297_Zero_Day_App.gxd 6/21/04 3:48 PM Page 305$

Appendix

The Laws of
Security

By Ryan Russell

This book contains a fictional account of a zero day
exploit, demonstrating criminal hacking techniques that are

fictional, the dangers are obviously real. As such, we’ve
included this appendix, which discusses how to rq‘ltlgin y
ota

attacks, such as the one descrlbed this bo_
reference, these security laws ide you
with a i owledge to prevent ctﬂﬁnal

icking 1your network and expfe%g your

vulnerabilities. .

305

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 306$

306

Appendix ¢ The Laws of Security

Introduction

One of the shortcuts that security researchers use in discovering vulnera-
bilities is a mental list of observable behaviors that tells them something
about the security of the system they are examining. If they can observe a
particular behavior, it is a good indication that the system has a trait that
they would consider to be insecure, even before they have a chance to per-
form detailed tests.

We call our list the Laws of Security. These laws are guidelines that you
can use to keep an eye out for security problems while reviewing or
designing a system. The system in this case might be a single software pro-
gram, or it could be an entire network of computers, including firewalls,
filtering gateways, and virus scanners. Whether defending or attacking such
a system, it 1s important to understand where the weak points are.

The Laws of Security will identify the weak points and allow you to
focus your research on the most easily attackable areas. This Appendix con-
cerns itself with familiarizing you with these laws.

Knowing the Laws of Security

The laws of security in our list include:

m Client-side security doesn’t work.

®m You cannot securely exchange encryption keys without a shared
piece of information.

m Malicious code cannot be 100 percent protected against.

® Any malicious code can be completely morphed to bypass signa-
ture detection.

m Firewalls cannot protect you 100 percent from attack.
®m Any intrusion detection system (IDS) can be evaded.
m Secret cryptographic algorithms are not secure.

m [f a key isn’t required, you do not have encryption—you have
encoding.

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 307$

The Laws of Security * Appendix

Passwords cannot be securely stored on the client unless there is
another password to protect them.

In order for a system to begin to be considered secure, it must
undergo an independent security audit.

Security through obscurity does not work.

There are a number of different ways to look at security laws. In this
Appendix, we’ve decided to focus on theory, or laws that are a bit closer to
a mathematical rule. (At least, as close as we can get to that type of rule.
Subjects as complex as these don’t lend themselves to formal proofs.)
There’s another way to build a list of laws: we could make a list of not
what is possible, but what is practical. Naturally, there would be some
overlap—if it’s not possible, it’s also not practical. Scott Culp, Microsoft’s
Security Response Center Manager, produced a top-ten list of laws from
the point of view of his job and his customers. He calls these “The Ten
Immutable Laws of Security.” They are:

Law #1: If a bad guy can persuade you to run his program on
your computer, it’s not your computer anymore.

Law #2:If a bad guy can alter the operating system on your com-
puter, it’s not your computer anymore.

Law #3: If a bad guy has unrestricted physical access to your com-
puter, it’s not your computer anymore.

Law #4: If you allow a bad guy to upload programs to your Web
site, it’s not your Web site any more.

Law #5: Weak passwords trump strong security.

Law #6: A machine is only as secure as the administrator is trust-
worthy.

Law #7: Encrypted data is only as secure as the decryption key.

Law #8: An out-of-date virus scanner is only marginally better
than no virus scanner at all.

Law #9: Absolute anonymity isn’t practical, in real life or on the
Web.

307

WWWw.syngress.com

o

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 308$

308 Appendix ¢ The Laws of Security

m Law #10: Technology is not a panacea.

The full list (with explanations for what each rule means) can be found
at www.microsoft.com/technet/columns/security/10imlaws.asp. This list is
presented to illustrate another way of looking at the topic, from a
defender’s point of view. For the most part, you will find that these laws
are the other side of the coin for the ones we will explore.

Before we can work with the laws to discover potential problems, we
need to have a working definition of what the laws are. In the following
sections, we’ll look at the laws and what they mean to us in our efforts to
secure our networks and systems.

Client-Side Security Doesn’t Work

In the first of our laws, we need to define a couple of concepts in regard
to security. What, exactly, are we talking about when we begin to discuss
“client-side?” If we were in a network (client-server) environment, we
would define the client as the machine initiating a request for service and
connection, and the server as the machine waiting for the request for ser-
vice or connection or the machine able to provide the service. The term
“client-side” in the network is used to refer to the computer that repre-
sents the client end, that over which the user (or the attacker) has control.
The difference in usage in our law is that we call it client-side even if no
network or server is involved. Thus, we refer to “client-side” security even
when we’re talking about just one computer with a piece of software on a
floppy disk. The main distinction in this definition is the idea that users (or
attackers) have control over their own computers and can do what they
like with them.

Now that we have defined what “client-side” is, what is “client-side
security?” Client-side security is some sort of security mechanism that is
being enforced solely on the client. This may be the case even when a server
is involved, as in a traditional client-server arrangement. Alternately, it may
be a piece of software running on your computer that tries to prevent you
from doing something in particular.

The basic problem with client-side security is that the person sitting physically
in _front of the client has absolute control over it. Scott Culp’s Law #3 illustrates

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 309$

The Laws of Security * Appendix 309

this in a more simplistic fashion: If a bad guy has unrestricted physical access to
your computet, it’s not your computer anymore. The subtleties of this may take
some contemplation to fully grasp.You cannot design a client-side security
mechanism that users cannot eventually defeat, should they choose to do
so. At best, you can make it challenging or difficult to defeat the mecha-
nism. The problem is that because most software and hardware is mass-pro-
duced, one dedicated person who figures it out can generally tell everyone
else in the world, and often will do so. Consider a software package that
tries to limit its use in some way. What tools does an attacker have at his or
her disposal? He or she can make use of debuggers, disassemblers, hex edi-
tors, operating system modification, and monitoring systems, not to men-
tion unlimited copies of the software.

What if the software detects that it has been modified? Remove the
portion that detects modification. What if the software hides information
somewhere on the computer? The monitoring mechanisms will ferret that
out immediately. Is there such a thing as tamper-proof hardware? No. If an
attacker can spend unlimited time and resources attacking your hardware
package, any tamper proofing will eventually give way. This 1s especially
true of mass-produced items. We can, therefore, generally say that client-
side security doesn’t work.

You Cannot Securely Exchange
Encryption Keys without a
Shared Piece of Information

Although this law may seem obvious if you have worked with encryption,
it presents a unique challenge in the protection of our identities, data, and
information exchange procedures. There is a basic problem with trying to
set up encrypted communications: exchanging session keys securely. These
keys are exchanged between the client and server machines prior to the
exchange of data, and are essential to the process

To illustrate this, let’s look at setting up an encrypted connection across
the Internet. Your computer is running the nifty new CryptoX product,
and so is the computer you’re supposed to connect to.You have the IP

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 310$

310

Appendix ¢ The Laws of Security

address of the other computer. You type it in and hit Connect. The soft-
ware informs you that it has connected, exchanged keys, and now you’re
communicating securely using 1024-bit encryption. Should you trust it?
Unless there has been some significant crypto infrastructure set up behind
it (and we’ll explain what that means later in this Appendix), you
shouldn’t. It’s not impossible, and not necessarily even difficult, to hijack IP
connections.

The problem here is how do you know what computer you exchanged
keys with? It might have been the computer you wanted. It might have
been an attacker who was waiting for you to make the attempt, and who
pretended to be the IP address you were trying to reach. The only way you
could tell for certain would be if both computers had a piece of informa-
tion that could be used to verify the identity of the other end. How do we
accomplish this? A couple of methods come to mind. First, we could use
the public keys available through certification authorities that are made
available by Web browser providers. Second, we could use Secure Sockets
Layer (SSL) authentication, or a shared secret key. All of these, of course,
are shared pieces of information required to verify the sender of the infor-
mation.

