WEEK 3

DAY 21

Writing Java Servlets and
JavaServer Pages

The last subject to be explored is one of the most exciting and dynamic areas of
growth in Java: the use of a Web server as a platform for application develop-
ment.

The Java language has moved beyond applications that run on your computer
and applets that run on a World Wide Web page. Serviets, Web applications run
by a server over the Internet and presented by a Web browser, employ Java
without the prohibitive security restrictions in place for applets. A servlet can
use all the features of the language.

Using servlets, you can collect input from users through Web page forms, pre-
sent records from a database or another source, and create Web pages dynami-
cally.

This approach can be enhanced by JavaServer Pages (JSP), a way to create Web
pages that mix static HTML with the output of servlets and Java expressions.

586 Day 21

JavaServer Pages enable nonprogrammers to work on Web sites developed with Java.
Today, you learn about each of the following topics:

e How servlets differ from applications and applets

e How to run servlets as part of the Apache Web server and other servers

* How to receive data from a Web page form

* How to store and retrieve cookies

e How to use servlets to dynamically generate Web content

* How to create a JavaServer Page

* How to use Java variables, expressions, and statements on a page

Using Servlets

Servlets are Java classes run by a Web server that has an interpreter that supports the
Java Servlet specification. This interpreter, which is often called a servlet engine, is opti-
mized to run servlets with a minimum of the server’s resources.

Java servlets often serve the same purpose as programs implemented using the Common
Gateway Interface, a protocol for writing software that sends and receives information
through a Web server. CGI programming has been supported on the Web for most of its
existence. Most CGI programs, which also are called CGI scripts, have been written
using languages such as Perl, Python, and C.

CGI programs are used often for these purposes:

* Collecting user input from a form on a Web page
* Receiving information from arguments specified as part of a URL
* Running programs on the computer that runs the Web server

» Storing and retrieving cookies, files that store a user’s preferences and other infor-
mation on his computer

» Sending data back to a user in the form of an HTML document, GIF graphic, or
another format

Java servlets can do all these things along with some behavior that’s difficult to imple-
ment using most CGI scripting languages.

Servlets offer full support for sessions, a way to keep track of a particular user over time
as a Web site’s pages are being viewed. They also can communicate directly with a Web
server using a standard interface. As long as the server supports Java servlets, it can
exchange information with those programs.

Writing Java Servlets and JavaServer Pages

587 |

Java servlets have the same portability advantages as the language itself. Although Sun’s
official implementation of servlets was created with the Apache Software Foundation—

the open source developers who created the Apache Web server—many other companies
and groups have introduced tools to support Java servlets such as IBM WebSphere, BEA
WebLogic, and the developers of the Jetty server.

Servlets also run efficiently in memory. If 10 people are simultaneously using the same
CGI script, a Web server will have 10 copies of that script loaded into memory. If 10
people are using a Java servlet, only one copy of the servlet will be loaded, spawning
threads to handle each user.

Supporting Servlets

Servlets can be created using the javax.servlet and javax.servlet.http packages,
which are a standard part of the Java 2 Enterprise Edition (J2EE), an expanded version of
the Java class library that supports large-scale development projects.

These classes implement the Java Servlet and JavaServer Pages specification. At this
time, the most up-to-date versions are Java Servlet 2.4 and JavaServer Pages 2.0.

For users of the Java 2 Standard Edition (J2SE), which has been covered throughout this
book, the servlet packages can be downloaded from Sun’s Java servlet site at
http://java.sun.com/products/servlet. Click the Downloads link and under the
Specifications heading, choose the Download Class Files link for the Java Servlet specifi-
cation version 2.3 (class files for version 2.4 also might be available).

After installing the class files, to make them available, add the root folder of the installa-
tion to your computer’s Classpath environmental variable (for example, if the javax
folder was saved in c:\java\servlet, add the c:\java\servlet folder to the
Classpath).

You can create and compile servlets with these packages, but running them also requires
a server supporting Java Servlet 2.3 and JavaServer Pages 1.2.

Servlets are supported by several Web servers, each of which has its own installation,
security, and administration procedures.

The most popular choice for new servlet developers is Tomcat, an open-source server
developed by the Apache Software Foundation in cooperation with Sun Microsystems.
Version 4.1 of Tomcat supports Java Servlet 2.3 and JavaServer Pages 1.2. A newer ver-
sion, 5.0, also supports the Servlet 2.4 and JavaServer Pages 2.0 specifications.

588 Day 21

Tomcat can run in conjunction with another Web server (such as Apache’s Web server) or
as a standalone server. Your current Web server or Web application server may already
include support for servlets.

The software is available as a free download from Apache’s Web site at the address
http://jakarta.apache.org/tomcat. Several versions are available: Download a ver-
sion with 5.x numbering (such as 5.0.19).

Full installation instructions for Tomcat are available from the Web site. If you want to
run it as a standalone server for testing purposes, in most cases, the following procedure
works:

1. View the downloads page for Tomcat and other Apache projects: Visit
http://jakarta.apache.org/tomcat, and in the Downloads section of the site
menu, click the Binaries link.

A page opens with links to Apache software you can download, which are called
builds.

2. In the Release Builds section, scroll to the Tomcat 5.0.x heading.

The software can be downloaded as a ZIP archive, an archive compressed with TAR
and Gz, or a self-extracting EXE file.

3. Click the link of the version you want to download.
4. Install the software, making note of the folder where it is installed.

5. Create an environmental variable called JAVA_HOME that contains the folder where
Java is installed on your computer.

6. Create an environmental variable called CATALINA_HOME that contains the folder
where Tomcat was installed.

7. In the bin folder of the Tomcat installation, use either catalina.sh or
catalina.bat to run the server with one of these commands:
catalina.sh start
catalina.bat start
Tomcat begins running at port 8080 of your computer. (There’s also a stop com-
mand to shut it down.)

8. To verify that it’s running, open the address http://localhost:8080 with a Web
browser. If you're testing Tomcat from another computer, replace localhost with
the domain name or IP address of the server where Tomcat has been installed.

If you don’t have a server but you want to begin developing servlets, several companies
offer commercial Web hosting with Java servlet support. These companies have already

Writing Java Servlets and JavaServer Pages 589 |

installed Tomcat and configured it to work with their servers, leaving you to focus on
writing servlets using the classes of the javax.servlet and javax.servlet.http pack-
ages.

NOTE For previous editions of the book, | tested servlets using Motivational
Marketing Associates (MMA) to host servlets and JavaServer Pages. MMA
offers Java servlet hosting on an Apache Web server running Linux. You can
find out more about its commercial hosting services by visiting
http://www.mmaweb.com.

Developing Servlets

Java servlets are created and compiled just like any other Java class. After you install the
servlet packages and add them to your computer’s Classpath, you can compile servlets
with the SDK’s Java compiler or any other current compiler.

Every servlet is a subclass of the HttpServlet class, which is part of the javax.servlet
package. This class includes methods that represent the life cycle of a servlet and collect
information from the Web server running the servlet.

A servlet’s life cycle methods function similarly to the life cycle methods of applets.

The init(ServletConfig) method is called automatically when a Web server first
brings a servlet online to handle a user’s request. As mentioned earlier, one Java servlet
can handle multiple requests from different Web users. The init () method is called only
once, when a servlet comes online. If a servlet is already online when another request to
use the servlet is received, the init () method won’t be called again.

The init () method has one argument—ServletConfig, an interface in the
javax.servlet package that contains methods to find out more about the environment in
which a servlet is running.

The destroy () method is called when a Web server takes a servlet offline. Like the
init () method, this is called only once, when all users have finished receiving informa-
tion from the servlet. If this doesn’t take place in a specified amount of time, destroy ()
is called automatically, preventing a servlet from being hung up while it waits for infor-
mation to be exchanged with a user.

One of the main tasks of a servlet is to collect information from a Web user and present
something back in response. You can collect information from a user by using a form,
which is a group of text boxes, radio buttons, text areas, and other input fields on a Web

page.

| 590

Day 21

Figure 21.1 shows a Web form on a page loaded with the Mozilla Web browser.

FIGURE 21.1 % ROT-13 Translator - Mozilla

Collecting information
with a Web form.

TIP

. File Edit View Go Bookmarks Tools Window Help
[|

ROT-13 Translator

Text to translate:

Ebfrohg vE gur anzr bs uvf fyrg!

Too Dl ==

The form displayed in Figure 21.1 contains two fields: a text area and a clickable
Translate button. The Hypertext Markup Language (HTML) tags used to display this
page are the following:

<html>

<body>

<head><title>ROT-13 Translator</title></head>
<h1>R0OT-13 Translator</hi>

<p>Text to translate:

<form action="Rot13" method="POST">
<textarea name="text" ROWS=8 COLS=55>
</textarea>

<p><input type="submit" value="translate">
</form>

</body>

</html>

The form is contained within the <form> and </form> HTML tags. Each field on the
form is represented by its own tags: <textarea> and </textarea> for the text area and
<input> for the Translate button. The text area is given a name, text.

