site navigation enhancements, games, and scientific tools that
perform calculations or act as visualization tools.

Including Applets
Before delving into the details of applet interaction, a brief review of how to include applets
in your pages is in order. Traditionally, applets are included with the <applet> tag. The tag’s
code attribute is then set to the URL of the .class file containing the applet, and the height
and width attributes indicate the shape of the rectangle to which the applet’s input and
output are confined; for example:

<applet code="myhelloworld.class" width="400" height="100"
name="myhelloworld" id="myhelloworld">

Your browser does not support Java!
</applet>

Note how the <applet> tag’s name attribute (as well as id attribute) is also set. Doing so
assigns the applet a convenient handle JavaScript can use to access its internals.

Although the use of <applet> is widespread, it has been deprecated under HTML 4
and XHTML. More appropriate is the <object> tag. It has a similar syntax:

<object classid="java:myhelloworld.class" width="400" height="100"
name="myhelloworld" id="myhelloworld">

Your browser does not support Java!
</object>

558 P a r t V : A d v a n c e d T o p i c s

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 8 : J a v a S c r i p t a n d E m b e d d e d O b j e c t s 559

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

NOTEOTE There are some problems with the use of the <object> syntax for including applets, the least
of which is lack of support in older browsers. We will use the <applet> syntax, but you should
be aware that it is preferable standards-wise to use <object> whenever possible.

Initial parameters can be included inside the <applet> or <object> tag using the
<param> tag, as shown here:

<applet code="myhelloworld.class" width="400" height="100"
name="myhelloworld" id="myhelloworld">

<param name="message" value="Hello world from an initial parameter!" />
Your browser does not support Java!
</applet>

Java Detection
Before attempting to manipulate an applet from JavaScript, you must first determine whether
the user’s browser is Java-enabled. Although the contents of an <applet> tag are displayed
to the user whenever Java is turned off or unavailable, you still need to write your JavaScript
so that you do not try to interact with an applet that is not running.

The javaEnabled() method of the Navigator object returns a Boolean indicating whether
the user has Java enabled. This method was first made available in IE4 and Netscape 3, the
first versions of the browsers that support JavaScript interaction with Java applets. Using
a simple if statement with this method should provide the most basic Java detection, as
shown here:

if (navigator.javaEnabled())
{
// do Java related tasks

}
else
alert("Java is off");

Once support for Java is determined, then JavaScript can be used to interact with
included applets.

Accessing Applets in JavaScript
The ability to communicate with applets originated with a Netscape technology called
LiveConnect that was built into Netscape 3. This technology allows JavaScript, Java, and
plug-ins to interact in a coherent manner and automatically handles type conversion of data
to a form appropriate to each. Microsoft implemented the same capabilities in IE4, though not
under the name LiveConnect. The low-level details of how embedded objects and JavaScript
interact are complicated, unique to each browser, and even vary between different versions of
the same browser. The important thing is that no matter what it is called, the capability exists
in versions of IE4+ (except under Macintosh) and Netscape 3+ (although early versions of
Netscape 6 have some problems), and Mozilla-based browsers.

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

Applets can be accessed through the applets[] array of the Document object or directly
through Document using the applet’s name. Consider the following HTML:

<applet code="myhelloworld.class" width="400" height="100"
name="myhelloworld" id="myhelloworld">

Your browser does not support Java!
</applet>

Assuming that this applet is the first to be defined in the document, it can be accessed in all
of the following ways, with the last being preferred:

document.applets[0]
// or
document.applets["myhelloworld"]
// or the preferred access method
document.myhelloworld

The JavaScript properties, defined primarily under the browser object model and later
by the DOM, of an Applet object are listed in Appendix B and consist of an unsurprising
assortment of information reflecting the attributes of the (X)HTML <applet> tag for which
it was defined. The relevant aspect to this JavaScript-Java communication discussion is the
fact that all properties and methods of the applet’s class that are declared public are also
available through the Applet object. Consider the following Java class definition for the
previous myhelloworld example. The output (when embedded as before) is shown in
Figure 18-1.

import java.applet.Applet;
import java.awt.Graphics;
public class myhelloworld extends Applet
{

String message;
public void init()
{

message = new String("Hello browser world from Java!");
}
public void paint(Graphics myScreen)
{

myScreen.drawString(message, 25, 25);
}
public void setMessage(String newMessage)
{

message = newMessage;
repaint();

}
}

560 P a r t V : A d v a n c e d T o p i c s

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

Now comes the interesting part. Because the setMessage() method of the myhelloworld
class is declared public, it is made available in the appropriate Applet object. We can invoke
it in JavaScript as

document.myhelloworld.setMessage("Wow. Check out this new message!");