This boils down to a question of key management, and we’ll examine
some questions about the process. How do the keys get to where they are
needed? Does the key distribution path provide a path for an attacker
waiting to launch a man-in-the-middle (MITM) attack? How much
would that cost in terms of resources in relation to what the information is
worth? Is a trusted person helping with the key exchange? Can the trusted
person be attacked? What methods are used to exchange the keys, and are
they vulnerable?

Let’s look at a couple of ways that keys are distributed and exchanged.
When encryption keys are exchanged, some bit of information is required
to make sure they are being exchanged with the right party and not falling
victim to a MITM attack. Providing proof of this is difficult, since it’s tan-
tamount to proving the null hypothesis, meaning in this case that we’d
probably have to show every possible key exchange protocol that could
ever be invented, and then prove that they are all individually vulnerable to
MITM attacks.

WWww.syngress.com

o

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 311$

The Laws of Security * Appendix 311

As with many attacks, it may be most effective to rely on the fact that
people don’t typically follow good security advice, or the fact that the
encryption end points are usually weaker than the encryption itself.

Let’s look at a bit of documentation on how to exchange public keys
to give us a view of one way that the key exchanges are handled:
www.cisco.com/univercd/cc/td/doc/product/software/10s113ed/113ed_cr
/secur_c/scprt4/scencryp.htm#xtocid211509.

This is a document from Cisco Systems, Inc. that describes, among
other things, how to exchange Digital Signature Standard (DSS) keys. DSS
is a public/private key standard that Cisco uses for peer router authentica-
tion. Public/private key crypto is usually considered too slow for real-time
encryption, so it’s used to exchange symmetric session keys (such as DES
or 3DES keys). DES is the Data Encryption Standard, the U.S. government
standard encryption algorithm, adopted in the 1970s. 3DES is a stronger
version of it that links together three separate DES operations, for double
or triple strength, depending on how it’s done. In order for all of this to
work, each router has to have the right public key for the other router. If a
MITM attack is taking place and the attacker is able to fool each router
into accepting one of his public keys instead, then he knows all the session
keys and can monitor any of the traffic.

Cisco recognizes this need, and goes so far as to say that you “must ver-
bally verity” the public keys. Their document outlines a scenario in which
there are two router administrators, each with a secure link to the router
(perhaps a terminal physically attached to the console), who are on the
phone with each other. During the process of key exchange, they are to
read the key they’ve received to the other admin. The security in this sce-
nario comes from the assumptions that the two administrators recognize
each other’s voices, and that it’s very difficult to fake someone else’s voice.

If the administrators know each other well, and each can ask questions
the other can answer, and theyre both logged on to the consoles of the
router, and no one has compromised the routers, then this is secure, unless
there is a flaw in the crypto.

We’re not going to attempt to teach you how to mimic someone else’s
voice, nor are we going to cover taking over phone company switches to
reroute calls for administrators who don’t know each other. Rather, we’ll

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 312$

312 Appendix ¢ The Laws of Security

attack the assumption that there are two administrators and that a secure
configuration mechanism is used.

One would suspect that, contrary to Cisco’s documentation, most
Cisco router key exchanges are done by one administrator using two
Telnet windows. If this is the case and the attacker is able to play man-in-
the-middle and hijack the Telnet windows and key exchange, then he can
subvert the encrypted
communications.

Finally, let’s cover the endpoints. Security is no stronger than the
weakest links. If the routers in our example can be broken into and the
private keys recovered, then none of the MITM attacking is necessary. At
present, it appears that Cisco does a decent job of protecting the private
keys; they cannot be viewed normally by even legitimate administrators.
They are, however, stored in memory. Someone who wanted to physically
disassemble the router and use a circuit probe of some sort could easily
recover the private key. Also, while there hasn’t been any public research
into buffer overflows and the like in Cisco’s IOS, I'm sure there will be
someday. A couple of past attacks have certainly indicated that such buffer
overflows exist.

Another way to handle the exchange 1s through the use of SSL and
your browser. In the normal exchange of information, if you weren’t asked
for any information, then the crypto must be broken. How, then, does SSL
work? When you go to a “secure” Web page, you don’t have to provide
anything. Does that mean SSL is a scam? No—a piece of information has
indeed been shared: the root certificate authority’s public key. Whenever
you download browser software, it comes with several certificates already
embedded in the installer. These certificates constitute the bit of informa-
tion required to makes things “secure.” Yes, there was an opportunity for a
MITM attack when you downloaded the file. If someone were to muck
with the file while it was on the server you downloaded it from or while
it was in transit to your computer, all your SSL traftic could theoretically
be compromised.

SSL is particularly interesting, as it’s one of the best implementations of
mass-market crypto as far as handling keys and such. Of course, it is not

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 313$

The Laws of Security * Appendix 313

without its problems. If you’re interested in the technical details of how
SSL works, check here: www.rsasecurity.com/standards/ssl/index.html.

Malicious Code Cannot Be
100 Percent Protected against

During the last couple of years, we have seen more and more attacks using
weaknesses in operating systems and application code to gain entrance to
our systems. Recently, we’ve seen a number of programs that were quickly
modified and redeployed on the Internet and have resulted in widespread
disruption of service and loss of data. Why is this? It is because we can’t
protect 100 percent against malicious code when it changes as rapidly as it
does now. We'll take a look at some examples of this in the following sec-
tion and discuss the anti-virus protection process as an example.

If, like most people, you run a Windows-based operating system (and
perhaps even if you have something else), you run anti-virus software.
Perhaps you're even diligent about keeping your virus definitions up to
date. Are you completely protected against viruses? Of course not.

Let’s examine what viruses and Trojans are, and how they find their
way onto your computer. Viruses and Trojans are simply programs, each of
which has a particular characteristic. Viruses replicate and require other
programs to attach themselves to. Trojans pretend to have a difterent func-
tion than the one they actually have. Basically, they are programs that the
programmer designed to do something you generally would not want to
have happen if you were aware of their function. These programs usually
get onto your computer through some sort of trickery. They pretend to be
something else, they’re attached to a program you wanted, or they arrive
on media you inserted without knowing it was infected. They can also be
placed by a remote attacker who has already compromised your security.

How does anti-virus software work? Before program execution can
take place, the anti-virus software will scan the program or media for “bad
things,” which usually consist of viruses, Trojans, and even a few potential
hacker tools. Keep in mind, though, that your anti-virus software vendor is
the sole determiner of what to check for, unless you take the time to
develop your own signature files. Signature files are the meat of most anti-

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 314$

314 Appendix ¢ The Laws of Security

virus programs. They usually consist of pieces of code or binary data that
are (you hope) unique to a particular virus or Trojan. Therefore, if you get
a virus that does not appear in the database, your anti-virus software
cannot help you.

So why is the process so slow? In order to produce a signature file, an
anti-virus vendor has to get a copy of the virus or Trojan, analyze it, pro-
duce a signature, update the signature file (and sometimes the anti-virus
program too) and publish the update. Finally, the end user has to retrieve
and apply the update. As you might imagine, there can be some significant
delays in getting new virus information to end users, and until they get it
they are vulnerable.