Servlets require you to have a basic familiarity with HTML because the only
user interface for a servlet is a Web page running in a browser. Two books
that are good for learning HTML are Sams Teach Yourself HTML in 24 Hours,
Sixth Edition, by Dick Oliver and Michael Morrison (ISBN 0-67232-520-9) and
Sams Teach Yourself Web Publishing with HTML and XHTML in 21 Days,
Fourth Edition, by Laura Lemay and Rafe Colburn (ISBN 0-672-32519-5).

Writing Java Servlets and JavaServer Pages

591 |

Each field on a form stores information that can be transmitted to a Web server and then
sent to a Java servlet. Web browsers communicate with servers by using Hypertext
Transfer Protocol (HTTP). Form data can be sent to a server using two kinds of HTTP
requests: GET and POST.

When a Web page calls a server using GET or POST, the name of the program that handles
the request must be specified as a Web address, also called a uniform resource locator
(URL).

A GET request affixes all data on a form to the end of a URL, as in this example:
http://www.java21days.com/servlets/beep?number=5551220&repeat=no

A POST request includes form data as a header sent separately from the URL. This is gen-
erally preferred, and it’s required when confidential information is being collected on the
form. Also, some Web servers and browsers do not support URLs longer than 255 char-
acters, which limits the amount of information that can be sent in a GET request.

Java servlets handle both of these requests through methods inherited from the
HttpServlet class: doGet (HttpServletRequest, HttpServletResponse) and

doPost (HttpServletRequest, HttpServletResponse). These methods throw two kinds
of exceptions: ServletException, which is part of the javax.servlet package, and
IOException, an exception in the standard java.io package that involves input and out-
put streams.

The doGet () and doPost () methods have two arguments: an HttpServletRequest object
and an HttpServletResponse object. One is called when a GET request is used to execute
the servlet, and the other is called with POST. A common technique in Java servlet pro-
gramming is to use one method to call the other, as in the following example:

public void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

doPost (request, response);
}

The request and response objects belong to classes in the javax.servlet.http package.
A servlet receives information about how it was run by calling methods of the
HttpServletRequest class. For example, when a Web form is submitted to a servlet,
each field on the form is stored as a string by the HttpServletRequest class.

You can retrieve these fields in a servlet by calling the getParameter (String) method
with the name of the field as an argument. This method returns null if no field of that
name exists.

| 592

Day 21

A servlet communicates with the user by sending back an HTML document, a graphics
file, or another type of information supported by a Web browser. It sends this information
by calling the methods of the HttpServletResponse class.

The first thing you must do when preparing a response is to define the kind of content
the servlet is sending to a browser. Call the setContentType (String) method with the
content type as an argument.

The most common form for a response is HTML, which is set by calling
setContentType ("text/html"). You also can send a response as text ("text/plain"),
graphics files ("image/gif", "image/jpeg"), and application-specific formats such as
"application/msword".

To send data to a browser, you create a servlet output stream associated with the browser
and then call the println(String) method on that stream. Servlet output streams are
represented by the ServletOutputStream class, which is part of the javax.servlet
package. You can get one of these streams by calling the response object’s
getOutputStream() method.

The following example creates a servlet output stream from an HttpServletResponse
object called response and then sends a short Web page to that stream:

ServletOutputStream out = response.getOutputStream();
out.println("<html>");

out.println("<body>");

out.println("<h1>Hello World!</h1>");
out.println("</body>");

out.println("</html>");

Listing 21.1 contains a Java servlet that receives data from the form displayed in
Figure 21.1.

LisTING 21.1 The Full Text of Rot13.java

import java.io.*;

1:
2:
3: import javax.servlet.*;

4: import javax.servlet.http.*;

5:

6: public class Rot13 extends HttpServlet {

7-

8 public void doPost(HttpServletRequest req, HttpServletResponse res)
9: throws ServletException, IOException {

10:

11: String text = req.getParameter("text");

12: String translation = translate(text);

13: res.setContentType("text/html");

Writing Java Servlets and JavaServer Pages 593 |

LisTING 21.1 continued

14: ServletOutputStream out = res.getOutputStream();

15: out.println("<html>");

16: out.println("<body>");

17: out.println("<head><title>ROT-13 Translator</title></head>");
18: out.println("<h1>ROT-13 Translator</h1>");

19: out.println("<p>Text to translate:");

20: out.println("<form action=\"Rot13\" method=\"POST\">");
21: out.println("<textarea name=\"text\" ROWS=8 COLS=55>");
22: out.println(translation);

23: out.println("</textarea>");

24: out.println("<p><input type=\"submit\" value=\"translate\">");
25: out.println("</form>");

26: out.println("</body>");

27: out.println("</html>");

28: }

29:

30: public void doGet(HttpServletRequest req, HttpServletResponse res)
31: throws ServletException, IOException {

32:

33: doPost(req, res);

34: }

35:

36: String translate(String input) {

37: StringBuffer output = new StringBuffer();

38: if (input != null) {

39: for (int 1 = 0; i < input.length(); i++) {

40: char inChar = input.charAt(i);

41: if ((inChar >= 'A') & (inChar <= 'Z')) {

42: inChar += 13;

43: if (inChar > 'Z')

44 inChar -= 26;

45: }

46: if ((inChar >= 'a') & (inChar <= 'z')) {

47: inChar += 13;

48: if (inChar > 'z’

49: inChar -= 26;

50: }

51: output.append(inChar);

52: }

53: }

54: return output.toString();

55: }

56: }

After saving the servlet, compile it with the Java compiler.

| 594

Day 21

The Rot13 servlet receives text from a Web form, translates it using ROT-13, and then
displays the result in a new Web form. ROT-13 is a trivial method of encrypting text
through letter substitution. Each letter of the alphabet is replaced with the letter that’s 13
places away: A becomes N, N becomes A, B becomes O, O becomes B, C becomes P, P
becomes C, and so on.

Because the ROT-13 encryption scheme is easy to decode, it isn’t used when information
must remain secret. Instead, it’s used casually on Internet discussion forums such as
Usenet newsgroups. For example, if someone on a movie newsgroup wants to share a
spoiler that reveals a plot detail about an upcoming movie, she can encode it in ROT-13
to prevent people from reading it accidentally.

NOTE Want to know the big secret from the 1973 film Soylent Green? Decode this

TIP

ROT-13 text: Fbba gurl'yy or oerrqvat hf yvxr pnggyr! Lbh'ir tbg gb jnea
rirelbar naq gryy gurz! Fblyrag terra vf zngr bs crbcyr! Lbh'ir tbg gb gryy
gurz! Fblyrag terra vf crbcyr!

To make the ROT-13 servlet available, you must publish its class files in a folder on your
Web server that has been designated for Java servlets.

Tomcat is organized so that servlets, other classes, and JavaServer Pages are placed in
subfolders of the software’s webapps folder. One way to deploy a servlet’s class file is to
store it in a WEB-INF\classes subfolder somewhere in the webapps hierarchy of folders.

Tomcat 4 includes several example servlets in the servlets-examples and jsp-
examples folders inside webapps. You can deploy the ROT-13 servlet in the servlet-
examples folder by storing Rot13.class in webapps\servlet-examples\WEB-
INF\classes (Windows) or webapps/servlet-examples/WEB-INF/classes (Linux).

After adding the class file, restart Tomcat and run the servlet by loading its address with
a Web browser.

The address of the servlet depends on where it was stored in the webapps folder. If you
put it in the java folder, it’s in /java/Rot13, as in http://www. java2idays.com:8080/
java/Rot13.

You can try out a working ROT-13 servlet on the book’s Web site; visit
http://www.java21idays.com and open the Day 21 page.

Writing Java Servlets and JavaServer Pages 595 |

Using Cookies

Many Web sites can be customized to keep track of information about you and the fea-
tures you want the site to display. This customization is possible because of a Web
browser feature called cookies, small files containing information that a Web site wants
to remember about a user, such as a username, the number of visits, and the like. The
files are stored on the user’s computer, and a Web site can read only the cookies on the
user’s system that the site has created.

Because of privacy considerations, most Web browsers can be configured to reject all
cookies or ask permission before allowing a site to create a cookie. The default behavior
for most browsers is to accept all cookies.

With servlets, you can easily create and retrieve cookies as a user runs your application.
Cookies are supported by the Cookie class in the javax.servlet.http package.

To create a cookie, call the Cookie(String, String) constructor. The first argument is
the name you want to give the cookie, and the second is the cookie’s value.

One use for cookies is to count the number of times someone has loaded a servlet. The
following statement creates a cookie named visits and gives it the initial value of 1:

Cookie visitCookie = new Cookie("visits", "1");

When you create a cookie, you must decide how long it should remain valid on a user’s
computer. Cookies can be valid for an hour, a day, a year, or any time in between. When
a cookie is no longer valid, the Web browser deletes it automatically.