Before proceeding further with this example, it is very important to note that applets
often require a significant amount of load time. Not only must the browser download the
required code, but it also has to start the Java virtual machine and walk the applet through
several initialization phases in preparation for execution. It is for this reason that it is
never a good idea to access an applet with JavaScript before making sure that it has begun
execution. The best approach is to use an onload handler for the Document object to
indicate that the applet has loaded. Because this handler fires only when the document
has completed loading, you can use it to set a flag indicating that the applet is ready for
interaction. This technique is illustrated in the following example using the previously
defined myhelloworld applet:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Applet Interaction Example</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<script type="text/javascript">
<!--
var appletReady = false;
function changeMessage(newMessage) {
if (!navigator.javaEnabled()) {
alert("Sorry! Java isn't enabled!");
return;

}

C h a p t e r 1 8 : J a v a S c r i p t a n d E m b e d d e d O b j e c t s 561

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

FIGURE 18-1
The output of the
myhelloworld
applet in Internet
Explorer

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

if (appletReady)
document.myhelloworld.setMessage(newMessage);

else
alert("Sorry! The applet hasn't finished loading");

}
// -->
</script>
<body onload="appletReady = true;">
<applet code="myhelloworld.class" width="400" height="100"
name="myhelloworld" id="myhelloworld">

Your browser does not support Java!
</applet>
<form action="#" method="get" onsubmit="return false;" name="inputForm"
id="inputForm">

<input type="text" name="message" id="message" />
<input type="button" value="Change Message"
onclick="changeMessage(document.inputForm.message.value);" />

</form>
</body>
</html>

The output of this script after changing the message is shown in Figure 18-2.
There are tremendous possibilities with this capability. If class instance variables are

declared public, they can be set or retrieved as you would expect:

document.appletName.variableName

Inherited variables are, of course, also available.

NOTEOTE Java applets associated with applets defined in <object> tags receive the public properties
and methods just as those defined in <applet> tags do. However, using <object> instead of
<applet> is potentially less cross-browser compatible because Netscape 4 does not expose this
HTML element to scripts.

562 P a r t V : A d v a n c e d T o p i c s

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

FIGURE 18-2
JavaScript can call
public methods of
Java applets.

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Issues with JavaScript-Driven Applets
Experienced programmers might be asking at this point why one would choose to embed
a Java applet alongside JavaScript in a page. One reason might be to avoid having to re-
implement code in JavaScript that is readily available in Java. Another reason is that many
people feel that user interfaces written in (X)HTML/CSS are easier to implement than in
Java (though some people believe the opposite!). One major benefit of using a Web-based
interface to drive an embedded applet is that changes to the interface can be made without
the hassle of recompiling the Java code.

Discovering Interfaces
Many new programmers wonder how to find out what “hooks” are made available by a
particular applet. An easy way to find out is to examine the source code (the .java file)
associated with the applet. If it is not available, you can use a for/in loop on the appropriate
Applet object to print out its properties. Anything that is not usually a property of an Applet
browser object is a part of the interface defined by the applet’s class. However, this method is
discouraged because it gives you no information about the type of arguments the applet’s
methods expect. Generally, it’s not a good idea to drive an applet from JavaScript unless you
know for sure how the interface it exposes should be used.

Type Conversion
The issue of type conversion in method arguments has serious bearing on JavaScript-driven
applets. While most primitive JavaScript types are easily converted to their Java counterparts,
converting complicated objects can be problematic. If you need to pass user-defined or non-
trivial browser objects to applets, close examination of each browser’s type conversion rules is
required. A viable option is to convert the JavaScript object to a string before passing it to an
applet. The applet can then manually reconstruct the object from the string. A better option
might be to retrieve the objects directly using the Java classes mentioned in the following
section.

Security
A final issue is the fact that most browsers’ security models will prevent an applet from
performing an action at the behest of JavaScript that the script could not otherwise perform
on its own. This makes sense when one considers that Java is (in theory) designed to protect
the user from malicious code. Experimentation with the restrictions placed on JavaScript-
driven applets reveals inconsistent security policies among different browsers and versions.

Accessing JavaScript with Applets
Although it may come as a surprise, it is possible for Java applets to drive JavaScript. Internet
Explorer, Netscape, and Mozilla-based browsers are capable of using the netscape Java
package, which defines a family of class libraries for JavaScript interaction. In particular, the
JSObject class (netscape.javascript.JSObject) allows an applet to retrieve and manipulate
JavaScript objects in the current page. In addition, it affords an applet the ability to execute
arbitrary JavaScript in the browser window as if it were a part of the page.

On the (X)HTML side of things, all that is required to enable this functionality is the
addition of the mayscript attribute to the <applet> tag in question. The mayscript attribute
is a nonstandard security feature used to prevent malicious applets from modifying the

C h a p t e r 1 8 : J a v a S c r i p t a n d E m b e d d e d O b j e c t s 563

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

564 P a r t V : A d v a n c e d T o p i c s

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

documents in which they are contained. Omitting this attribute (theoretically) prevents the
applet from crossing over into “browser space,” though enforcement by browsers is spotty.