You cannot blindly run any program or download any attachment
simply because you run anti-virus software. Not so long ago, anti-virus
software could usually be relied upon, because viruses propagated so
slowly, relying on people to move them about via diskettes or shared pro-
grams. Now, since so many computers connect to the Internet, that con-
nectivity has become a very attractive carrier for viruses. They spread via
Web pages, e-mail and downloads. Chances are much greater now that you
will see a new virus before your anti-virus software vendor does. And don’t
forget that a custom virus or Trojan may be written specifically to target
you at any time. Under those circumstances, your anti-virus software will
never save you.

I'd like to tell my favorite “virus variant” story. In April 2000, we saw
the introduction of the “I Love You” virus via the Internet. This was
another of the virus worms running in conjunction with Microsoft’s
Outlook e-mail program, and had far greater impact because it sent itself
to all of the e-mail recipients in the address book rather than just the first
fifty, as did the earlier “Melissa” virus. However, despite the efforts of anti-
virus vendors and others to contain the virus, it spread rapidly and
spawned a number of copycat viruses in the short time after it was intro-
duced. Why couldn’t it be contained more quickly? In the case of a
number of my clients, it was because there were far too many employees
who couldn’t resist finding out who loved them so much! Containment is
not always the province of your security or implementations of protective
software.

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 315$

The Laws of Security * Appendix 315

Trojans and viruses actually could be protected against completely by
users modifying their behavior. They probably wouldn’t get much done
with a computer, though. They’d have to install only software obtained
directly from a trusted vendor (however one would go about determining
that. There have been several instances of commercial products shipping
with viruses on the media). They’d probably have to forgo the use of a
network and never exchange information with anyone else. And, of course,
the computer would have to be physically secure.

Any Malicious Code Can Be Completely
Morphed to Bypass Signature Detection

This law 1s fairly new to our discussions of security, and it has become
much more prevalent over the past year. It is a new truth, since the
attackers now have the ability to change the existing virus/Trojan/remote
control application nearly as soon as it is released in the wild. This leads to
the discussion of the new problem—variants. If we continue the discussion
with the anti-virus example, we’ll find that if there is even a slight change
in the virus code, there’s a chance that the anti-virus software won’t be
able to spot it any longer. These problems used to be much less trouble-
some. Sure, someone had to get infected first, and their systems were
down, but chances were good it wouldn’t be you. By the time it made its
way around to you, your anti-virus vendor had a copy to play with, and
you’d updated your files.

This is no longer the case. The most recent set of viruses propagates
much, much more quickly. Many of them use e-mail to ship themselves
between users. Some even pretend to be you, and use a crude form of
social engineering to trick your friends into running them. This year, we
have seen the evidence of this over and over as the various versions of the
Code Red virus were propagated throughout the world. As you recall, the
original version was time and date functional, with a programmed attack at
a U.S. government agency’s Web site. It was modified successfully by a
number of different individuals, and led to a proliferation of attacks that

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 316$

316 Appendix ¢ The Laws of Security

took some time to overcome. Why was this so successful? The possibilities
for change are endless, and the methods numerous. For instance, you can
modify the original code to create a new code signature, compress the file,
encrypt the file, protect it with a password, or otherwise modity it to help
escape detection. This allows you to move past the virus scanners, firewalls,
and IDS systems, because it is a new signature that is not yet recognized as
a threat.

Tools & Traps...

Want to Check that Firewall?

There are an incredible number of freeware tools available to you for
beginning your checks of vulnerability. Basic tools, of course, include
the basic Transmission Control Protocol/Internet Protocol (TCP/IP)
tools included with the protocol: ping, tracert, pathping, Telnet, and
nslookup can all give you a quick look at vulnerabilities. Along with
these, | have a couple of favorites that allow for quick probes and
checks of information about various IP addresses:

m SuperScan, from Foundstone Corporation: www.found-
stone.com/knowledge/free_tools.html (click on SCANNER).

m Sam Spade, from SamSpade.org: www.samspade.org.
These two tools, among many other very functional tools, will

allow you to at least see some of the vulnerabilities that may exist
where you are.

Firewalls Cannot Protect
You 100 Percent from Attack

Firewalls can protect a network from certain types of attacks, and they pro-
vide some useful logging. However, much like anti-virus software, firewalls

will never provide 100 percent protection. In fact, they often provide much
less than that.

Www.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 317$

The Laws of Security * Appendix 317

First of all, even if a firewall were 100 percent eftective at stopping all
attacks that tried to pass through it, one has to realize that not all avenues
of attack go through the firewall. Malicious employees, physical security,
modems, and infected floppies are all still threats, just to name a few. For
purposes of this discussion, we’ll leave threats that don’t pass through the
tirewall alone.

Firewalls are devices and/or software designed to selectively separate
two or more networks. They are designed to permit some types of traftic
while denying others. What they permit or deny is usually under the con-
trol of the person who manages the firewall. What is permitted or denied
should reflect a written security policy that exists somewhere within the
organization.

As long as something is allowed through, there is potential for attack.
For example, most firewalls permit some sort of Web access, either from
the inside out or to Web servers being protected by the firewall. The sim-
plest of these is port filtering, which can be done by a router with access
lists. A simple and basic filter for Internet Control Message Protocol
(ICMP) traffic blocking it at the outside interface will stop responses from
your system to another when an outsider pings your interface. If you want
to see this condition, ping or use tracert on www.microsoft.com. You’ll
time out on the connection. Is Microsoft down? Hardly—they just block
ICMP traftic, among other things, in their defense setup. There are a few
levels of protection a firewall can give for Web access. Simply configure the
router to allow inside hosts to reach any machine on the Internet at TCP
port 80, and any machine on the Internet to send replies from port 80 to
any inside machine. A more careful firewall may actually understand the
Hypertext Transfer Protocol (HTTP), perhaps only allowing legal HTTP
commands. It may be able to compare the site being visited against a list of
not-allowed sites. It might be able to hand over any files being down-
loaded to a virus-scanning program to check.

Let’s look at the most paranoid example of an HTTP firewall. You’ll be
the firewall administrator. You've configured the firewall to allow only legal
HTTP commands. Youre allowing your users to visit a list of only 20
approved sites. You've configured your firewall to strip out Java, JavaScript,

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 318$

318 Appendix ¢ The Laws of Security

and ActiveX.You've configured the firewall to allow only retrieving
HTML, .¢gif, and .jpg files.

Can your users sitting behind your firewall still get into trouble? Of
course they can. I'll be the evil hacker (or perhaps the security-ignorant
Webmaster) trying to get my software through your firewall. How do I get
around the fact that you only allow certain file types? I put up a Web page
that tells your users to right-click on a .jpg to download it and then
rename it to evil.exe once it’s on their hard drive. How do I get past the
anti-virus software? Instead of telling your users to rename the file to .exe,
[tell them to rename it to .zip, and unzip it using the password “hacker.”
Your anti-virus software will never be able to check my password-pro-
tected zip file. But that’s okay, right? You won'’t let your users get to my site
anyway. No problem. All I have to do is break into one of your approved
sites. However, instead of the usual obvious defacement, I leave it as is,
with the small addition of a little JavaScript. By the time anyone notices
that it has had a subtle change, I'll be in.

Won’t the firewall vendors fix these problems? Possibly, but there will
be others. The hackers and firewall vendors are playing a never-ending
game of catch-up. Since the firewall vendors have to wait for the hackers
to produce a new attack before they can fix it, they will always be behind.

On various firewall mailing lists, there have been many philosophical
debates about exactly which parts of a network security perimeter com-
prise “the firewall,” but those discussions are not of use for our immediate
purposes. For our purposes, firewalls are the commercial products sold as
firewalls, various pieces of software that claim to do network filtering, fil-
tering routers, and so on. Basically, our concern is how do we get our informa-
tion past a firewall?