Call a cookie’s setMaxAge (int) method to set the amount of time the cookie remains
valid, in seconds. If you use a negative value as an argument, the cookie remains valid
only while the user’s Web browser is open. If you use 0 as a value, the cookie is not
stored on a user’s computer.

NOTE The purpose of creating a cookie with a maximum age of 0 is to tell the
Web browser to delete the cookie if it already has one.

Cookies are sent to a user’s computer along with the data displayed by the Web browser.
To send a cookie, call the addCookie (Cookie) method of an HttpServletResponse
object.

| 596

Day 21

You can add more than one cookie to a response. When cookies are stored on a user’s
computer, they’re associated with the URL of the Web page or program that created the
cookie. You can associate several cookies with the same URL.

When a Web browser requests a URL, the browser checks to see whether any cookies are
associated with that URL. If there are, the cookies are sent along with the request.

In a servlet, call the getCookies() method of an HttpServletRequest object to receive
an array of Cookie objects. You can call each cookie’s getName () and getValue () meth-
ods to find out about that cookie and do something with the data.

Listing 21.2 contains ColorServlet, an extended version of the ROT-13 servlet that
enables a user to select the background color of the page. The color is stored as a cookie
called color, and the servlet requests the cookie from a Web browser every time the
servlet is loaded.

LisTING 21.2 The Full Text of ColorServlet.java

1: import java.io.*;
2:
3: import javax.servlet.*;
4: import javax.servlet.http.*;
5:
6: public class ColorServlet extends HttpServlet {
7 .
8 public void doPost(HttpServletRequest req, HttpServletResponse res)
9: throws ServletException, IOException {
10:
11: String pageColor;
12: String colorParameter = req.getParameter("color");
13: if (colorParameter != null) {
14: Cookie colorCookie = new Cookie("color", colorParameter);
15: colorCookie.setMaxAge (31536000) ;
16: res.addCookie(colorCookie);
17: pageColor = colorParameter;
18: } else {
19: pageColor = retrieveColor(req.getCookies());
20: }
21: String text = req.getParameter("text");
22: String translation = translate(text);
23: res.setContentType("text/html");
24: ServletOutputStream out = res.getOutputStream();
25: out.println("<html>");
26: out.println("<body bgcolor=\"" + pageColor + "\">");
27: out.println("<head><title>R0OT-13 Translator</title></head>");
28: out.println("<h1>R0OT-13 Translator</hi1>");
29: out.println("<p>Text to translate:");
30: out.println("<form action=\"ColorServlet\" method=\"POST\">");

Writing Java Servlets and JavaServer Pages 597 |

LisTING 21.2 continued

31: out.println("<textarea name=\"text\" ROWS=8 COLS=55>");
32: out.println(translation);

33: out.println("</textarea>");

34: out.println("<p>Background color of page:");

35: out.println("<p><input type=\"text\" name=\"color\" value=\"" +
36: pageColor + "\" SIZE=40>");

37: out.println("<p><input type=\"submit\" value=\"submit\">");
38: out.println("</form>");

39: out.println("</body>");

40: out.println("</html>");

41: }

42:

43: public void doGet(HttpServletRequest req, HttpServletResponse res)
44: throws ServletException, IOException {

45:

46: doPost(req, res);

47: }

48:

49: String translate(String input) {

50: StringBuffer output = new StringBuffer();

51: if (input != null) {

52: for (int 1 = 0; i < input.length(); i++) {
53: char inChar = input.charAt(i);

54: if ((inChar >= 'A') & (inChar <= 'Z')) {
55: inChar += 13;

56: if (inChar > 'Z'")

57: inChar -= 26;

58: }

59: if ((inChar >= 'a') & (inChar <= 'z')) {
60: inChar += 13;

61: if (inChar > 'z')

62: inChar -= 26;

63: }

64: output.append(inChar);

65: }

66: }

67: return output.toString();

68: }

69:

70: String retrieveColor(Cookie[] cookies) {

71: String inColor = "#FFFFFF";

72: for (int i = 0; i < cookies.length; i++) {

73: String cookieName = cookies[i].getName();
74: if (cookieName.equals("color")) {

75: inColor = cookies[i].getValue();

76: }

77: }

78: return inColor;

598 Day 21

LisTING 21.2 continued

79: }
80: }

Figure 21.2 shows the servlet running in a Web browser.

FiGURe 21.2 % ROT-13 Translator - Mozilla
A Web page genemted : E\Iel 'Edit Iy\ew Go Bookmarks Tools Window Help
by the ColorServlet =
Y ROT-13 Translator
servlet.
Text to translate:
Serr gur obhag crevbqupnyf!
Background color of page:
[#FFCC99 |
S|
IE=EA sl E=E

To change the page’s color, type a new value into the Background Color of Page text
field and click the Submit button.

Colors are expressed as a # sign followed by three two-digit hexadecimal numbers (in
Figure 21.2, the numbers are FF, CC, and 99). These numbers represent the amount of
red, green, and blue the color contains, ranging from a minimum of 00 to a maximum of
FF. If you aren’t familiar with hexadecimal colors, you can try these out while testing the
servlet:

* #FF0000—DBright red

* #0OFF00—Bright green

* #0000FF—Bright blue

* #FFAAAA—Light red

* #AAFFAA—Light green

* #AAAAFF—Light blue

* #FFCC66—Butterscotch

Writing Java Servlets and JavaServer Pages 599 |

Using Sessions

One of the most powerful features offered in servlets is support for sessions, a means of
monitoring a user over time as a servlet is being used.

Normally, the World Wide Web is a stateless protocol, which means that there’s no easy
way to follow a user around from page to page. A client Web browser requests a URL
from a server, receives the file associated with that URL, and then is completely forgot-
ten by the server. Nothing is done to track what a specific user does over a period of time
on a Web site.

This information isn’t important if you’re just offering a collection of static pages, but
it’s essential for many Web applications. This is especially true in e-commerce: an online
store needs to know which items you’ve added to your shopping cart when it’s time to
calculate your bill, the final total needs to be remembered when a charge must be applied
to your credit card, and so on.

Servlets can retain the state of a user through the use of HttpSession, a class that repre-
sents sessions. There can be one session object for each user running your servlet.

Sessions are created, deleted, and maintained behind the scenes by the server running the
servlet.

A user’s session can be created or retrieved by calling the getSession(Boolean) method
of the servlet’s request object. Use an argument of true if a session should be created
when one doesn’t already exist for the user, as in this example for an HttpRequest object
named req:

HttpSession state = req.getSession(true);

A session object must be accessed in this manner before any servlet output has been
composed by calling a response object’s methods.

You can find out whether the session is newly created by calling its isNew() method,
which returns true under that circumstance.

If you need to keep track of something as a user employs your servlet, it can be stored in
the session object.

The session object can hold objects in a manner comparable to a Vector, one of the data
structures described on Day 8, “Data Structures.”

Objects held by a session are called its attributes. Call the session’s
setAttribute(String, Object) method with two arguments: a name to give the
attribute and the object.

| 600

Day 21

To retrieve an attribute, call the getAttribute (String) method with its name as the
only argument. It returns the object, which must be cast from Object to the desired class,
or null if no attribute of that name exists.

To remove an attribute when it’s no longer needed, call removeAttribute(String) with
its name as the argument. This method does not return null if the attribute does not
exist; instead, it simply does nothing.

All three methods throw I1legalStateException exceptions if the session is no longer
valid. This can occur if the session was deleted by the server before the request was
made, some kind of error prevented sessions from being maintained, or similar reasons.

Today’s next project uses sessions to track whether a user has provided login information
to the servlet yet, as shown in Figure 21.3.

FiGuRe 21.3

Using servlets to log in .| File Edit View Go Bookmarks Tools Window

users.

» [» |

Log In

Username: ‘ |

Password: || |

mI=Kzas il == |

A servlet that’s used to log in a user, authenticating that the person has a valid username
and password, can be loaded under three different circumstances:

* The servlet is run before the user logs in. A form must be provided so that the user
can provide a username and password.

» The servlet is run to log in. The username and password provided by the user must
be authenticated in some manner, presumably by checking a database.

* The servlet is run after a user logs in.

To know what has happened before, which is necessary in all these circumstances, sessions are
used.

The LoginServlet program handles user logins with three session attributes: username, pass-
word, and loggedIn, a Boolean object that is true when the user has logged in and false oth-
erwise. The source code is shown in Listing 21.3.

Writing Java Servlets and JavaServer Pages

601 |

LisTING 21.3 The Full Text of LoginServlet.java

1:
2:
3:
4:
5:
6:
7

8

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
47:
48:

import
import
import
import

public

java.io.*;

java.util.Date;

javax.servlet
javax.servlet

class LoginSe

* .
.)

http.*;

rvlet extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse res)

throws Servl

HttpSession
Boolean logg
if (loggedIn

loggedIn
}

String usern

String password

Date lastVis
res.setConte
ServletOutpu
out.println(
out.println(
out.println(
if (loggedIn
/| user
username
password
lastVisi
out.prin
out.prin
lastVisi
session.

