Pro Linux System
Administration

James Turnbull, Peter Lieverdink,
Dennis Matotek

Apress’

Pro Linux System Administration
Copyright © 2009 by James Turnbull, Peter Lieverdink, Dennis Matotek

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-1912-5
ISBN-13 (electronic): 978-1-4302-1913-2
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Contributors: Sander van Vugt, Donna Benjamin

Lead Editors: Michelle Lowman, Frank Pohlmann

Technical Reviewer: Jaime Sicam

Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony Campbell,
Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie, Jeffrey Pepper,
Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston

Copy Editors: Ami Knox, Nicole Flores

Associate Production Director: Kari Brooks-Copony

Production Editor: Elizabeth Berry

Compositor: Kinetic Publishing Services, LLC

Proofreaders: April Eddy, Dan Shaw

Indexer: BIM Indexing & Proofreading Services

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales—eBook Licensing web page at http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although every precau-
tion has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability
to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indi-
rectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

CHAPTER 19

Configuration Management

By James Turnbull

In this chapter, we’re going to look at two facets of configuration management:

¢ Automated provisioning and installation of new hosts

¢ Automated management of your configuration including files, users, and packages

The first process we're going to examine, automated provisioning or installation of new
hosts, is sometimes called bootstrapping. In the Red Hat world, bootstrapping is often referred
to as kickstarting (after the Kickstart tool used to perform it). On Ubuntu and Debian, the pro-
cess is called preseeding.

Provisioning is a way of automatically installing a distribution to a host. When we first
looked at installing distributions in Chapter 2, we demonstrated how to do it manually. You
inserted a DVD and followed the onscreen prompts to install your distribution. Automated
provisioning is a way of installing a distribution without being prompted by the configuration
questions. This makes provisioning quick and simple, and it also has the advantage of ensuring
every build is identical.

Tip You can use provisioning for both server hosts and desktop hosts. Not only is it a quick way of build-

ing (or rebuilding) server hosts, but it can also be a quick way to automatically install desktops for your users.

The second process we're going to examine is configuration management and automation.
By now you've seen that you can accumulate a lot of installed packages, users, configuration
files, and other settings. Your environment can quickly get complicated and difficult to man-
age if you don't take steps to control and automate it. Configuration management allows you
to centralize your configuration, document it, and automate it. This allows you to manage and
control changes to your environment and protects you against accidental or malicious configu-
ration changes.

Both provisioning and configuration management are particularly useful if you have
deployed a lot of hosts, but they are also useful in smaller environments, to save time and
effort in managing your hosts.

931

932

CHAPTER 19 CONFIGURATION MANAGEMENT

Provisioning

We've talked a little about what provisioning is, but how you go about it varies between dis-
tributions. We are going to explain how to automatically provision both Red Hat and Ubuntu
hosts.

Provisioning is usually a two-stage process:

1. Boot your host and send it the files required for installation.

2. Automate the installation steps.

The process starts with a host booting up. Remember in Chapter 5 when we told you
about the boot sequence? On many hosts, you can configure that boot sequence to look in
alternative places to get its boot instructions, for example, boot from a DVD or a USB stick. In
addition to these methods, you can also get your boot instructions from a network source.

The technology behind this boot process is called Preboot Execution Environment (PXE).
A network boot server is hence called a PXE boot (pronounced “pixie”) server. The host that
we intend to build uses a network query to find a PXE boot server, usually a network query to
a DHCP server, that might offer it the files required to boot and then transfers those files to the
host using a file transfer protocol called Trivial File Transfer Protocol (TFTP).

Note You can read more about PXE at http://en.wikipedia.org/wiki/Preboot Execution
Environment.

Once this initial boot takes place, your provisioning process continues by installing a pre-
packaged version of your distribution, usually with a series of automated scripted responses to
the various configuration questions you are prompted for when installing.

Note We’'re using network-based provisioning to create our hosts rather than any of the alternatives,
such as CD or DVD. This is because we believe network-based provisioning is the simplest, easiest, and
most efficient way to automatically build hosts.

In this chapter, we’re going to introduce you to some useful tools. For Red Hat provision-
ing, we're going to look at Cobbler, an automated build framework. Cobbler also makes use of
Red Hat’s installation automation tool, Kickstart. For Ubuntu, we’re going to show you how to
set up a network boot server and also how to use Kickstart (supplemented with some elements
of Ubuntu’s Preseed provisioning tool) to build your hosts.

CHAPTER 19 CONFIGURATION MANAGEMENT

Provisioning with Red Hat Cobbler

Red Hat has a variety of tools for provisioning hosts, ranging from the most basic, Kickstart,
which automates installations, to full-featured GUI management tools for host configuration
such as Cobbler (https://fedorahosted.org/cobbler/), Spacewalk (http://www.redhat.com/
spacewalk/), and Genome (http://genome.et.redhat.com/).