[t turns out that there is plenty of opportunity to get attacks past fire-
walls. Ideally, firewalls would implement a security policy perfectly. In
reality, someone has to create the firewall, so they are far from perfect. One
of the major problems with firewalls is that firewall administrators can’t
very easily limit traftic to exactly the type they would like. For example,
the policy may state that Web access (HTTP) is okay, but RealAudio use is
not. The firewall admin should just shut off the ports for RealAudio, right?
Problem is, the folks who wrote RealAudio are aware that this might

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 319$

The Laws of Security * Appendix 319

happen, so they give the user the option to pull down RealAudio files via
HTTP. In fact, unless you configure it away, most versions of RealAudio
will go through several checks to see how they can access RealAudio con-
tent from a Web site, and it will automatically select HTTP if it needs to
do so.The real problem here is that any protocol can be tunneled over any
other one, as long as timing is not critical (that 1s, if tunneling won’t make
it run too slowly). RealAudio does buftering to deal with the timing
problem.

The designers of various Internet “toys” are keenly aware of which
protocols are typically allowed and which aren’t. Many programs are
designed to use HTTP as either a primary or backup transport to get
information through.

There are probably many ways to attack a company with a firewall
without even touching the firewall. These include modems, diskettes,
bribery, breaking and entering, and so on. For the moment, we’ll focus on
attacks that must traverse the firewall.

Social Engineering

One of the first and most obvious ways to traverse a firewall 1s trickery. E-
mail has become a very popular mechanism for attempting to trick people
into doing stupid things; the “Melissa” and “I Love You” viruses are prime
examples. Other examples may include programs designed to exhibit mali-
cious behavior when they are run (Trojans) or legitimate programs that
have been “infected” or wrapped in some way (Trojans/viruses). As with
most mass-mail campaigns, a low response rate is enough to be successful.
This could be especially damaging if it were a custom program, so that the
anti-virus programs would have no chance to catch it. For information
about what can be done with a virus or Trojan.

Attacking Exposed Servers

Another way to get past firewalls is to attack exposed. Many firewalls
include a demilitarized zone (DMZ) where various Web servers, mail
servers and so on are placed. There is some debate as to whether a classic
DMZ is a network completely outside the firewall (and therefore not pro-

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 320$

320 Appendix ¢ The Laws of Security

tected by the firewall) or whether it’s some in-between network. Currently
in most cases, Web servers and the like are on a third interface of the fire-
wall that protects them from the outside, allowing the inside not to trust
them either and not to let them in.

The problem for firewall admins is that firewalls aren’t all that intelli-
gent. They can do filtering, they can require authentication, and they can
do logging, but they can’t really tell a good allowed request from a bad
allowed request. For example, I know of no firewall that can tell a legiti-
mate request for a Web page from an attack on a Common Gateway
Interface (CGI) script. Sure, some firewalls can be programmed to look for
certain CGI scripts being attempted (phf, for example), but if you've got a
CGI script you want people to use, the firewall isn’t going to able to tell
those people apart from the attacker who has found a hole in it. Much of
the same goes for Simple Mail Transfer Protocol (SMTP), File Transfer
Protocol (FTP), and many other commonly offered services. They are all
attackable.

For the sake of discussion, let’s say that you’ve found a way into a server
on the DMZ.You’ve gained root or administrator access on that box. That
doesn’t get you inside, does it? Not directly, no. Recall that our definition
of DMZ included the concept that DMZ machines can’t get to the inside.
Well, that’s usually not strictly true. Very few organizations are willing to
administer their servers or add new content by going to the console of the
machine. For an FTP server, for example, would they be willing to let the
world access the FTP ports, but not themselves? For administration pur-
poses, most traftic will be initiated from the inside to the DMZ. Most fire-
walls have the ability to act as diodes, allowing traffic to be initiated from
one side but not from the other. That type of traftic would be difficult but
not impossible to exploit. The main problem is that you have to wait for
something to happen. If you catch an FTP transfer starting, or the admin
opening an X window back inside, you may have an opportunity.

More likely, you’ll want to look for allowed ports. Many sites include
services that require DMZ machines to be able to initiate contact back to
the inside machine. This includes mail (mail has to be delivered inside),
database lookups (for e-commerce Web sites, for example), and possibly

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 321$

The Laws of Security * Appendix 321

reporting mechanisms (perhaps syslog). Those are more helptful because
you get to determine when the attempt is made. Let’s look at a few cases:

Suppose you were able to successfully break into the DMZ mail server
via some hole in the mail server daemon. Chances are good that you’ll be
able to talk to an internal mail server from the DMZ mail server. Chances
are also good that the inside mail server is running the same mail daemon
you just broke into, or even something less well protected (after all, it’s an
inside machine that isn’t exposed to the Internet, right?)

Attacking the Firewall Directly

You may find in a few cases that the firewall itself can be compromised.
This may be true for both homegrown firewalls (which require a certain
amount of expertise on the part of the firewall admin) and commercial
firewalls (which can sometimes give a false sense of security, as they need a
certain amount of expertise too, but some people assume that’s not the
case). In other cases, a consultant may have done a good job of setting up
the firewall, but now no one is left who knows how to maintain it. New
attacks get published all the time, and if people aren’t paying attention to
the sources that publish this stuff, they won’t know to apply the patches.

The method used to attack a firewall is highly dependent on the exact
type of the firewall. Probably the best sources of information on firewall
vulnerabilities are the various security mailing lists. A particularly malicious
attacker would do as much research about a firewall to be attacked as pos-
sible, and then lie in wait for some vulnerability to be posted.

Client-Side Holes

One of the best ways to get past firewalls is client-side holes. Aside from
Web browser vulnerabilities, other programs with likely holes include AOL
Instant Messenger, MSN Chat, [CQ, IRC clients, and even Telnet and ftp
clients. Exploiting these holes can require some research, patience, and a
little luck.You’ll have to find a user in the organization you want to attack
that appears to be running one of these programs, but many of the chat
programs include a mechanism for finding people, and it’s not uncommon
tor people to post their ICQ number on their homepage. You could do a

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 322$

322

Appendix ¢ The Laws of Security

search for victim.com and ICQ. Then you could wait until business hours
when you presume the person will be at work, and execute your exploit
using the ICQ number. If it’s a serious hole, then you now probably have
code running behind the firewall that can do as you like.

Any IDS Can Be Evaded

And you ask, “What the heck is an IDS?” IDS stands for intrusion detection
system. At the time of this writing, there are hundreds of vendors providing
combined hardware and software products for intrusion detection, either in
combination with firewall and virus protection products or as freestanding
systems. IDSs have a job that is slightly different from that of firewalls.
Firewalls are designed to stop bad traftic. IDSs are designed to spot bad
traffic, but not necessarily to stop it (though a number of IDSs will coop-
erate with a firewall to stop the traffic, too). These IDSs can spot suspicious
traffic through a number of mechanisms. One is to match it against known
bad patterns, much like the signature database of an anti-virus program.
Another is to check for compliance against written standards and flag devi-
ations. Still another is to profile normal traftic and flag traffic that varies
from the statistical norm. Because they are constantly monitoring the net-
work, IDSs help to detect attacks and abnormal conditions both internally
and externally in the network, and provide another level of security from
inside attack.

As with firewalls and client-side security methods, IDSs can be evaded
and worked around. One of the reasons that this is true is because we still
have users working hands-on on machines within our network, and as we
saw with client-side security, this makes the system vulnerable. Another
cause in the case of firewalls and IDS systems is that although they are rel-
atively tight when first installed, the maintenance and care of the systems
deteriorates with time, and vigilance declines. This leads to many miscon-
figured and improperly maintained systems, which allows the evasion to
occur.