} else {
if (user
/] u
out.
out.

out.
out.

out.
out.

out.
out.
} else {
/] u

etException, IOException {

session = req.getSession();

edIn = (Boolean) session.getAttribute("loggedIn");
== null) {

= new Boolean(false);

ame = req.getParameter("username");
req.getParameter("password");

it
ntType("text/html");
tStream out = res.getOutputStream();

"<html>");

" <body>") ;

"<head><title>Login Page</title></head>");
.booleanValue() == true) {

is already logged in
= (String) session.getAttribute("username");
= (String) session.getAttribute("password");
t = (Date) session.getAttribute("lastVisit");
tln("<p>Welcome back, " + username);
tln("<p>You last visited on " + lastVisit);
t = new Date();
setAttribute("lastVisit", lastVisit);

name == null) {

ser has not submitted the form required to log in
println("<hi>Log In</h1>");

println("<form action=\"LoginServlet\" " +
"method=\"POST\">");

println("<p>Username:");

println("<input type=\"text\" name=\"username\" " +
“value=\"\" SIZE=30>");

println("<p>Password:");

println("<input type=\"password\" name=\"password\" " +
“value=\"\" SIZE=30>");

println("<p><input type=\"submit\" value=\"log in\">");
println("</form>");

ser has submitted the log in form

602 Day 21

LisTING 21.3 continued

49: out.println("Logging in " + username);

50: session.setAttribute("username", username);

51: session.setAttribute("password", password);

52: session.setAttribute("loggedIn", new Boolean(true));
53: session.setAttribute("lastVisit", new Date());

54: out.println("Reload Page");
55: }

56: out.println("</body>");

57: out.println("</html>");

58: }

59: }

60:

61: public void doGet(HttpServletRequest req, HttpServletResponse res)
62: throws ServletException, IOException {

63:

64: doPost(req, res);

65: }

66: }

When the servlet is loaded for the first time in a Web browser, it presents a form as
shown earlier in Figure 21.3.

Filling out the form and clicking the Submit button displays a page that has the text
“Logging in” and a Reload Page hyperlink.

Clicking the hyperlink loads a page with a greeting such as the following:
Welcome back, rcade
You last visited on Sun Feb 29 14:38:18 EST 2004

The servlet does not contain any code to check whether the provided username and pass-
word are valid. It simply stores them in a session so that they’re available when the
servlet is run again subsequently.

JavaServer Pages

Java servlets make it easy to generate HTML text dynamically, producing pages that
change in response to user input and data.

However, servlets make it difficult to generate HTML text that never changes, because it
is cumbersome and tedious to use Java statements to output HTML.

Writing Java Servlets and JavaServer Pages

603 |

Servlets also require the services of a Java programmer any time the HTML needs to be
changed. The servlet must be edited, recompiled, and deployed on the Web, and few
organizations would be comfortable handing that task to a nonprogrammer.

JavaServer Pages are a complement to servlets rather than a replacement. They make it
easy to separate two kinds of Web content:

» Static content, the portions of a Web page that don’t change, such as an online
store’s description of each product

* Dynamic content, the portions of a Web page generated by a servlet, such as the
store’s pricing and availability data for each product, which can change as items
sell out

When you use only servlets on a project, it becomes difficult to make minor changes,
such as correcting a typo in text, rewording a paragraph, or altering some HTML tags to
change how the page is presented. Any kind of change requires the servlet to be edited,
compiled, tested, and redeployed on the Web server.

With JavaServer Pages, you can put the static content of a Web page in an HTML docu-
ment and call servlets from within that content. You also can use other parts of the Java
language on a page, such as expressions, if-then blocks, and variables. A Web server
that supports the Tomcat specification knows how to read these pages and execute the
Java code they contain, generating an HTML document as if you wrote a servlet to han-
dle the whole task. In actuality, JavaServer Pages use servlets for everything.

You create aJavaServer Page as you would create an HTML document—in a text editor
or Web publishing program such as Microsoft FrontPage 2003 or Macromedia
Dreamweaver MX. When you save the page, use the . jsp file extension to indicate that
the file is a JavaServer Page instead of an HTML document. Then the page can be pub-
lished on a Web server like an HTML document, as long as the server supports servlets
and JavaServer Pages.

When a user requests the JavaServer Page for the first time, the Web server compiles a
new servlet that presents the page. This servlet combines everything that has been put
into the page:

» Text marked up with HTML

 Calls to Java servlets

» Java expressions and statements

* Special JavaServer Pages variables

| 604

Day 21

Writing a JavaServer Page

A JavaServer Page consists of three kinds of elements, each with its own special markup
tag that’s similar to HTML.:

 Scriptlets—Java statements executed when the page is loaded. Each of these state-
ments is surrounded by <% and %> tags.

* Expressions—Java expressions that are evaluated, producing output displayed on
the page. These are surrounded by <%= and %> tags.

e Declarations—Statements to create instance variables and handle other setup tasks
required in the presentation of the page. These are surrounded by <%! and %> tags.

Using Expressions

Listing 21.4 contains a JavaServer Page that includes one expression, a call to the
java.util.Date() constructor. This constructor produces a string containing the current
time and date. Enter this file with any text editor that can save files as plain text. (The
editor you’ve been using to create Java source code will work for this purpose as well.)

LisTING 21.4 The Full Text of time.jsp

1: <html>
2: <head>
3: <title>Clock</title>
4: </head>
5: <body>
6: <h1 align="Center">
7: <%= new java.util.Date() %>
8: </h1>
9: </body>
10: </html>

After saving the file, upload it to your Web server in a folder where other Web pages are
stored. Unlike Java servlets, which must be in a folder that has been designated for
servlets, JavaServer Pages can be placed in any folder that’s accessible on the Web.

In Tomcat 4, you can place the page in any folder inside the webapps folder. If you stored
the page in webapps\ java, it would be available at /java/time.jsp, as in http://
www.java2idays.com:8080/java/time. jsp.

When you load the page’s URL for the first time with a Web browser, the Web server
compiles the JavaServer Page into a servlet automatically. This causes the page to load
slowly for the first time, but subsequent requests run much more quickly.

Writing Java Servlets and JavaServer Pages 605 |

Figure 21.4 shows the output of time. jsp.

FIGURE 21.4 # Clock - Mozilla CEX

Uszng an expression ln . File Edit View Go Bookmarks Tools Window Help

a JavaServer Page. _I @a @O dgg
Tue Dec 02 16:43:39 EST 2003

D Eor D o =

When a JavaServer Page includes an expression, it’s evaluated to produce a value and
displayed on the page. If the expression produces different values each time the page is
displayed, as time.jsp does in line 7 of Listing 21.4, this is reflected in the page when
loaded in a Web browser.

There are several servlet objects you can refer to in expressions and other elements of a
JavaServer Page using the following variable names:

* out—The servlet output stream

* request—The HTTP servlet request

* response—The HTTP servlet responses

* session—The current HTTP session

e application—The servlet context used to communicate with the Web server

» config—The servlet configuration object used to see how the servlet was initial-

ized

Using these variables, you can call the same methods from within a JavaServer Page that

are available in a servlet.

Listing 21.5 contains the text of the next page you’ll create, environment. jsp, which
shows how the request variable can be used on a page. This variable represents an
object of the HttpServletRequest class, and you can call the object’s

getHeader (String) method to retrieve HTTP headers that describe the request in more
detail.

LisTING 21.5 The Full Text of environment.jsp

<html>
<head>
<title>Environment Variables</title>
</head>

RS I G

| 606

Day 21

LisTING 21.5 continued

<body>

Accept: <%= request.getHeader("Accept") %>
Accept-Encoding: <%= request.getHeader("Accept-Encoding") %>
Connection: <%= request.getHeader("Connection") %>

: Content-Length: <%= request.getHeader("Content-Length") %>
1 Content-Type: <%= request.getHeader("Content-Type") %>

: Cookie: <%= request.getHeader("Cookie") %>

¢ Host: <%= request.getHeader("Host") %>

: Referer: <%= request.getHeader("Referer") %>

1 User-Agent: <%= request.getHeader("User-Agent") %>

:

1 </body>

! </html>

In lines 7—15 of the environment.jsp page, each line contains a call to getHeader ()
that retrieves a different HTTP request header. Figure 21.5 shows an example of the out-
put. The values reported for each header depend on your Web server and the Web
browser you’re using, so you won’t see the same values for User-Agent, Referer, and
other headers.