We’'re going to look at a combination of two tools:

e Kickstart. An installation automation tool

¢ Cobbler: A provisioning server that provides a PXE boot server

We'll take you through the process of creating a Cobbler server and a build to install. Later
in this chapter, we’ll show you how to configure Kickstart to automate your configuration and
installation options.

Installing Cobbler

Let’s start by installing Cobbler on your host. To run Cobbler, you need some prerequisite
packages:

$ sudo yum install yum-utils createrepo dhcp tftp-server httpd

Here we’ve installed some additional Yum utilities and the createrepo package, which
assist in repository management. We’ve also installed some additional packages Cobbler uses:
the DHCP daemon, a TFTP server, and the Apache web server. You may already have these
packages installed, in which case Yum will skip them.

Note We talk about DHCP in Chapter 9 and Apache in Chapter 11.

You next need to install the latest version of Cobbler and another required package,
python-cheetah, which assists with Kickstart configuration. You can download and install
these packages from the Fedora EPEL repository.

$ sudo rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/i386/cobbler-1.4.1-w
1.el5.noarch.rpm http://download.fedora.redhat.com/pub/epel/5/1386/w=
python-cheetah-2.0.1-1.el5.1386.rpm

Or you can add the EPEL repository to your host and then install packages from that reposi-
tory. You add the EPEL repository, if it’s not already added to your Yum configuration, by
adding the epel-release RPM.

$ sudo rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/1386/w=
epel-release-5-3.noarch.rpm

You can then install the cobbler package.

$ sudo yum install cobbler

933

934

CHAPTER 19 CONFIGURATION MANAGEMENT

Configuring Cobbler

After you've installed the required packages, you need to configure Cobbler. Cobbler comes
with a very handy check function that tells you what needs to be done to configure it. To see
what needs to be done, run the following:

$ sudo cobbler check

The following potential problems were detected:

#0: The 'server' field in /etc/cobbler/settings must be set to something other thanw
localhost, or kickstarting features will not work. This should be a resolvable =
hostname or IP for the boot server as reachable by all machines that will use it.

#1: For PXE to be functional, the 'next server' field in /etc/cobbler/settings muste
be set to something other than 127.0.0.1, and should match the IP of the boot w=
server on the PXE network.

#2: service cobblerd is not running

#3: change 'disable' to 'no' in /etc/xinetd.d/tftp

#4: since iptables may be running, ensure 69, 80, 25150, and 25151 are unblocked

#5: fencing tools were not found, and are required to use the (optional) power =

management features. install cman to use them

You can see there are a few things you need to do to get Cobbler running. Let’s work
through each of these issues.

First, you configure the /etc/cobbler/settings file. You need to update two fields in this
file, server and next_server. You need to replace the existing values (usually 127.0.0.1) with
the IP address of your host, so a PXE-booted host can find your Cobbler host. In our case, we
specify the following:

server 192.168.0.1
next_server 192.168.0.0.1

To update Cobbler’s configuration, you then run this:

$ sudo cobbler sync

Note You needtorunthe $ sudo cobbler sync command anytime you change the /etc/cobbler/
settings file. Common errors include leaving trailing spaces after options in the settings file. Make sure
you delete any extra spaces from the file.

You also need to configure a DHCP server (like the one we introduced in Chapter 9). You
have two choices here: you can get Cobbler to manage your existing DHCP server or you can
tell your existing DHCP server to point to Cobbler.

Cobbler Managing Your DHCP

If you want to enable Cobbler to manage your DHCP server, then you need to enable another
option in the /etc/cobbler/settings file:

manage_dhcp: 1

CHAPTER 19 CONFIGURATION MANAGEMENT

You also need to update a template file that Cobbler will use to configure your DHCP
server, /etc/cobbler/dhcp.template. Listing 19-1 shows an example of this file.

Listing 19-1. The /etc/cobbler/dhcp. template File

Sokk ok Kok oKk Kok Kok ok sk Kok Kok ok sk Kok Kok ok sk Kok Kok ok sk Kok Kok ok sk Kok sk Kok ok sk Kok kK ok ok

Cobbler managed dhcpd.conf file

generated from cobbler dhcp.conf template ($date)

Do NOT make changes to /etc/dhcpd.conf. Instead, make your changes
in /etc/cobbler/dhcp.template, as /etc/dhcpd.conf will be
overwritten.