The problem with IDSs for attackers is that they don’t know when one
is present. Unlike firewalls, which are fairly obvious when you hit them,
IDSs can be completely passive and therefore not directly detectable. They

WWww.syngress.com

o

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 323$

The Laws of Security * Appendix 323

can spot suspicious activity and alert the security admin for the site being
attacked, unbeknownst to the attacker. This may result in greater risk of
prosecution for the attacker. Consider getting an IDS. Free ones are
starting to become available and viable, allowing you to experiment with
the various methods of detection that are offered by the IDS developers.
Make sure you audit your logs, because no system will ever achieve the
same level of insight as a well-informed person. Make absolutely sure that
you keep up-to-date on new patches and vulnerabilities. Subscribe to the
various mailing lists and read them. From the attack standpoint, remember
that the attacker can get the same information that you have. This allows
the attacker to find out what the various IDS systems detect and, more
importantly, how the detection occurs. Variations of the attack code can
then be created that are not detectable by the original IDS flags or settings.

In recent months, IDSs have been key in collecting information about
new attacks. This is problematic for attackers, because the more quickly
their attack is known and published, the less well it will work as it’s
patched away. In eftect, any new research that an attacker has done will be
valuable for a shorter period of time. I believe that in a few years, an IDS
system will be standard equipment for every organization’s Internet con-
nections, much as firewalls are now.

Secret Cryptographic
Algorithms Are Not Secure

2

This particular “law” is not, strictly speaking, a law. It’s theoretically pos-
sible that a privately, secretly developed cryptographic algorithm could be
secure. [t turns out, however, that it just doesn’t happen that way. It takes
lots of public review and lots of really good cryptographers trying to break
an algorithm (and failing) before it can begin to be considered secure.
Bruce Schneier has often stated that anyone can produce a crypto-
graphic algorithm without being able to break it. Programmers and writers
know this as well. Programmers cannot eftectively beta-test their own soft-
ware, just as writers cannot effectively proofread their own writing. Put
another way, to produce a secure algorithm, a cryptographer must know all

possible attacks and be able to recognize when they apply to his or her

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 324$

324 Appendix ¢ The Laws of Security

algorithm. This includes currently known attacks as well as those that may
be made public in the future. Clearly no cryptographer can predict the
tuture, but some of them have the ability to produce algorithms that are
resistant to new things because they are able to anticipate or guess some
possible future attacks.

This has been demonstrated many times in the past. A cryptographer,
or someone who thinks he or she is one, produces a new algorithm. It
looks fine to this person, who can’t see any problem. The “cryptographer”
may do one of several things: use it privately, publish the details, or pro-
duce a commercial product. With very few exceptions, if it’s published, it
gets broken, and often quickly. What about the other two scenarios? If the
algorithm isn’t secure when it’s published, it isn’t secure at any time. What
does that do to the author’ private security or to the security of his cus-
tomers?

Why do almost all new algorithms fail? One answer is that good crypto
is hard. Another is the lack of adequate review. For all the decent cryptog-
raphers who can break someone else’s algorithm, there are many more
people who would like to try writing one. Crypto authors need lots of
practice to learn to write good crypto. This means they need to have their
new algorithms broken over and over again, so they can learn from the
mistakes. If they can’t find people to break their crypto, the process gets
harder. Even worse, some authors may take the fact that no one broke
their algorithm (probably due to lack of time or interest) to mean that it
must be secure!

For an example of this future thinking, let’s look at DES. In 1990, Eli
Biham and Adi Shamir, two world-famous cryptographers, “discovered”
what they called differential cryptanalysis. This was some time after DES
had been produced and made standard. Naturally, they tried their new
technique on DES. They were able to make an improvement over a simple
brute-force attack, but there was no devastating reduction in the amount
of time it took to crack DES. It turns out that the structure of the s-boxes
in DES was nearly ideal for defending against diftferential cryptanalysis. It
seems that someone who worked on the DES design knew of, or had sus-
picions about, difterential cryptanalysis.

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 325$

The Laws of Security * Appendix 325

Very few cryptographers are able to produce algorithms of this quality.
They are also the ones who usually are able to break the good algorithms.
['ve heard that a few cryptographers advocate breaking other people’s algo-
rithms as a way to learn how to write good ones. These world-class cryp-
tographers produce algorithms that get broken, so they put their work out
into the cryptographic world for peer review. Even then, it often takes
time for the algorithms to get the proper review. Some new algorithms use
innovative methods to perform their work. Those types may require inno-
vative attack techniques, which may take time to develop. In addition, most
of these cryptographers are in high demand and are quite busy, so they
don’t have time to review every algorithm that gets published. In some
cases, an algorithm would have to appear to be becoming popular in order
to justify the time spent looking at it. All of these steps take time—some-
times years. Therefore, even the best cryptographers will sometimes recom-
mend that you not trust their own new algorithms until they’ve been
around for a long time. Even the world’s best cryptographers produce
breakable crypto from time to time.

The U.S. government has now decided to replace DES with a new
standard cryptographic algorithm. This new one is to be called Advanced
Encryption Standard (AES), and the NIST (National Institute of Standards
and Technology) has selected Rijndael as the proposed AES algorithm.
Most of the world’s top cryptographers submitted work for consideration
during a several-day conference. A few of the algorithms were broken
during the conference by the other cryptographers.

We can’t teach you how to break real crypto. That’s okay, though.
We've still got some crypto fun for you. There are lots of people out there
who think they are good cryptographers and are willing to sell products
based on that belief. In other cases, developers may realize that they can’t
use any real cryptography because of the lack of a separate key, so they
may opt for something simple to make it less obvious what they are doing.
In those cases, the crypto will be much easier to break

Again, the point of this law is not to perform an action based on it, but
rather to develop suspicion. You should use this law to evaluate the quality
of a product that contains crypto. The obvious solution here 1is to use well-
established crypto algorithms. This includes checking as much as possible

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 326$

326 Appendix ¢ The Laws of Security

that the algorithms are used intelligently. For example, what good does
3DES do you if you’re using only a seven-character password? Most pass-
words that people choose are only worth a few bits of randomness per
letter. Seven characters, then, is much less than 56 bits.

If a Key Is Not Required, You Do Not
Have Encryption—You Have Encoding

This one is universal—no exceptions. Just be certain that you know
whether or not there is a key and how well it’s managed. As Scott Culp
mentions in his law #7,“Encrypted data is only as secure as the decryption key.”

The key in encryption is used to provide variance when everyone is
using the same small set of algorithms. Creating good crypto algorithms is
hard, which is why only a handful of them are used for many different
things. New crypto algorithms aren’t often needed, as the ones we have
now can be used in a number of different ways (message signing, block
encrypting, and so on). If the best-known (and foreseeable) attack on an
algorithm 1s brute force, and brute force will take sufticiently long, there 1is
not much reason to change. New algorithms should be suspect, as we
mentioned previously.

In the early history of cryptography, most schemes depended on the
communicating parties using the same system to scramble their messages to
each other. There was usually no key or pass-phrase of any sort. The two
parties would agree on a scheme, such as moving each letter up the
alphabet by three letters, and they would send their messages.

Later, more complicated systems were put into use that depended on a
word or phrase to set the mechanism to begin with, and then the message
would be run through. This allowed for the system to be known about and
used by multiple parties, and they could still have some degree of security
it they all used different phrases.