While this is a powerful capability, Java-driven JavaScript is rarely used in practice.
Details about these classes can be found in Java documentation for the specific browsers.

Plug-ins
Browser plug-ins are executable components that extend the browser’s capabilities in a
particular way. When the browser encounters an embedded object of a type that it is not
prepared to handle (e.g., something that isn’t HTML or other Web file type), the browser
might hand the content off to an appropriate plug-in. If no appropriate plug-in is installed,
the user is given the option to install one (assuming the page is properly written). Plug-ins
consist of executable code for displaying or otherwise processing a particular type of data.
In this way, the browser is able to hand special types of data, for example multimedia files,
to plug-ins for processing.

Plug-ins are persistent in the browser in the sense that once installed, they remain there
unless manually removed by the user. Most browsers come with many plug-ins already
installed, so you may have used them without even knowing. Plug-ins were introduced
in Netscape 2 but are supported, at least HTML–syntax-wise, by most major browsers,
including Opera and Internet Explorer 3 and later. However, the actual component in the
case of Internet Explorer is not a plug-in but instead an ActiveX control discussed later in
the chapter. Plug-ins are a Netscape-introduced technology supported by many other
browsers.

Embedding Content for Plug-Ins
Although never officially a part of any HTML specification, the <embed> tag is most often
used to include embedded objects for Netscape and Internet Explorer. A Macromedia Flash
file might be embedded as follows:

<embed id="demo" name="demo"
src="http://www.javascriptref.com/examples/ch18/flash.swf"
width="318" height="252" play="true" loop="false"
pluginspage="http://www.macromedia.com/go/getflashplayer"
swliveconnect="true"></embed>

The result of loading a page with this file is shown in Figure 18-3.
The most important attributes of the <embed> tag are src, which gives the URL of the

embedded object, and pluginspage, which indicates to the browser where the required
plug-in is to be found if it is not installed in the browser. Plug-in vendors typically make
available the embedding syntax, so check their site for the value of pluginspage.

Recall that applets embedded with <object> tags are passed initial parameters in
<param> tags. The syntax of <embed> is different in that initial parameters are passed
using attributes of the element itself. For instance, in the preceding example the play
attribute tells the plug-in to immediately begin playing the specified file.

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 8 : J a v a S c r i p t a n d E m b e d d e d O b j e c t s 565

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

The <object> element is the newer, official way to include embedded objects of any kind
in your pages. However, <object> is not supported in Netscape browsers prior to version 4,
and <embed> continues to be supported by new browsers. So it is unlikely that <object> will
completely supplant <embed> any time in the near future. However, <object> and <embed>
are very often used together in order to maximize client compatibility. This technique is
illustrated in the later ActiveX section of this chapter.

MIME Types
So how does the browser know what kind of data is appropriate for each plug-in? The answer
lies in Multipurpose Internet Mail Extension types, or MIME types for short. MIME types are
short strings of the form mediatype/subtype, where the mediatype describes the general nature of
the data and the subtype describes it more specifically. For example, GIF images have type
image/gif, which indicates that the data is an image and its specific format is GIF (Graphics
Interchange Format). In contrast, CSS files have type text/css, which indicates that the file is
composed of plain text adhering to CSS specifications. The MIME major media types are
application (proprietary data format used by some application), audio, image, message, model,
multipart, text, and video.

Each media type is associated with at most one handler in the browser. Common Web
media such as (X)HTML, CSS, plain text, and images are handled by the browser itself.
Other media, for example, MPEG video and Macromedia Flash, are associated with the

FIGURE 18-3
An embedded
Flash file

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

appropriate plug-in (if it is installed). Keep in mind that a plug-in can handle multiple
MIME types (for example, different types of video), but that each MIME type is associated
with at most one plug-in. If one type were associated with more than one plug-in, the
browser would have to find some way to arbitrate which component actually receives
the data.

Detecting Support for MIME Types
Netscape 3+, Opera 4+, and Mozilla-based browsers provide an easy way to examine the
ability of the browser to handle particular MIME types. The mimeTypes[] property of
the Navigator object holds an array of MimeType objects. Some interesting properties
of this object are shown in Table 18-1.

The browser hands embedded objects off to plug-ins according to the data that makes
up each of these objects. A good way to think about the process is that the browser looks
up MIME types and filename suffixes in the mimeTypes array to find the enabledPlugin
reference to the appropriate plug-in. The programmer can therefore use the mimeTypes
array to check whether the browser will be able to handle a particular kind of data.