FIGURE 21.5 * Enyironment Variables - Mozilla

Using servlet variables
on a JavaServer Page. + Accept

. File Edit View Go Bookmarks Tools Window Help
[I3 |

text/xml application/xml applicationxhtmlxml text'html:g=0.9 text/plain;q=0.8 video/x-mng image|
+ Accept-Encoding: gzip,deflate
+ Connection: keep-alive
+ Content-Length: null
+ Content-Type: null
+ Cookie: JSESSIONID=7AAR0ESF306A4ED9D12D7EFSCEESCASB
+ Host www.cadenhead org:8080

+ Referer: null
+ User-Agent Mozilla’5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.4.1) Gecko/20031008
& 93 B vone I S |

Using Scriptlets

You also can use Java statements in a JavaServer Page—calling methods, assigning val-
ues to variables, creating conditional statements, and so on. These statements begin with
the <% tag and end with the %> tag. More than one statement can be enclosed within these
tags.

Statements that appear inside a JavaServer Page are called scriptlets. You can use any of
the servlet variables that were available for expressions.

Writing Java Servlets and JavaServer Pages

607 |

Listing 21.6 contains the code for shopforbooks. jsp, a Web page that displays a list of
books, with hyperlinks to each book’s page at an online bookstore.

LisTING 21.6 The Full Text of shopforbooks. jsp

<html>

<head>

<title>Shop for Books</title>

</head>

<body>

<h2 align="Left">Favorite Books</h2>

<%

String[] bookTitle = { "Catch-22", "Something Happened",

9: "Good as Gold" };

10: String[] isbn = { "0684833395", "0684841215", "0684839741" };
11: String amazonLink = "http://www.amazon.com/exec/obidos/ASIN/";
12: String bnLink = "http://shop.bn.com/booksearch/isbnInquiry.asp?isbn=";

0N O~ WD =

14: String store = request.getParameter("store");
15: if (store == null) {

16: store = "Amazon";

17: }

18: for (int i = 0; i < bookTitle.length; i++) {

19: if (store.equals("Amazon"))

20: out.println("" +
21: bookTitle[i] + "");

22: else

23: out.println("" +
24: bookTitle[i] + "");

25: }

26: %>

27: <p>Preferred Bookstore:

28: <form action="shopforbooks.jsp" method="POST">
29: <p><input type="radio" value="Amazon"

30: <%= (store.equals("Amazon") ? " checked" : "") %>
31: name="store"> Amazon.Com

32: <p><input type="radio" value="BN"

33: <%= (store.equals("BN") ? " checked" : "") %>
34: name="store"> Barnes & Noble

35: <p><input type="submit" value="Change Store">
36: </form>

37: </body>

38: </html>

This JavaServer Page includes a form at the bottom of the page that lets users pick which
bookstore they like to use for online shopping.

| 608

Day 21

content using
scriptlets.

In line 28, the form is being submitted to the URL of the JavaServer Page. Because
pages are actually servlets, they can also receive form data that’s sent by POST or GET.

This page uses the store field to hold "Amazon" if Amazon.com is the preferred store
and "BN" if Barnes & Noble is the preferred store.

One thing to note as you test the server page is how the radio buttons on the form always
match the store you’ve chosen. This occurs because of expressions that appear on
lines 29 and 31. Here’s one of those expressions:

<%= (store.equals("Amazon") ? " checked" : "") %>

This expression uses the ternary operator with the conditional store.equals("Amazon").
If this condition is true, the word "checked" is the value of the expression. Otherwise, an
empty string (" ") is the value.

The value of expressions is displayed as part of the JavaServer Page. Figure 21.6 shows
what this page looks like in a Web browser.

FIGURE 21.6 % Shop for Books - Mozilla
Dlsplaylng dynamic . File Edit View Go Bookmarks Tools Window Help

[I [

Favorite Books
+ Catch-22

+ Something Happened
+ Good as Gold
Preferred Bookstore:

@ Amazon Com

© Barmes & Noble

IE=Lzds N =

Using Declarations

Another element you can insert into a JavaServer Page is a declaration, which is a state-
ment that sets up a variable or method that will be defined in the page when it’s com-
piled into a servlet. This feature is primarily used in conjunction with expressions and

servlets.
Declarations are surrounded by <%! and %> tags, as in the following example:

<!% boolean noCookie = true %>
<!% String userName = "New user" %>

Writing Java Servlets and JavaServer Pages 609 |

These declarations create two instance variables: noCookie and userName. When the
JavaServer Page is compiled into a servlet, these variables will be part of the definition
of that class.

Listing 21.7 contains a JavaServer Page that uses a declaration to present a counter.

LisTING 21.7 The Full Text of counter.jsp

<%@ page import="counter.*" %>
<html>

<head>

<title>Counter Example</title>
</head>

<body>

<h1>JSP Stats</h1>

<%! Counter visits; %>

9: <%! int count; %>

0N O WD =

11: <%

12: visits = new Counter(application.getRealPath("counter.dat"));
13: count = visits.getCount() + 1;

14: %>

16: <p>This page has been loaded <%= count %> times.
18: <% visits.setCount(count); %>

19: </body>
20: </html>

Before you can try this page, you need to create a helper class that’s called by statements
in lines 8, 12, 13, and 18 of the page.

The Counter class in Listing 21.8 represents a Web counter that tallies each hit to a page.

LisTING 21.8 The Full Text of Counter.java

: package counter;

: import java.io.*;
! import java.util.*;

1

2

3

4

5:

6: public class Counter {
7 private int count;

8 private String filepath;
9

0

1 public Counter(String inFilepath) {

610 Day 21

LisTING 21.8 continued

11: count = 0;

12: filepath = inFilepath;

13: }

14:

15: public int getCount() {

16: try {

17: File countFile = new File(filepath);

18: FileReader file = new FileReader(countFile);
19: BufferedReader buff = new BufferedReader(file);
20: String current = buff.readLine();

21: count = Integer.parselnt(current);

22: buff.close();

23: } catch (IOException e) {

24: // do nothing

25: } catch (NumberFormatException nfe) {

26: // do nothing

27: }

28: return count;

29: }

30:

31: public void setCount(int newCount) {

32: count = newCount;

33: try {

34: File countFile = new File(filepath);

35: FileWriter file = new FileWriter(countFile);
36: BufferedWriter buff = new BufferedWriter(file);
37: String output = "" + newCount;

38: buff.write(output, 0, output.length());

39: buff.close();

40: } catch (IOException e) {

41: // do nothing

42: }

43: }

44: }

After you compile this class successfully, it should be stored in a WEB-INF\classes\
counter subfolder in the same part of the webapps hierarchy as counter. jsp. For exam-
ple, if the JavaServer Page is in webapps\examples\jsp, the class file should be saved in
webapps\examples\WEB-INF\classes\counter.

The Counter class loads an integer value from a file called counter.dat that is stored on
the Web server. The getCount () method retrieves the current value of the counter, and
the setCount (int) method sets the current value. After the value is set, it’s saved to the
file so that the counter continues to incrementally increase.

Figure 21.7 shows counter. jsp loaded in a Web browser.

Writing Java Servlets and JavaServer Pages 611 |

FIGURE 21.7 % Counter Example - Mozilla =19

. . File Edit View Go Bookmarks Tools Window Hel
Using Java Sl B S B B 8 S etl) e

ServerPages and Java

vertis ! JSP Stats
objects to count visits
to a Web page. This page has been loaded 15 times.

I I=LzasIED ==

Creating a Web Application

By combining Java classes, servlets, and JavaServer Pages, you can create interactive
Web applications—sites that dynamically generate content in response to user input in a
sophisticated, cohesive way.

Every time you shop on an e-commerce site such as Amazon.com or use an online refer-
ence such as the Internet Movie Database (IMDB), you are running a Web application.

To see how several aspects of Java technology can work together on the Web, you create
Guestbook, a Web application that enables visitors to leave a message for the creator of a
site.

The Guestbook project is made up of three things:
* guestbook.jsp—A JavaServer Page that displays guest book entries from a text
file on a Web server and provides a form where a visitor can add an entry

* guestbookpost.jsp—A JavaServer Page that saves a new guest book entry to the
text file

* Guestbook.java—A class used to filter out some characters before they are saved
in the guest book

The JavaServer Pages in this project make heavy use of scriptlets and expressions.
Listing 21.9 contains the source code for guestbook. jsp.