These two types highlight the conceptual difterence between what
encoding and encrypting are. Encoding uses no key, and if the parties
involved want their encoded communications to be secret, then their
encoding scheme must be secret. Encrypting uses a key (or keys) of some

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 327$

The Laws of Security * Appendix 327

sort that both parties must know. The algorithm can be known, but if an
attacker doesn’t have the keys, that shouldn’t help.

Of course, the problem is that encoding schemes can rarely be kept
secret. Everyone will get a copy of the algorithm. If there were no key,
everyone who had a copy of the program would be able to decrypt any-
thing encrypted with it. That wouldn’t bode well for mass-market crypto
products. A key enables the known good algorithms to be used in many
places. So what do you do when you'’re faced with a product that says it
uses Triple-DES encryption with no remembering of passwords required?
Run away! DES and variants (like 3DES) depend on the secrecy of the
key for their strength. If the key is known, the secrets can obviously be
decrypted. Where is the product getting a key to work with if not from
you? Oft the hard drive, somewhere.

[s this better than if it just used a bad algorithm? This is probably
slightly better if the files are to leave the machine, perhaps across a net-
work. If they are intercepted there, they may still be safe. However, if the
threat model includes people who have access to the machine itself it’s
pretty useless, since they can get the key as well. Cryptographers have
become very good at determining what encoding scheme is being used
and then decoding the messages. If you're talking about an encoding
scheme that is embedded in some sort of mass-market product, forget the
possibility of keeping it secret. Attackers will have all the opportunity they
need to determine what the encoding scheme is.

If you run across a product that doesn’t appear to require the exchange
of keys of some sort and claims to have encrypted communications, think
very hard about what you have. Ask the vendor a lot of questions of about
exactly how it works. Think back to our earlier discussion about
exchanging keys securely. If your vendor glosses over the key exchange
portion of a product, and can’t explain in painstaking detail how exactly
the key exchange problem was solved, then you probably have an insecure
product. In most cases, you should expect to have to program keys manu-
ally on the various communication endpoints.

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 328$

328 Appendix ¢ The Laws of Security

Passwords Cannot Be Securely
Stored on the Client Unless There Is
Another Password to Protect Them

This statement about passwords specifically refers to programs that store
some form of the password on the client machine in a client-server rela-
tionship. Remember that the client is always under the complete control of
the person sitting in front of it. Therefore, there is generally no such thing
as secure storage on client machines. What usually difterentiates a server is
that the user/attacker is forced to interact with it across a network, via
what should be a limited interface. The one possible exception to all client
storage being attackable 1s if encryption is used. This law is really a specific
case of the previous one: “If a key isn’t required, then you don’t have
encryption—you have encoding.” Clearly, this applies to passwords just as it
would to any other sort of information. It’s mentioned as a separate case
because passwords are often of particular interest in security applications.
Every time an application asks you for a password, you should think to
yourself, “How is it stored?”” Some programs don’t store the password after
it’s been used because they don’t need it any longer—at least not until
next time. For example, many Telnet and ftp clients don’t remember pass-
words at all; they just pass them straight to the server. Other programs will
offer to “remember” passwords for you. They may give you an icon to
click on and not have to type the password.

How securely do these programs store your password? It turns out that
in most cases, they can’t store your password securely. As covered in the
previous law, since they have no key to encrypt with, all they can do is
encode. It may be a very complicated encoding, but it’s encoding nonethe-
less, because the program has to be able to decode the password to use it. If
the program can do it, so can someone else.

This one is also universal, though there can be apparent exceptions. For
example, Windows will oftfer to save dial-up passwords.You click the icon
and it logs into your ISP for you. Therefore, the password is encoded on
the hard drive somewhere and it’s fully decodable, right? Not necessarily.
Microsoft has designed the storage of this password around the Windows

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 329$

The Laws of Security * Appendix 329

login. If you have such a saved password, try clicking Cancel instead of
typing your login password the next time you boot Windows. You’ll find
that your saved dial-up password isn’t available, because Windows uses the
login password to unlock the dial-up password. All of this is stored in a
.pwl file in your Windows directory.

Occasionally, for a variety of reasons, a software application will want to
store some amount of information on a client machine. For Web browsers,
this includes cookies and, sometimes, passwords. (The latest versions of
Internet Explorer will offer to remember your names and passwords.). For
programs intended to access servers with an authentication component,
such as Telnet clients and mail readers, this is often a password. What’s the
purpose of storing your password? So that you don’t have to type it every
time.

Obviously, this feature isn’t really a good idea. If you’ve got an icon on
your machine that you can simply click to access a server, and it automati-
cally supplies your username and password, then anyone who walks up can
do the same. Can they do anything worse than this? As we’ll see, the
answer 1s yes.

Let’s take the example of an e-mail client that is helpfully remembering
your password for you.You make the mistake of leaving me alone in your
office for a moment, with your computer. What can I do? Clearly, I can
read your mail easily, but I'll want to arrange it so I can have permanent
access to it, not just the one chance. Since most mail passwords pass in the
clear (and let’s assume that in this case that’s true), if [had a packet capture
program I could load onto your computer quickly, or if I had my laptop
ready to go, I could grab your password oft the wire. This is a bit more
practical than the typical monitoring attack, since I now have a way to
make your computer send your password at will.

However, I may not have time for such elaborate preparations. I may
only have time to slip a diskette out of my shirt and copy a file. Perhaps I
might send the file across your network link instead, if I'm confident |
won’t show up in a log somewhere and be noticed. Of course, I'd have to
have an idea what file(s) I was after. This would require some preparation
or research. I'd have to know what mail program you typically use. But if
I’'m in your office, chances are good that I would have had an opportunity

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 330$

330 Appendix ¢ The Laws of Security

to exchange mail with you at some point, and every e-mail you send to
me tells me in the message headers what e-mail program you use.

What’s in this file I steal? Your stored password, of course. Some pro-
grams will simply store the password in the clear, enabling me to read it
directly. That sounds bad, but as we’ll see, programs that do that are simply
being honest. In this instance, you should try to turn off any features that
allow for local password storage if possible. Try to encourage vendors not
to put in these sorts of “features.”

Let’s assume for a moment that’s not the case. I look at the file and 1
don’t see anything that looks like a password. What do I do? I get a copy
of the same program, use your file, and click Connect. Bingo, I've got
(your) mail. If I'm still curious, in addition to being able to get your mail I
can now set up the packet capture and find your password at my leisure.

[t gets worse yet. For expediency’s sake, maybe there’s a reason [don’t
want to (or can’t) just hit Connect and watch the password fly by. Perhaps
I can’t reach your mail server at the moment, because it’s on a private net-
work. And perhaps you were using a protocol that doesn’t send the pass-
word in the clear after all. Can [still do anything with your file I've stolen?
Of course.

Consider this: without any assistance, your mail program knows how to
decode the password and send it (or some form of it). How does it do
that? Obviously it knows something you don’t, at least not yet. It either
knows the algorithm to reverse the encoding, which is the same for every
copy of that program, or it knows the secret key to decrypt the password,
which must be stored on your computer.

In either case, if ['ve been careful about stealing the right files, I've got
what I need to figure out your password without ever trying to use it. If
it’s a simple decode, I can figure out the algorithm by doing some experi-
mentation and trying to guess the algorithm, or I can disassemble the por-
tion of the program that does that and figure it out that way. It may take
some time, but if I'm persistent, [have everything I need to do so.Then I
can share it with the world so everyone else can do it easily.

If the program uses real encryption, it’s still not safe if I've stolen the
right file(s). Somewhere that program must have also stored the decryption

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 331$

The Laws of Security * Appendix 331

key; if it didn’t it couldn’t decode your password, and clearly it can. I just
have to make sure I steal the decryption key as well.