Before delving into this process, it might be insightful to see what MIME types your
Netscape browser supports. The following code prints out the contents of the mimeTypes[]
array.

if (navigator.mimeTypes)
{
document.write("<table><tr><th>Type</th>");
document.write("<th>Suffixes</th><th>Description</th></tr>");
for (var i=0; i<navigator.mimeTypes.length; i++)

{
document.write("<tr><td>" + navigator.mimeTypes[i].type + "</td>");
document.write("<td>" + navigator.mimeTypes[i].suffixes + "</td>");
document.write("<td>" + navigator.mimeTypes[i].description

+ "</td></tr>");
}
document.write("</table>");

}

Part of the result in a typical installation of Mozilla-based browsers is shown in Figure 18-4.
Of course, you can also access similar information by typing about:plugins in the location
bar of Netscape and Mozilla-based browsers.

566 P a r t V : A d v a n c e d T o p i c s

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

Property Description

description String describing the type of data the MIME type is associated with

enabledPlugin Reference to the plug-in associated with this MIME type

suffixes Array of strings holding the filename suffixes for files associated with this
MIME type

type String holding the MIME type

TABLE 18-1 Properties of the MimeType Object

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To detect support for a particular data type, you first access the mimeTypes[] array by
the MIME type string in which you are interested. If a MimeType object exists for the
desired type, you then make sure that the plug-in is available by checking the MimeType
object’s enabledPlugin property. The concept is illustrated by the following code:

if (navigator.mimeTypes
&& navigator.mimeTypes["video/mpeg"]
&& navigator.mimeTypes["video/mpeg"].enabledPlugin)

document.write('<embed src="/movies/mymovie.mpeg" width="300"' +
' height="200"></embed>');

else
document.write('<img src="myimage.jpg" width="300" height="200"' +

'alt="My Widget" />');

If the user’s browser has the mimeTypes[] array and it supports MPEG video (video/mpeg)
and the plug-in is enabled, an embedded MPEG video file is written to the document. If
these conditions are not fulfilled, then a simple image is written to the page. Note that the
pluginspage attribute was omitted for brevity because the code has already detected that an
appropriate plug-in is installed.

C h a p t e r 1 8 : J a v a S c r i p t a n d E m b e d d e d O b j e c t s 567

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

FIGURE 18-4 Contents of the mimeTypes[] array in Mozilla

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

This technique of MIME type detection is used when you care only whether a browser
supports a particular kind of data. It gives you no guarantee about the particular plug-in
that will handle it. To harness some of the more advanced capabilities that plug-ins provide,
you often need to know if a specific vendor’s plug-in is in use. This requires a different
approach.

Detecting Specific Plug-Ins
In Netscape 3+, Opera 4+, and Mozilla-based browsers, each plug-in installed in the browser
has an entry in the plugins[] array of the Navigator object. Each entry in this array is a Plugin
object containing information about the specific vendor and version of the component installed.
Some interesting properties of the Plugin object are listed in Table 18-2.

Each Plugin object is an array of the MimeType objects that it supports (hence its
length property). You can visualize the plugins[] and mimeTypes[] arrays as being cross-
connected. Each element in plugins[] is an array containing references to one or more
elements in mimeTypes[]. Each element in mimeTypes[] is an object referred to by exactly
one element in plugins[], the element referred to by the MimeType’s pluginEnabled
reference.

You can refer to the individual MimeType objects in a Plugin element by using double-
array notation:

navigator.plugins[0][2]

This example references the third MimeType object supported by the first plug-in.
More useful is to index the plug-ins by name. For example, to write all the MIME types

supported by the Flash plug-in (if it exists!), you might write

if (navigator.plugins["Shockwave Flash"])
{
for (var i=0; i<navigator.plugins["Shockwave Flash"].length; i++)
document.write("Flash MimeType: " +

navigator.plugins["Shockwave Flash"][i].type + "
");
}

Of course, as with all things plug-in–related, you need to read vendor documentation
very carefully in order to determine the exact name of the particular plug-in in which you
are interested.

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

568 P a r t V : A d v a n c e d T o p i c s

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

Property Description

description String describing the nature of the plug-in. Exercise caution with this property
because this string can be rather long.

name String indicating the name of the plug-in.

length Number indicating the number of MIME types this plug-in is currently
supporting.

TABLE 18-2 Some Interesting Properties of the Plugin Object

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To illustrate the composition of the Plugin object more clearly, the following code prints
out the contents of the entire plugins[] array:

for (var i=0; i<navigator.plugins.length; i++)
{
document.write("Name: " + navigator.plugins[i].name + "
");
document.write("Description: " + navigator.plugins[i].description + "
");
document.write("Supports: ");
for (var j=0; j<navigator.plugins[i].length; j++)
document.write(" " + navigator.plugins[i][j].type);
// the nonbreaking space included so the types are more readable

document.write("

");
}

The results are shown in Figure 18-5.