LisTING 21.9 The Full Text of guestbook. jsp

<%@ page import="java.util.*,java.io.*" %>
<html>

<head>

<title>Visitors Who Signed our Guestbook</title>
</head>

<body>

<h3>Visitors Who Signed our Guestbook</h3>

<%

String id = request.getParameter("id");

©o0o~NOO D WN =

1612 Day 21

LisTING 21.9 continued

10: boolean noSignatures = true;

11: try {

12: String filename = application.getRealPath(id + ".gbf");

13: FileReader file = new FileReader(filename);

14: BufferedReader buff = new BufferedReader(file);

15: boolean eof = false;

16: while (!eof) {

17: String entry = buff.readlLine();

18: if (entry == null)

19: eof = true;

20: else {

21: StringTokenizer entryData = new StringTokenizer(entry, "~");
22: String name = (String) entryData.nextElement();

23: String email = (String) entryData.nextElement();
24: String url = (String) entryData.nextElement();

25: String entryDate = (String) entryData.nextElement();
26: String ip = (String) entryData.nextElement();

27: String comments = (String) entryData.nextElement();
28: out.print("<p>From: " + name);

29: if (!email.equals("None"))

30: out.println(" <" + email + ">
");

31: else

32: out.println("
");

33: if (!url.equals("None"))

34: out.println("Home Page: " +
35: url + "
");

36: out.println("Date: " + entryDate + "
");

37: out.println("IP: " + ip);

38: out.println("<blockquote>");

39: out.println("<p>" + comments);

40: out.println("</blockquote>");

41: noSignatures = false;

42: }

43: }

44: buff.close();

45: } catch (IOException e) {

46: out.println("<p>This guestbook could not be read because of an error.");
47: log("Guestbook Error: " + e.toString());

48: }

49: if (noSignatures)

50: out.println("<p>No one has signed our guestbook yet.");

51: %>

52: <h3>Sign Our Guestbook</h3>

53: <form method="POST" action="guestbookpost.jsp">

54: <table border="0" cellpadding="5" cellspacing="0" width="100%">
55: <tr>

56: <td width="15%" valign="top" align="right">Your Name:</td>

57: <td width="50%"><input type="text" name="name" size="40"></td>

Writing Java Servlets and JavaServer Pages 613 |

LisTING 21.9 continued

58: </tr>

59: <tr>

60: <td width="15%" valign="top" align="right">Your E-mail Address:</td>
61: <td width="50%"><input type="text" name="email" size="40"></td>
62: </tr>

63: <tr>

64: <td width="15%" valign="top" align="right">Your Home Page:</td>
65: <td width="50%"><input type="text" name="url" size="40"></td>
66: </tr>

67: <tr>

68: <td width="15%" valign="top" align="right">Your Comments:</td>
69: <td width="50%">

70: <textarea rows="6" name="comments" cols="40"></textarea>

71: </td>

72: </tr>

73: </table>

74: <p align="center"><input type="submit" value="Submit" name="B1">
75: <input type="reset" value="Reset" name="Reset"></p>

76: <input type="hidden" name="id" value="<%= id %>">

77: </form>

78: </body>

79: </html>

After you save this page, store it in any folder on your server where JavaServer Pages
can be stored. You can test this even before anything else in the project is done, as long
as you have an empty guest book file.

To create this file, save an empty text file on your system and give it the name
cinema.gbf. Store it on the Web in the webapps folder relative to where the guest book
page has been stored. For instance, if the page is in webapps\examples\jsp\
guestbook. jsp, the text file should be saved in \webapps\examples.

When you load this JavaServer Page, you must include a parameter that specifies the ID
of the guest book to load, as in this URL:

http://www.java2idays.com:8080/examples/jsp/guestbook.jsp?id=cinema
The server name and folder depend on where you have published guestbook. jsp.

Figure 21.8 shows what your guest book looks like when your JavaServer Page compiles
successfully and tries to display the contents of the cinema.gbf file.

1614 Day 21
FIGURE 21.8 ¥ Visitors Who Signed our Guestbook - Mozilla
. . File Edit View Go Bookmarks Tools Window Help
Testing the T
guestbook. jsp page. Visitors Who Signed our Guestbook
From: John Smith
Home Page: hitp//

Date: Wed Dec 03 14:34:07 EST 2003
IP: 68.19.237.68

Your Web site is great.

Sign Our Guestbook

Your Name: ‘ ‘

Your E-mail ‘ ‘
Address:

TEa ol \ =

The guest book file stores each guest book entry on its own line, with a caret (“”) sepa-
rating each field in the entry. Visitors can provide their name, email address, home page
address, and a comment. Two other things are saved for each entry: the date and time it

was written and the IP address of the visitor.

The following text is an example of a guest book file that contains two entries:

John Smith~jsmith@example.com”http://www.example.com/~jsmith"Wed Dec 03
=14:34:07 EST 2003°68.19.237.68"Your Web site is great.

D. James“deejay@example.com”http://www.imdb.com"Wed Dec 03 14:36:38 EST
=2003768.19.237.68"Thanks for the information.

The next JavaServer Page to create is guestbookpost. jsp, the page that updates the
guest book with new entries submitted by visitors. Listing 21.10 contains the source code
for this JavaServer Page.

LisTING 21.10 The Full Text of guestbookpost.jsp

<%@ page import="java.util.*,java.io.*,example.*" %>

<html>

<head>

<title>Thank You For Signing Our Guestbook</title>

</head>

<body>

<h3>Thank You For Signing Our Guestbook</h3>

<%

9: String id = request.getParameter("id");

10: String[] entryFields = { "name", "email", "url", "comments" };
11: String[] entry = new String[4];

12: for (int i = 0; i < entryFields.length; i++) {

13: entry[i] = Guestbook.filterString(request.getParameter(entryFields[i]));
14: }

00 ~NO OB WN =

Writing Java Servlets and JavaServer Pages 615 |

LisTING 21.10 continued

15: Date now = new Date();

16: String entryDate = now.toString();

17: String ip = request.getRemoteAddr();

18: %>

19:

20: <p>Your entry looks like this:

21: <p>From: <%= entry[0] %>

22: <%= (lentry[1].equals("None") ? "<"+entry[1]+">" : "") %>

23: <% if (!entry[2].equals("None")) { %>

24: Home Page: <a href="<%= entry[2] %>"><%= entry[2] %>

25: <% } %>

26: Date: <%= entryDate %>

27: IP: <%= ip %>

28: <blockquote>

29: <p><%= entry[3] %>

30: </blockquote>

31:

32: <%

33: try {

34: boolean append = true;

35: String filename = application.getRealPath(id + ".gbf");
36: FileWriter fw = new FileWriter(filename, append);

37: BufferedWriter fileOut = new BufferedWriter(fw);

38: String newEntry = entry[0Q] + """ + entry[1] + """ + entry[2] + """
39: + entryDate + """ + ip + """ + entry[3];

40: fileOut.write(newEntry, 0, newEntry.length());

41: fileOut.newLine();

42: fileOut.close();

43: } catch (IOException e) {

44: out.println("<p>This guestbook could not be updated.");
45: log("Guestbook Error: " + e.toString());

46: }

47: %>

48:

49: <p><a href="guestbook.jsp?id=<%= id %>">View the Guestbook
50: </body>

51:

52: </html>51: </html>

The guestbookpost. jsp JavaServer Page collects data from a Web form, removes char-
acters from the data that can’t be put in the guest book, and stores the result in a text file.

Each guest book has its own file with a name that begins with the ID parameter of the
book and ends with the .gbf file extension. If the guest book has the ID of cinema, the
filename is cinema.gbf.

|616

Day 21

Like the other JavaServer Page included in this Web application, guestbookpost.jsp can
be stored in any folder on your server where JavaServer Pages are kept. For this project,
store the page in the same folder as guestbook. jsp and cinema.gbf.

Before you can try the Guestbook application, you must create a Java class that is used to
filter some unwanted text from guest book entries before they are posted.

Three characters cannot be included in the guest book because of the way entries are
stored in a file:

e Caret characters (“/”)

e Return characters, which have the integer value of 13 in Java

* Linefeed characters, which have the integer value of 10
To remove these characters before they are saved in a guest book, a helper class called

Guestbook is created. This class has a static method called filterString(String) that
removes those three characters from a string.

Listing 21.11 contains the source code for this class.

LisTING 21.11 The Full Text of Guestbook. java

1: package example;

2:

3: public class Guestbook {

4 public static String filterString(String input) {
5: input = replaceText(input, '*', ' ');

6: input = replaceText(input, (char)13, ' ');

7 input = replaceText(input, (char)10, ' ');

8: return input;

9: }

10:

11: private static String replaceText(String inString, char oldChar,
12: char newChar) {

13:

14: while (inString.indexOf(oldChar) != -1) {

15: int oldPosition = inString.indexOf (oldChar);
16: StringBuffer data = new StringBuffer(inString);
17: data.setCharAt(oldPosition, newChar);

18: inString = data.toString();

19: }

20: return inString;

21: }

22: }

Writing Java Servlets and JavaServer Pages 617 |

The replaceText () method in lines 11-21 of Listing 21.11 does most of the work in the
class. It takes three arguments:

* A string that might contain unwanted characters
* A character that should be removed

* A character that should be added in its place

When you compile the Guestbook class, it should be stored in a WEB-INF\classes\
guestbook subfolder in the same part of the webapps hierarchy as the project’s
JavaServer Pages. For example, if the pages are in webapps\examples\jsp, the class file
should be saved in webapps\examples\WEB-INF\classes\guestbook.

To test the guestbookpost . jsp server page, open the page that displays guest book
entries using an ID parameter of cinema again, as in this example:

http://www.java2idays.com:8080/java/guestbook.jsp?id=cinema

Add a few guest book entries to see how they are displayed in the guest book.