Couldn’t the program require the legitimate user to remember the
decryption key? Sure, but then why store the client password in the first
place? The point was to keep the user from having to type in a password
all the time.

Notes from the Underground...

Vigilance is Required Always!

Much discussion has been raised recently about the number of
attacks that occur and the rapid deployment and proliferation of
malicious codes and attacks. Fortunately, most of the attacks are
developed to attack vulnerabilities in operating system and applica-
tion code that have been known for some time. As we saw this year,
many of the Code Red attacks and the variants that developed from
them were attacking long-known vulnerabilities in the targeted prod-
ucts. The sad thing (and this should be embarrassing both profes-
sionally and personally) was the obvious number of network
administrators and technicians who had failed to follow the avail-
ability of fixes for these systems and keep them patched and up-to-
date. No amount of teaching, and no amount of technical reference
materials can protect your systems if you don't stay vigilant and on
top of the repairs and fixes that are available.

In Order for a System to Begin
to Be Considered Secure, It Must
Undergo an Independent Security Audit

Writers know that they can’t proofread their own work. Programmers
ought to know that they can’t bug-test their own programs. Most software
companies realize this, and they employ software testers. These software

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 332$

332 Appendix ¢ The Laws of Security

testers look for bugs in the programs that keep them from performing
their stated functions. This is called functional testing.

Functional testing is vastly different from security testing, although on
the surface, they sound similar. They’re both looking for bugs, right? Yes
and no. Security testing (which ought to be a large superset of function-
ality testing) requires much more in-depth analysis of a program, usually
including an examination of the source code. Functionality testing is done
to ensure that a large percentage of the users will be able to use the
product without complaining. Defending against the average user acciden-
tally stumbling across a problem is much easier than trying to keep a
knowledgeable hacker from breaking a program any way he can.

Even without fully discussing what a security audit is, it should be
becoming obvious why it’s needed. How many commercial products
undergo a security review? Almost none. Usually the only ones that have
even a cursory security review are security products. Even then, it often
becomes apparent later on that they didn’t get a proper review.

Notice that this law contains the word “begin.” A security audit is only
one step in the process of producing secure systems. You only have to read
the archives of any vulnerability reporting list to realize that software pack-
ages are full of holes. Not only that, but we see the same mistakes made
over and over again by various software vendors. Clearly, those represent a
category in which not even the most minimal amount of auditing was
done.

Probably one of the most interesting examples of how auditing has
produced a more secure software package is OpenBSD. Originally a
branch-off from the NetBSD project, OpenBSD decided to emphasize
security as its focus. The OpenBSD team spent a couple of years auditing
the source code for bugs and fixing them. They fixed any bugs they found,
whether they appeared to be security related or not. When they found a
common bug, they would go back and search all the source code to see
whether that type of error had been made anywhere else.

The end result is that OpenBSD i1s widely considered one of the most
secure operating systems there is. Frequently, when a new bug is found in
NetBSD or FreeBSD (another BSD variant), OpenBSD is found to be not
vulnerable. Sometimes the reason it’s not vulnerable is that the problem

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 333$

The Laws of Security * Appendix 333

was fixed (by accident) during the normal process of killing all bugs. In
other cases, it was recognized that there was a hole, and it was fixed. In
those cases, NetBSD and FreeBSD (if they have the same piece of code)
were vulnerable because someone didn’t check the OpenBSD database for
new fixes (all the OpenBSD fixes are made public).

Security through
Obscurity Does Not Work

Basically, “security through obscurity” (known as STO) is the idea that
something is secure simply because it isn’t obvious, advertised, or inter-
esting. A good example is a new Web server. Suppose you're in the process
of making a new Web server available to the Internet.You may think that
because you haven’t registered a Domain Name System (DNS) name yet,
and because no links exist to the Web server, you can put oft securing the
machine until you’re ready to go live.

The problem is, port scans have become a permanent fixture on the
Internet. Depending on your luck, it will probably be only a matter of days
or even hours before your Web server 1s discovered. Why are these port
scans permitted to occur? They aren’t illegal in most places, and most ISPs
won’t do anything when you report that youre being portscanned.

What can happen if you get portscanned? The vast majority of systems
and software packages are insecure out of the box. In other words, if you
attach a system to the Internet, you can be broken into relatively easily
unless you actively take steps to make it more secure. Most attackers who
are port scanning are looking for particular vulnerabilities. If you happen
to have the particular vulnerability they are looking for, they have an
exploit program that will compromise your Web server in seconds. If
you’re lucky, you’ll notice it. If not, you could continue to “secure” the
host, only to find out later that the attacker left a backdoor that you
couldn’t block, because you'd already been compromised.

Worse still, in the last year a number of worms have become perma-
nent fixtures on the Internet. These worms are constantly scanning for
new victims, such as a fresh, unsecured Web server. Even when the worms
are in their quietest period, any host on the Internet will get a couple of

WWWw.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 334$

334 Appendix ¢ The Laws of Security

probes per day. When the worms are busiest, every host on the Internet
gets probes every few minutes, which is about how long an unpatched
Web server has to live. Never assume it’s safe to leave a hole or to get
sloppy simply because you think no one will find it. The minute a new
hole is discovered that reveals program code, for example, youre exposed.
An attacker doesn’t have to do a lot of research ahead of time and wait
patiently. Often the holes in programs are publicized very quickly, and lead
to the vulnerability being attacked on vulnerable systems.

Let me clarify a few points about STO: Keeping things obscure isn’t
necessarily bad.You don’t want to give away any more information than
you need to.You can take advantage of obscurity; just don’t rely on it. Also,
carefully consider whether you might have a better server in the long run
by making source code available so that people can review it and make
their own patches as needed. Be prepared, though, to have a round or two
of holes before it becomes secure.

How obscure is obscure enough? One problem with the concept of
STO is that there is no agreement about what constitutes obscurity and
what can be treated like a bona fide secret. For example, whether your
password is a secret or is simply “obscured” probably depends on how you
handle it. If you’ve got it written down on a piece of paper under your
keyboard and you’re hoping no one will find it, I'd call that STO. (By the
way, that’s the first place I'd look. At one company where [worked, we
used steel cables with padlocks to lock computers down to the desks. I'd
often be called upon to move a computer, and the user would have
neglected to provide the key as requested. I'd check for the key in this
order: pencil holder, under the keyboard, top drawer. I had about a 50 per-
cent success rate for finding the key.)

It comes down to a judgment call. My personal philosophy is that all
security 1s STO. It doesn’t matter whether youre talking about a house key
under the mat or a 128-bit crypto key. The question is, does the attacker
know what he needs, or can he discover it? Many systems and sites have
long survived in obscurity, reinforcing their belief that there is no reason to
target them. We’ll have to see whether it’s simply a matter of time before
they are compromised.

WWww.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 335$

The Laws of Security * Appendix 335

Summary

In this Appendix, we have tried to provide you with an initial look at the

basic laws of security that we work with on a regular basis. We’ve looked at a

number of different topic areas to introduce our concepts and our list of the

laws of security. These have included initial glances at some concepts that may

be new to you, and that should inspire a fresh look at some of the areas of

vulnerability as we begin to protect our networks. We’ve looked at physical i
control issues, encryption and the exchange of encryption keys. We’ve also ;
begun to look at firewalls, virus detection programs, and intrusion detection

systems (IDSs), as well as modification of code to bypass firewalls, viruses, and '
IDSs, cryptography, auditing, and security through obscurity. As you have :ﬂ’ ‘
seen, not all of the laws are absolutes, but rather an area of work that we use

to try to define the needs for security, the vulnerabilities, and security prob-

lems that should be observed and repaired as we can. All of these areas are in

need of constant evaluation and work as we continue to try to secure our sys-

tems against attack.