Dealing with Internet Explorer
One thing to be particularly conscious of is that Internet Explorer defines a faux plugins[]
array as a property of Navigator. It does so in order to prevent poorly written Netscape-
specific scripts from throwing errors while they probe for plug-ins. Under Internet Explorer,
you have some reference to plug-in–related data through the document.embeds[] collection.
However, probing for MIME types and other functions is not supported, since Explorer
actually uses ActiveX controls to achieve the function of plug-ins included via an <embed>
tag. For more information on using JavaScript with ActiveX, see the section entitled “ActiveX”

C h a p t e r 1 8 : J a v a S c r i p t a n d E m b e d d e d O b j e c t s 569

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

FIGURE 18-5 Example contents of the navigator.plugins[] array

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

later in this chapter. For now, simply consider that to rely solely on information from
navigator.plugins[] without first doing some browser detection can have some odd or even
disastrous consequences.

Interacting with Plug-Ins
By now you might be wondering why one would want to detect whether a specific plug-in
will be handling a particular MIME type. The reason is that, like Java applets, plug-ins are
LiveConnect-enabled in Netscape 3+, Internet Explorer 4+, and Mozilla-based browsers.
This means that plug-ins can implement a public interface through which JavaScript can
interact with them. This capability is most commonly used by multimedia plug-ins to
provide JavaScript with fine-grained control over how video and audio are played. For
example, plug-ins often make methods available to start, stop, and rewind content as
well as to control volume, quality, and size settings. The developer can then present the
user with form fields that control the behavior of the plug-in through JavaScript.

This capability works in the reverse direction as well. Embedded objects can invoke
JavaScript in the browser to control navigation or to manipulate the content of the page. The
more advanced aspects of this technology are beyond the scope of this book, but common
aspects include functions that plug-ins are programmed to invoke when a particular event
occurs. Like a JavaScript event handler, the plug-in will attempt to invoke a function with a
specific name at a well-defined time, for example, when the user halts playback of a
multimedia file. To prevent namespace collisions with other objects in the page, these
methods are typically prefixed with the name or id attribute of the <object> or <embed>
of the object instance.

As with applets, there remains the issue of how the JavaScript developer knows which
methods the plug-in provides and invokes. The primary source for this information is
documentation from the plug-in vendor. But be warned: These interfaces are highly
specific to vendor, version, and platform. When using LiveConnect capabilities, careful
browser and plug-in sensing is usually required.

We now have most of the preliminary information required in order to detect and
interact safely with plug-ins. There is, however, one final aspect of defensive programming
to cover before jumping into the interaction itself.

Refreshing the Plug-Ins Array
Suppose you have written some custom JavaScript to harness the capabilities provided by
a specific plug-in. When users visit your page without the plug-in they are prompted to
install it because you have included the proper pluginspage attribute in your <embed>.
Unfortunately, if a user visits your page without the plug-in, agrees to download and install
it, and then returns to your page, your JavaScript will not detect that the browser has the
required plug-in. The reason is that the plugins[] array needs to be refreshed whenever a
new plug-in is installed (a browser restart will work as well).

Refreshing the plugins[] array is as simple as invoking its refresh() method. Doing so
causes the browser to check for newly installed plug-ins and to reflect the changes in the
plugins[] and mimeTypes[] arrays. This method takes a Boolean argument indicating
whether the browser should reload any current documents containing an <embed>. If
you supply true, the browser causes any documents (and frames) that might be able to
take advantage of the new plug-in to reload. If false is passed to the method, the plugins[]

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

570 P a r t V : A d v a n c e d T o p i c s

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

array is updated, but no documents are reloaded. A typical example of the method’s use is
found here:

If you have just installed the plugin, please reload the page with
plugin support

Of course, this should be presented only to users of Netscape, Opera, or Mozilla-based
browsers where plug-ins are supported in the first place.

Interacting with a Specific Plug-In
Nearly everything that was true of applet interaction remains true for plug-ins as well.
Applets are accessed through the Document object, using the applet’s name or id attribute.
Similarly, the plug-in handling data embedded in the page is accessed by the name attribute
of the <embed> tag that includes it. As with applets, you need to be careful that you do not
attempt to access embedded data before it is finished loading. The same technique of using
the onload handler of the Document to set a global flag indicating load completion is often
used. However, one major difference between applets and plug-ins is that as far as the DOM
specification is concerned, the <embed> tag doesn’t exist, nor do plug-ins. Despite the fact
that their use, particularly in the form of Flash, is so widespread, the specification chooses
not to acknowledge their dominance and try to standardize their use.

To illustrate interaction with plug-ins, we show a simple example using a Macromedia
Flash file. The first thing to note is that there are two plug-in names corresponding to Flash
players capable of LiveConnect interaction. They are “Shockwave Flash” and “Shockwave
Flash 2.0.” Second, consulting Macromedia’s documentation reveals that the <embed> tag
should have its swliveconnect attribute set to true (though it does not appear to be required
for this example) if you wish to use JavaScript to call into the Flash player.