JSP Standard Tag Library

For Java programmers eager to apply their skills on the World Wide Web, the develop-
ment of the language for server-side programming has been one of those “walk before
you can crawl” situations.

When servlets were introduced in 1997, they made it possible to use Java to create pro-
grams similar to Common Gateway Interface scripts that collect input from Web forms
and URL parameters, producing HTML output in response. This works great for writing
programs to process mail and handle other simple tasks, but because larger Web applica-
tions require multiple pages, it becomes clear that producing HTML output using Java
statements can be cumbersome. Revisions become more difficult, especially for any non-
programmers involved in the work.

Two years later, Sun took another step in the right direction with JavaServer Pages (JSP),
which make it easy to combine static HTML output with dynamic output created by Java
statements. Using JSP, Java code can be placed on Web pages among HTML markup and
edited like any other page. Programmers also can create their own custom JSP markup
tags to interact with Java objects. The pages compile into servlets automatically.

Unfortunately, the ease with which Java code could be placed on a JavaServer Page
proved to be a misstep, because it encourages the bad habit of placing a lot of mission-
critical application code in a place where it’s difficult to maintain, insecure, and easily

|618

Day 21

bungled by anyone editing the HTML around the code. For example, statements to cre-
ate, open, and query a database connection, complete with usernames and passwords to
gain access to the data, can be put on a JavaServer Page.

A giant step has been taken with the release of the JSP Standard Tag Library (JSTL), a
set of custom JSP tags and a new data-access language that enable JSP-based Web appli-
cations to handle presentation without ever resorting to Java code.

Tag libraries, which also are called raglibs, consist of tags placed on a JavaServer Page in
a format similar to HTML tags. JSTL’s tag library offers functionality common to most
Web applications. There are tags for loops and conditionals, tags to read XML docu-
ments and database results using SQL, tags for accessing JavaBeans, and support for
other tag libraries.

JSTL 1.1, which requires a Java servlet container supporting Java Servlet 2.4 and
JavaServer Pages 2.0, can be found at the home page http://java.sun.com/products/
jsp/jstl.

The project will eventually be supported natively by servlet containers. For now, it can be
implemented in minutes: Copy the Java archive files jstl.jar and standard.jar to the
WEB-INF/1lib folder of a Web application.

NOTE The Java 2 Enterprise Edition (J2EE) also includes support for JSTL 1.1, but

it's packaged a bit differently. Look for the file appserv-jstl.jar in the 1ib
subfolder of your J2EE installation. It includes all the files offered elsewhere
as jstl.jar and standard.jar.

A reference implementation of JSTL created by the Apache Jakarta open source Java
project can be downloaded from http://jakarta.apache.org/taglibs/doc/
standard-doc/intro.html. To differentiate it from other tag libraries, Jakarta calls
JSTL the “standard” library.

JSTL consists of two complementary components:

* A set of five custom JSP tag libraries that provide the core functionality required in
Web applications

* The JSTL Expression Language, which makes it possible to access data at runtime
without using JSP expressions or Java statements

There’s also a separate version of each JSTL library that works with Java expressions
using existing JSP syntax.

Writing Java Servlets and JavaServer Pages 619 |

Listing 21.12 contains a demonstration of JSTL and the Expression Language:
hello. jsp, a JavaServer Page that uses a parameter called name as part of a greeting.

LisTING 21.12 The Full Text of hello.jsp

<html>
<head>

<title>Hello Example</title>
</head>

<body>
<%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

0N O~ WD =

9: <c:choose>

10: <c:when test='${!empty param.name}'>

11: <h2>Hello, <c:out value='${param.name}'/></h2>
12: </c:when>

13: <c:otherwise>

14: <h2>Hello, stranger</h2>

15: </c:otherwise>

16: </c:choose>

18: </body>
19: </html>

The hello. jsp page looks for a parameter called name specified in the address (URL) of
the page. For example, the URL http://example.com/hello.jsp?name=Sailor gives
name the value Sailor and causes the page to display the response “Hello, Sailor.” When
the name parameter is omitted, “Hello, Stranger” displays instead.

The first JSP code in the page is the following directive:
<%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>

Like other tag libraries, each JSTL library must be made available using a directive on
the page before any of its tags can be employed. The preceding directive makes the core
library available on the page. All tags from this library are prefaced with the text “c:” fol-
lowed by the tag’s name, as in this example:

<c:out value='${param.name}'/>

JSTL tags are called actions, in recognition of the fact that they generate dynamic Web
content. Like XML elements, actions can stand alone (<tagname />) or be paired
(<tagname>...</tagname>).

| 620

Day 21

The c:out action displays the contents of the local or instance variable indicated by its
value attribute.

The variable is specified using JSTL’s Expression Language, a simple data-access syntax
that borrows from ECMAScript (JavaScript) and XPath. Statements that use the language
are contained within “${* and “}” characters.

In the preceding example, the variable param is one of several standard Expression
Language variables that contain information about the page, Web application, and servlet
container. The param variable is a collection that holds all the page parameters, each rep-
resented as a string.

The rest of the page contains three core actions used to create a conditional block:

<c:choose>
<c:when test='${!empty param.name}'>
<h2>Hello, <c:out value='${param.name}'/></h2>
</c:when>
<c:otherwise>
<h2>Hello, stranger</h2>
</c:otherwise>
</c:choose>

The c:choose-c:when-c:otherwise block mirrors the functionality of a switch-case-
default Java statement, displaying enclosed HTML output only for the first c:when
action that has a test attribute with the value true. If none of the actions is true, the
c:otherwise contents are displayed.

JSTL is composed of five tag libraries:

e The core library (prefix c, default URI http://java.sun.com/jstl/core) contains
general features: output, conditional display of content, looping, variable creation
in several scopes, JavaBeans access, exception handling, URL imports, and URL
redirection.

e The SQL library (prefix sql, default URI http://java.sun.com/jstl/sql) covers
database access: data source selection, queries, updates, transactions, and looping
through results.

e The internationalization and formatting library (prefix fmt, default URI
http://java.sun.com/jstl/fmt) offers these actions: locale and resource bundle
use, text localization, and number and date formatting.

e The XML processing library (prefix x, default URI http://java.sun.com/
jstl/xml) supports XML: parsing, XPath access, XSLT transformation, looping
through nodes, and conditional processing.

Writing Java Servlets and JavaServer Pages

621 |

* The function library (prefix fn, default URI http://java.sun.com/jstl/func-
tions) contains useful functions to manipulate strings and collections.

The Expression Language has operators to retrieve information from instance variables
(${object.varName}), data structures (${object["name"]}), and indexed arrays or lists
(${object[1]}).

There also are operators for arithmetic (+, -, *, /, %), comparisons (==, !=, <, <=, >, >=),
logic (&&, ||, !), and empty, which detects null objects and empty strings or collections.
Parentheses can be used to group subexpressions.

The language offers automatic type conversion and five kinds of literals: strings, which
are enclosed within single or double quotes; integers, floating-point numbers, boolean
values (true or false), and null.

Nine special variables are available in any expression:
* cookie—A collection of all request cookies, each as an instance of the Cookie
class from the javax.servlet.http package
* header—A collection of all request headers, each as a string
* headerValues—A collection of all request headers, each as a string array

e initParam—A collection of all application initialization parameters, each as a
string

* pageContext—An instance of jspPageContext from the javax.servlet package
* param—A collection of all request parameters, each as a string
* paramValues—A collection of all request parameters, each as a string array

When using one of these collections or other data structures, the c:foreach action makes

it easy to loop through each element. The following example displays all the header vari-
ables sent with a JSP page:

<c:forEach items='${header}' var='head'>

Name: <c:out value='${head.key}'/></1i>
Value: <c:out value='${head.value}'/></1li>

</c:forEach>

Four variables can be used to make explicit references to variable scope:

* applicationScope—A collection of all application scope objects
* pageScope—A collection of all page scope objects

* requestScope—A collection of all request scope objects

| 622

Day 21

* sessionScope—A collection of all session scope objects

For example, the expression ${sessionScope.price} retrieves an object named price in
session scope. If no other scope has an object named price, the expression ${price}
also works.

The day’s final project shows some of the power and flexibility of JSTL. This page uses
XML actions to present data from an RSS newsfeed, an XML format for offering Web
content in machine-readable form.

JSTL can import and parse XML, HTML, or any other data available at a URL, even if it
isn’t on the same server as the Java Server Page using it.

RSS, which stands for Really Simple Syndication, enables Web sites to share headlines,
links, and other content with each other (and with readers using software called an RSS
aggregator). Listing 21.13 contains an example: a simplified version of the RSS feed for
the SportsFilter Web site.