Solutions Fast Track

Knowing the Laws of Security

M Review the laws.
M Use the laws to make your system more secure.

M Remember that the laws change.

Client-Side Security Doesn’t Work

M Client-side security is security enforced solely on the client.

M The user always has the opportunity to break the security, because he
or she is in control of the machine.

M Client-side security will not provide security if time and resources
are available to the attacker.

You Cannot Securely Exchange Encryption Keys

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 336$

336 Appendix ¢ The Laws of Security

without a Shared Piece of Information

M Shared information is used to validate machines prior to session
creation.

M You can exchange shared private keys or use Secure Sockets Layer
(SSL) through your browser.

i M Key exchanges are vulnerable to man-in-the-middle (MITM) attacks.
Malicious Code Cannot Be 100 Percent Protected
against

M Software products are not perfect.

M Virus and Trojan detection software relies on signature files.

M Minor changes in the code signature can produce a non-detectable

» ﬁ variation (until the next signature file is released).
!

' Any Malicious Code Can Be Completely Morphed
B to Bypass Signature Detection

M Attackers can change the identity or signature of a file quickly.

M Attackers can use compression, encryption, and passwords to change

the look of code.

M You can’t protect against every possible modification.

| Firewalls Cannot Protect You 100 Percent from
b " Attack
M Firewalls can be software or hardware, or both.

e M The primary function of a firewall is to filter incoming and outgoing
packets.

M Successtul attacks are possible as a result of improper rules, policies,
and maintenance problems.

www.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 337$

The Laws of Security * Appendix 337

Any IDS Can Be Evaded

M Intrusion detection systems (IDSs) are often passive designs.

M It is difticult for an attacker to detect the presence of IDS systems
when probing.

M An IDS is subject to improper configuration and lack of
maintenance. These conditions may provide opportunity for attack. i

Secret Cryptographic Algorithms Are Not Secure &

M Crypto is hard. o
M Most crypto doesn’t get reviewed and tested enough prior to launch. ﬁ-‘- |

M Common algorithms are in use in multiple areas. They are difficult,
but not impossible, to attack.

If a Key Is Not Required, You Do Not Have
Encryption—You Have Encoding

M This law is universal; there are no exceptions.

M Encryption is used to protect the encoding. If no key is present, you
can’t encrypt.

M Keys must be kept secret, or no security is present.

Passwords Cannot Be Securely Stored on the Client
Unless There Is Another Password to Protect Them

M It is easy to detect password information stored on client machines.

M If a password is unencrypted or unwrapped when it is stored, it is not

secure.

M Password security on client machines requires a second mechanism to &
provide security.

In Order for a System to Begin to Be Considered
Secure, [t Must Undergo an Independent Security

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 338$

338 Appendix * The Laws of Security

Audit

M Auditing is the start of a good security systems analysis.

M Security systems are often not reviewed properly or completely,
leading to holes.

M Outside checking is critical to defense; lack of it is an invitation to
attack.

%

Security through Obscurity Does Not Work

M Hiding it doesn’t secure it.

M Proactive protection is needed.

M The use of obscurity alone invites compromise.
&, Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book,
are designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To
have your questions about this chapter answered by the author, browse to
www.syngress.com/solutions and click on the “Ask the Author” form. You will
also gain access to thousands of other FAQs at ITFAQnet.com.

Q: How much effort should I spend trying to apply these laws to a particular
system that I’'m interested in reviewing?

A: That depends on what your reason for review is. If you're doing so for pur-

poses of determining how secure a system is so that you can feel comfortable
. # using it yourself, then you need to weigh your time against your threat

model. If youre expecting to use the package, it’s directly reachable by the
Internet at large, and it’s widely available, you should probably spend a lot of
time checking it. If it will be used"in some sort.of back-end system, if it’s
custom designed, or if the system it’s on is protected in some other way, you
may want to spend more time-elsewhere.

Similarly, if youre performing some sort of penetration test, you will have
to weigh your chances of success using one partieular avenue of attack versus
another. It may be appropriate to visit each system that.you can attack in

WWW.syngress.com

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 339$

The Laws of Security * Appendix 339

turn, and return to those that look more promising. Most attackers would
favor a system they could replicate in their own lab, returning to the actual
target later with a working exploit.

Q: How secure am I likely to be after reviewing a system myself?

A: This depends partially on how much effort you expend. In addition, you have
to assume that you didn’t find all the holes. However, if you spend a reason- e
able amount of time, you’ve probably spotted the low-hanging fruit—the -c *{ .’g
easy holes. This puts you ahead of the game. The script kiddies will be & -
looking for the easy holes. Even if you become the target of a talented ‘
attacker, the attacker may try the easy holes, so you should have some way of
burglar-alarming them. Since you're likely to find something when you look,
and you’ll probably publish your findings, everyone will know about the
holes. Keep in mind that youre protected against the ones you know about,
but not against the ones you don’t know about. One way to help

Www.syngress.com | ;

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 340$

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 341$

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 342$

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 343$

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 344$

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 345$

297_Zero_Day_App.qgxd 6/21/04 3:48 PM Page 346$

8S (sin-gres): noun, sing. Freedom
or danger; safety. See security.

Foreword by Jeff Moss
President & CEO, Black Hat, Inc.

AVAILABLE NOW E ! ¢
:Tﬁrg@yngress com'. i a Continent

: : ers, Jay Beale, Joe Grand, Fyodor, FX,
arker, Ryan Russell, Kevin D. Mitnick
k" series was called a “blockbuster” by
om more traditional computer books” by
formative look at the weapons and tac-
fend digital systems” by Amazon.com.
5 a set of fictional stories with real tech-
rks in the shadows of the information
er a continent?

Paul Craig, Timothy Muller
How to Own The first book in the “Ste

a Continent

Slashdot.org, and “an entertaining
tics employed by those who attack a
This follow-on book once again comb
nology fo show readers the danger tha
security industry... Could hackers take ¢
ISBN: 1-931836-05-1

Price: $49.95 US $69.95 CAN

. . P AVAILABLE NOW
Richard Thieme’s order @

Islands ill the Clicksireum: WWW.Syngress.com
Reflections on Life in a Virtual World T

Richard Thieme is one of the most visible commentatormﬁ';ology and
society, appearing regularly on CNN radio, TechTV, an ous other national
media outlets. He is also in great demand as a public speaker, delivering his
“Human Dimension of Technology” talk to over 50,000 live au iencl':imembers
each year. Islands in the Clickstream is a single volume “b ichard Thieme.”
ISBN: 1-931836-22-1 Richard Thieme
Price: $29.95US $43.95 CAN

lickstream

REFLECTIONS ON LIFE IN A VIRTUAL WORLD

........................

AVAILABLE NOW thics Handbook:
order @ Right and Wrong for IT Professionals
WWW.syngress.com
Stephen Northcutt
The final word on ethics and IT management from world-renowned security expert
Stephen Northcutt, former Chief for Information Warfare at the Ballistic Missile
Defense Organization and current r of Training and Certification for the
SANS Institute. This is not a textboo her, it provides specific guidelines to
system administrators, security consultants, and programmers on how to apply
ethical stand
ISBN: 1-931836-1
Price: $49.95 U

IT Ethics
Handbook

Right and Wrong for
IT Professionals
Yo Compit vl e gt and Wrorg

SYNGRESS®