You can find a list of methods supported by the Flash player at Macromedia’s Web site (for
example, at http://www.macromedia.com/support/flash/publishexport/scriptingwithflash/).
The methods we will use in our simple example are GotoFrame(), IsPlaying(), Play(), Rewind(),
StopPlay(), TotalFrames(), and Zoom(). The following example controls a simple Flash file
extolling the wonders of JavaScript.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Simple Flash control example (Netscape and Mozilla only)</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<script type="text/javascript">
<!--
var pluginReady = false;
var pluginAvailable = false;
if (document.all) alert("Demo for netscape only");
function detectPlugin()
{
// if the appropriate plugin exists and is configured
// then it is ok to interact with the plugin
if (navigator.plugins &&

((navigator.plugins["Shockwave Flash"] &&

C h a p t e r 1 8 : J a v a S c r i p t a n d E m b e d d e d O b j e c t s 571

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

572 P a r t V : A d v a n c e d T o p i c s

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

navigator.plugins["Shockwave Flash"]["application/x-shockwave-flash"])
||
(navigator.plugins["Shockwave Flash 2.0"] &&
navigator.plugins["Shockwave Flash 2.0"]["application/x-shockwave-flash"]))

)
pluginAvailable = true;

}

function changeFrame(i)
{
if (!pluginReady || !pluginAvailable)
return;

if (i>=0 && i<document.demo.TotalFrames())
// function expects an integer, not a string!
document.demo.GotoFrame(parseInt(i));

}

function play()
{
if (!pluginReady || !pluginAvailable)
return;

if (!document.demo.IsPlaying())
document.demo.Play();

}
function stop()
{
if (!pluginReady || !pluginAvailable)
return;

if (document.demo.IsPlaying())
document.demo.StopPlay();

}
function rewind()
{
if (!pluginReady || !pluginAvailable)
return;

if (document.demo.IsPlaying())
document.demo.StopPlay();

document.demo.Rewind();
}
function zoom(percent)
{
if (!pluginReady || !pluginAvailable)
return;

if (percent > 0)
document.demo.Zoom(parseInt(percent));
// method expects an integer

}
//-->
</script>
</head>
<body onload="pluginReady=true; detectPlugin();">

<!-- Note: embed tag will not validate against -->
<embed id="demo" name="demo"

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

src="http://demos.javascriptref.com/jscript.swf"
width="318" height="300" play="false" loop="false"
pluginspage="http://www.macromedia.com/go/getflashplayer"
swliveconnect="true"></embed>

<form name="controlform" id="controlform" action="#" method="get">
<input type="button" value="Start" onclick="play();" />
<input type="button" value="Stop" onclick="stop();" />
<input type="button" value="Rewind" onclick="rewind();" />

<input type="text" name="whichframe" id="whichframe" />
<input type="button" value="Change Frame"
onclick="changeFrame(controlform.whichframe.value);" />

<input type="text" name="zoomvalue" id="zoomvalue" />
<input type="button" value="Change Zoom"
onclick="zoom(controlform.zoomvalue.value);" />
(greater than 100 to zoom out, less than 100 to zoom in)

</form>
</body>
</html>

The example—stopped in the middle of playback and zoomed in—is shown in Figure 18-6.

C h a p t e r 1 8 : J a v a S c r i p t a n d E m b e d d e d O b j e c t s 573

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

FIGURE 18-6 The scriptable Flash plug-in lets us zoom in on the Flash file.

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

574 P a r t V : A d v a n c e d T o p i c s

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

There exist far more powerful capabilities than the previous example demonstrates.
One particularly useful aspect of Flash is that embedded files can issue commands using
FSCommand() that can be “caught” with JavaScript by defining an appropriately named
function. Whenever an embedded Flash file in a LiveConnect-enabled browser issues an
FSCommand(), the Flash file crosses over into browser territory to invoke the name_
doFSCommand() method if one exists. The name portion of name_doFSCommand()
corresponds to the name or id of the element in which the object is defined. In the
previous example, the Flash file would look for demo_doFS Command() because the file
was included in an <embed> with name equal to “demo.” Common applications include
alerting the script when the data has completed loading and keeping scripts apprised of
the playback status of video or audio. As with other more advanced capabilities, details
about these kinds of callback functions can be obtained from the plug-in vendors.

ActiveX
ActiveX is a Microsoft component object technology enabling Windows programs to load
and use other programs or objects at runtime. ActiveX controls are basically subprograms
launched by the browser that can interact with page content. For example, if a <textarea>
provided insufficient editing capabilities for a particular task, the page author might
include an ActiveX control that provides an editor interface similar to that of MS Word.