LisTING 21.13 The Full Text of sportsfilter.rss

1: <rss version="0.91">

2 <channel>

3 <title>SportsFilter</title>

4: <link>http://www.sportsfilter.com/</1link>

5: <item>

6 <title>Babe Ruth used steriods?</</title>

7 <link>http://sports.espn.go.com/mlb/news/story?id=1745899</1link>
8 <description>Houston Astros second baseman Jeff Kent said the
9: steroids controversy is an embarrassment to baseball and that the
10: public needs to rethink whether sports heroes of yore abstained
11: from illegal performance-enhancing drugs.</description>

12: </item>

13: <item>

14: <title>Phoenix sports fans shells out the bucks</title>
15: <link>http://washpost.com/wp-dyn/articles/A10394-2004Feb26.html</link>
16: <description>Phoenix-area taxpayers have invested $700 million

17: in new stadiums for their pro baseball, basketball, football, and
18: hockey franchises, a world record for governmental sports support,
19: as described in today's Washington Post.</description>

20: </item>

21: <item>

22: <title>Just buy it</title>

23: <link>http://www.nike.com/nikebiz/news/pressrelease.jhtml</link>
24: <description>Marion Jones competing in floor gymnastics, Randy

25: Johnson bowling, Lance Armstrong in the boxing ring, Andre Agassi
26: fielding 2B for the Red Sox. Nike rolls out their spring campaign
27: asking in some rather creatively edited commercial spots starting
28: tonight.</description>

Writing Java Servlets and JavaServer Pages 623 |

LisTING 21.13 continued

29: </item>
30: </channel>
31: </rss>

SportsFilter, a weblog at http://www.sportsfilter.com, shares the latest news in an
RSS feed. The XML data from the feed can be read into a variable using the c: import
action from the core library and parsed with the x:parse action from the XML library.

The parsed data can be examined, filtered, transformed, and displayed. Listing 21.14
contains a JavaServer Page application that uses simple XPath statements to extract and
display parts of the XML data.

LisTING 21.14 The Full Text of rss.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<!-- Declare the two tag libraries used on this page -->
<%@ taglib uri='http://java.sun.com/jstl/core' prefix='c' %>
<%@ taglib uri='http://java.sun.com/jstl/xml' prefix='x"' %>

0N OB~ WN =

<!-- Import the RSS feed at the URL specified by feed -->
9: <!-- For example -->

10: <!-- http://sportsfilter.com/rss.cfm -->

11: <c:import url='${param.feed}' var='feedData'/>

13: <!-- Parse the RSS feed -->
14: <x:parse xml='${feedData}' var='feed'/>

16: <!-- Retrieve the channel element -->
17: <x:set select='$feed//rss//channel' var='channel'/>

19: <!-- Display the channel element's title -->
20: <title><x:out select='$channel//title'/></title>
21: </head>

23: <body>
25: <!-- Display the channel element's link and title -->

26: <p>Headlines from <a href="<x:out select='$channel//link'/>">
27: <x:out select='$channel//title'/>

28:
29: <!-- Loop through the item elements -->
30: <p>

31: <x:forEach select='$feed//rss//channel//item'>

624 Day 21

LisTING 21.14 continued

32: <!-- Display each element's link, title, description -->

33: <!-- Descriptions may contain HTML. -->

34: <a href="<x:out select='link'/>"><x:out select='title'/>:
35: <x:out select='description' escapeXml='false'/></1i>

36:

37: </x:forEach>

38:

39:

40: </body>

41: </html>

Comments on the page describe the JSTL actions that it contains.

The most challenging part of JSTL is the Expression Language, which can be avoided by
using versions of the tag libraries that use JSP syntax for Java statements and expres-
sions.

JSTL’s Expression Language is distinguished from the other JSP syntax by the limits on
what it can do. There are no assignment operators or conditional logic, which forces
developers to use external Java classes and JSTL actions for these tasks.

Although some Java programmers may blanch at the thought of learning another lan-
guage simply for Web applications, the Expression Language is simple enough to be
picked up quickly, especially by those comfortable with JavaScript.

By keeping Java code out of JavaServer Pages, the Expression Language offers reusabil-
ity and reliability. In conjunction with JSTL, it brings JSP much closer to the promise of
separating the presentation of a Web application from the code required to make it
happen.

JSTL serves as a nice complementary offering to Struts, an open-source Web application
framework that’s also the work of the Apache Jakarta project.

CAUTION Programmers who have embraced the model-view-controller philosophy
embodied by Struts may question JSTL's inclusion of database actions that
don’t belong in an application’s presentation layer.

For anything but trivial Web applications, programmers should consider
putting database access behavior in classes accessed from JSP rather than
using JSTL's SQL actions.

Writing Java Servlets and JavaServer Pages 625 |

Summary

At this point, you now have three different ways to use the Java language on the World
Wide Web: applets, servlets, and JavaServer Pages.

The main purpose of the classes in the javax.servlet and javax.servlet.http pack-
ages is to exchange information with a Web server. Java servlets are an alternative to the
Common Gateway Interface, the most popular way that programming languages are used
to retrieve and present data on the Web.

Because servlets can use all features of the Java language with the exception of a graphi-
cal user interface, you can use them to create sophisticated Web applications.

JavaServer Pages are an effective way to separate static content on Web pages from the
dynamic content generated by servlets for those pages. By using expressions, statements,
and declarations, you can write Java programs on server pages without ever needing to
compile a program, lay it out on a Web page, design an interface, or publish class files.

The Java Standard Tag Library (JSTL) and its Expression Language take the separation
of content and code a step further, offering a way for Web applications to use Java within
the same tag-based context used in HTML and XML.

For the last three weeks, you’ve had a chance to work with the syntax and the core
classes that make up the Java language and the Java 2 class library. You’ve ventured out
into some of the excellent class libraries offered by other companies and developers such
as XOM, the XML Object Model library, and JSTL.

You are now ready to tackle the biggest challenge yet: Turning an empty source code file
into a robust and reliable program implemented as a set of Java classes.

This book has an official Web site at http://www.java2idays.com with answers to fre-
quently asked questions, source code for the entire book, error corrections, and supple-
mentary material. There’s also a weblog, Workbench, for people who are teaching
themselves Java 365 days a year.

Happy compiling!

Q&A

Q Is there a way to make a Java applet communicate with a servlet?

A If you want the applet to continue running after it contacts the servlet, the servlet
must be on the same machine as the Web page that contains the applet. For security
reasons, applets cannot make a network connection to any machine other than the
one that hosts the applet.

| 626

Day 21

Quiz

If you want an applet to load a servlet in the Web browser, you can call the applet’s
getAppletContext () method to get an AppletContext object, and then call that
object’s showDocument (URL) method with the servlet’s URL as the argument.

Why do servlets and JavaServer Pages require the getRealPath() method to
determine where a file is located on the Web server? Can’t you store the file in
the same folder as a servlet and use the filename without referring to a path?

Tomcat doesn’t support relative filenames inside servlets or JavaServer Pages. You
must know the exact location of a file on the Web server to read or write data in the
file. Because this information isn’t always available to you in a live Web-hosting
environment, the ServletContext interface includes the getRealPath() method.
This method asks the Web server for the full pathname of a file. One of the biggest
advantages of using Tomcat rather than Common Gateway Interface scripts is that
you can communicate directly with the server.

In the counter. jsp example earlier today, the counter.dat file was created in the
same folder where counter. jsp is stored. Tomcat doesn’t store files in the same
folder as servlets.

Review today’s material by taking this three-question quiz.

Questions

1.

If a servlet is run at the same time by five Web users, how many times is the
servlet’s init () method called?

a. 5

b. 1

c. 0-1
If you see a request variable on a JavaServer Page, what class in
javax.servlets.http is it referring to?

a. HttpServletResponse

b. HttpServletRequest

c. ServletContext

. Which of the JavaServer Pages elements uses the <%= and %> tags?

a. Declarations
b. Expressions

c. Statements

Writing Java Servlets and JavaServer Pages 627 |

Answers

1. c. The init() method is called when the Web server first loads the servlet. This
may have taken place before all five of these users requested the servlet, so it could
call init() one time or not at all.

2. b. HttpServletRequest

3. b. The expression inside the tags will be evaluated and its value will be displayed
on the page at the expression’s location.

Certification Practice

The following question is the kind of thing you could expect to be asked on a Java pro-
gramming certification test. Answer it without looking at today’s material or using the
Java compiler to test the code.

Given:

public class CharCase {
public static void main(String[] arguments) {
float x = 9;
float y = 5;
char ¢ = '1';
switch (c) {
case 1:
X =X + 25
case 2:
X =X + 3;
default:
X =X+ 1;

}

System.out.println("Value of x: " + X);

}

What will be the value of x when it is displayed?
a. 9.0
b. 10.0
c. 11.0

d. The program will not compile.

The answer is available on the book’s Web site at http://www. java2idays.com. Visit the
Day 21 page and click the Certification Practice link.

| 628

Day 21

Exercises

To extend your knowledge of the subjects covered today, try the following exercises:

1. Create a servlet that stores the data entered in a form in a file.
2. Write a JavaServer Page that displays one greeting for Internet Explorer users and
another greeting for everyone else.

Where applicable, exercise solutions are offered on the book’s Web site at
http://www.java2idays.com.