While on the surface ActiveX controls might seem a lot like Java applets, the two
technologies are not at all alike. For one, once an ActiveX control is installed on the user’s
machine, it is given greater access to the local system. This loosened security stance means
that controls can access and change files, and do all manner of other powerful yet potentially
unsavory things. Since ActiveX controls are executable code, they are built for a specific
operating system and platform. This means that they are minimally supported outside of
Internet Explorer, and not at all outside of Windows.

Whereas Java applets are downloaded when they are needed, ActiveX controls are,
like plug-ins, persistent once they are installed. This installation process is often automatic,
which is both good and bad. It is good in the sense that it obviates the need to have the user
manually install a required component. But it is also a security risk because most users could
be easily fooled into accepting the installation of a malicious control. We’ll have more to say
about the security of ActiveX controls in Chapter 22.

Including ActiveX Controls
An ActiveX control is embedded in the page using an <object> tag with the classid attribute
specifying the GUID (Globally Unique Identifier) of the ActiveX control you wish to instantiate.
The syntax is similar to that of the <object> syntax for the inclusion of applets. Parameters are
passed using <param> elements, and anything included between the <object>‘s opening and
closing tags is processed by non-<object>-aware browsers; for example:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#
version=6,0,40,0" name="demoMovie" id="demoMovie" width="318" height="252">
<param name="movie"
value="http://www.javascriptref.com/examples/ch18/flash.swf" />

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 8 : J a v a S c r i p t a n d E m b e d d e d O b j e c t s 575

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

<param name="play" value="true" />
<param name="loop" value="false" />
<param name="quality" value="high" />

Your browser does not support ActiveX!

</object>

This example defines an embedded Flash file for use with an ActiveX control. In general,
ActiveX controls have classid attributes beginning with “clsid:.” We saw another possibility
in a previous section where the classid began with “java:.” In general, the classid attribute
specifies the unique identifier of the control for which the data is intended. The classid
value for each ActiveX control is published by the vendor, but it is also commonly inserted
by Web development tools such as Macromedia Dreamweaver (www.macromedia.com/
dreamweaver).

The final item of note is the codebase attribute specifying the version of the ActiveX
binary that is required for this particular object. The classid and codebase attributes serve
the function that manual probing of plug-ins does under Netscape. If the user’s machine
doesn’t have the required control or version, the user will be prompted to download it from
the given location.

Cross-Browser Inclusion of Embedded Objects
By far the best way to ensure the cross-browser compatibility of your pages is to use a
combination of ActiveX controls and plug-in syntax. To accomplish this, use an <object>
intended for IE/Windows ActiveX controls and include within it an <embed> intended for
Netscape and IE/Macintosh plug-ins. The technique is illustrated in the following example:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#\

version=6,0,40,0"
name="demoMovie" id="demoMovie" width="318" height="252">

<param name="movie" value=http://www.javascriptref.com/examples/ch18/flash.swf
/>

<param name="play" value="true" />
<param name="loop" value="false" />
<param name="quality" value="high" />

<embed src="http://www.javascriptref.com/examples/ch18/flash.swf"
width"318" height="252" play="true" loop="false" quality="high"

pluginspage="http://www.macromedia.com/go/getflashplayer">
<noembed>
Error: No Object or Embed Support

</noembed>
</embed>

</object>

Browsers that do not understand <object> will see the <embed>, whereas browsers capable
of processing <object> will ignore the enclosed <embed>. Using <object> and <embed> in
concert maximizes the possibility that the user will be able to process your content.

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

576 P a r t V : A d v a n c e d T o p i c s

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

Interacting with ActiveX Controls
JavaScript can be used to interact with ActiveX controls in a manner quite similar to plug-
ins. A control is accessible under the Document object according to the id of the <object>
that included it. If the required control isn’t available, Internet Explorer automatically
installs it (subject to user confirmation) and then makes it available for use.

NOTEOTE You may have to include the mayscript attribute in the <object> to enable callback
functions.

Any methods exposed by the control are callable from JavaScript in the way applet or
plug-in functionality is called. Simply invoke the appropriate function of the <object> in
question. To invoke the Play() method of the control in the previous example, you’d write

document.demoMovie.Play();

As a quick demonstration, we recast the previous example so it works in both Netscape
and Internet Explorer browsers.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Cross-browser Flash Control Example </title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<script type="text/javascript">
<!--
var dataReady = false;
var pluginAvailable = false;
function detectPlugin()
{
if (navigator.plugins &&

((navigator.plugins["Shockwave Flash"] &&
navigator.plugins["Shockwave Flash"]["application/x-shockwave-flash"])
||
(navigator.plugins["Shockwave Flash 2.0"] &&
navigator.plugins["Shockwave Flash 2.0"]["application/x-shockwave-flash"])

))
pluginAvailable = true;
return(pluginAvailable);

}

function changeFrame(i)
{

if (!dataReady)
return;

// Some versions of the ActiveX control don't support TotalFrames,
// so the check is omitted here. However, the control handles values
// out of range gracefully.
document.demo.GotoFrame(parseInt(i));

}

function play()

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 8 : J a v a S c r i p t a n d E m b e d d e d O b j e c t s 577

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

{
if (!dataReady)

return;
if (!document.demo.IsPlaying())
document.demo.Play();

}

function stop()
{

if (!dataReady)
return;

if (document.demo.IsPlaying())
document.demo.StopPlay();

}

function rewind()
{

if (!dataReady)
return;

if (document.demo.IsPlaying())
document.demo.StopPlay();

document.demo.Rewind();
}
function zoom(percent)
{

if (!dataReady)
return;

if (percent > 0)
document.demo.Zoom(parseInt(percent));

}
//-->
</script>
</head>
<body onload="dataReady = true;">
<object id="demo" classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
width="318"
height="300"
codebase="http://active.macromedia.com/flash2/cabs/swflash.cab#version=5,0,0,0">
<param name="movie" value="http://demos.javascriptref.com/jscript.swf" />
<param name="play" value="false" />
<param name="loop" value="false" />
<script type="text/javascript">
<!--

if (detectPlugin())
{
document.write('<embed name="demo" src="http://demos.javascriptref.com/

jscript.swf" width="318" height="300"
play="false" loop="false" pluginspage="http://www.macromedia.com/shockwave/download/
index.cgi?P1_Prod_
Version=ShockwaveFlash5" swliveconnect="true"></embed>');

}
else
{
// you can write an image in here in a "real" version
document.write('Macromedia Flash is required for this demo');

}

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

578 P a r t V : A d v a n c e d T o p i c s

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

//-->
</script>
<noscript>
JavaScript is required to demonstrate this functionality!

</noscript>
</object>
<form name="controlForm" id="controlForm" onsubmit="return false;" action="#"
method="get">
<input type="button" value="Start" onclick="play();" />
<input type="button" value="Stop" onclick="stop();" />
<input type="button" value="Rewind" onclick="rewind();" />

<input type="text" name="whichFrame" id="whichFrame" />
<input type="button" value="Change Frame"
onclick="changeFrame(controlForm.whichFrame.value);" />

<input type="text" name="zoomValue" id="zoomValue" />
<input type="button" value="Change Zoom"
onclick="zoom(controlForm.zoomValue.value)" /> (greater than 100 to zoom out, less
than 100 to zoom in)

</form>
</body>
</html>

You might wonder if ActiveX controls can do everything plug-ins can. The answer: yes,
and even more. For example, data handled by ActiveX controls can take full advantage of
callback functions, so everything that is possible with a plug-in is possible with ActiveX.
Further, because data destined for ActiveX is embedded in <object> elements, it can take
full advantage of the <object> event handlers defined in (X)HTML. Interestingly, there
seems to be more robust support for ActiveX in VBScript than in JavaScript. This is most
likely a result of the fact that as a Microsoft technology, VBScript is more closely coupled
with Microsoft’s COM. For more information on ActiveX, see http://www.microsoft.com/
com/tech/activex.asp.

Summary
Embedded objects provide the means with which you can expand the capabilities of your
pages to include advanced processing, network, and multimedia tasks. Web browsers
support Java applets and ActiveX controls and/or Netscape plug-ins. JavaScript can
interact with all forms of embedded objects to some degree. Typically, the object handling
the embedded content is addressable under the Document object (as its id or name). When
embedding content, it is recommended to write cross-browser scripts capable of interacting
with both ActiveX controls and plug-ins.

This chapter served as an introduction to what is possible with embedded objects.
A large part of ActiveX and plug-in capabilities are specific to the browser, vendor, and
platform, so the best way to find information about these technologies is from the ActiveX
control or plug-in vendors themselves. Because of the large number of browser bugs and
documentation inconsistencies, often interaction with embedded objects is best carried out
through a JavaScript library written with these subtleties in mind. Many such libraries can
be found on the Web.

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Embedded objects provide a way to enhance your site, not replace it. Pages should
always degrade gracefully, so that they can be used by those on alternative platforms or
who choose not to install plug-in, ActiveX, or Java technology. Sites that require a specific
technology are very frustrating to use for the segment of the population that prefers an
operating system and browser configuration other than Windows/Internet Explorer. As we
discussed in the last chapter, detection techniques should always be employed to avoid
locking users out of sites based upon technology limitations or client differences.

C h a p t e r 1 8 : J a v a S c r i p t a n d E m b e d d e d O b j e c t s 579

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 18

P:\010Comp\CompRef8\357-6\ch18.vp
Friday, June 11, 2004 5:46:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