H oH HF H R HF H B

oKk Rk Kok KRRk Kok oKk Kok Kok oKk Kok Kok ok sk Kok Kok ok sk Kok Kok ok sk Kok Kok ok koK R Kok ok

allow booting;
allow bootp;

ddns-update-style interim;
ddns-ttl 3600;
default-lease-time 600;
max-lease-time 7200;
log-facility local7;

ignore client-updates;
set vendorclass = option vendor-class-identifier;

key dynamic-update-key {

algorithm hmac-mds;

secret "3PDRnypPtzJqpbQvbw/B7bhPuHqpUe0Sdi95Z4Ez/IzhS61dzcK6MI6CdFHkkegpws
TN1kmXOM6GggRNE24aPmOw=="

}

zone 0.168.192.in-addr.arpa. {
key dynamic-update-key;
primary 192.168.0.1;

}

zone example.com. {
key dynamic-update-key;
primary 192.168.0.1;

}

subnet 192.168.0.0 netmask 255.255.255.0 {
option routers 192.168.0.254;
option domain-name "example.com";
option domain-name-servers 192.168.0.1;
option broadcast-address 192.168.0.255;

935

936

CHAPTER 19 CONFIGURATION MANAGEMENT

next-server $next server;
filename "/pxelinux.0";
group "static" {
use-host-decl-names on;
host au-mel-rhel-1 {
hardware ethernet 00:16:3E:15:3C:(C2;
fixed-address au-mel-rhel-1.example.com;

}

}

pool {
range 192.168.0.101 192.168.0.150;
deny unknown clients;

}

pool {
range 192.168.0.151 192.168.0.200;
allow unknown clients;
default-lease-time 7200;
max-lease-time 21600;

}

If you have an existing DHCP server with a configuration, you should update this template
to reflect that configuration. You can see we’ve adjusted the template in Listing 19-1 to reflect
the DHCP configuration we used in Chapter 9. We've added two settings:

allow booting;
allow bootp;

These two options tell the DHCP server to respond to queries from hosts who request network
boots.

The other two important settings to note in Listing 19-1 are the next-server and filename
configuration options. The next-server option is set to $next_server. This value will be
replaced by the IP address we just configured in the next_server option in the /etc/cobbler/
settings file. This tells our DHCP server where to route hosts who request a net boot.

The filename option is set to /pxelinux.0, which is the name of the boot file PXE-booted
hosts should look for to start their boot process. We'll set up this file shortly.

Now, after changing these files, you need to run the following command:

$ sudo cobbler sync

Caution If you have an existing DHCP server, this template will overwrite its configuration by overwrit-
ing the /etc/dhcpd. conf configuration file. Only do this if you are sure you know what you are doing, and
make a copy of your existing /etc/dhcpd. conf file before running the command.

CHAPTER 19 CONFIGURATION MANAGEMENT 937

Cobbler Not Managing Your DHCP

If you don’t want Cobbler to manage your DHCP, then you just need to adjust your existing
DHCP configuration file, /etc/dhcpd. conf, to add the next-server and filename options. Let’s
update the relevant portions of the configuration we created in Chapter 9 with this option, as
shown in Listing 19-2.

Listing 19-2. Existing dhcpd. conf Configuration File

allow booting;
allow bootp;

subnet 192.168.0.0 netmask 255.255.255.0 {
option routers 192.168.0.254;
option domain-name "example.com";
option domain-name-servers 192.168.0.1;
option broadcast-address 192.168.0.255;
filename "/pxelinux.0";
next-server 192.168.0.1;
group "static" {
use-host-decl-names on;
host au-mel-rhel-1 {
hardware ethernet 00:16:3E:15:3C:(C2;
fixed-address au-mel-rhel-1.example.com;

}

}

pool {
range 192.168.0.101 192.168.0.150;
deny unknown clients;

}

pool {
range 192.168.0.151 192.168.0.200;
allow unknown clients;
default-lease-time 7200;
max-lease-time 21600;

}

You can see we’ve added two options to the start of the DHCP section:

allow booting;
allow bootp;

These two options tell the DHCP server to respond to queries from booting clients.
We've also added the next-server option to our subnet definition.

next-server 192.168.0.1

938

CHAPTER 19 CONFIGURATION MANAGEMENT

The next-server option tells DHCP where to send hosts who request a PXE network boot. We
need to specify the IP address of our Cobbler server.

Lastly, we've added the filename option, set to /pxelinux.0, which is the name of the boot
file PXE-booted hosts should look for to start their boot process. We'll set up this file shortly.

Tip After configuring your DHCP server, you will need to restart the Cobbler server for the new configura-
tion to be applied.

Starting Cobbler and Apache

Next, you need to start the Cobbler daemon:
$ sudo service cobblerd start
You also need to ensure the Apache web server is started:

$ sudo service httpd start

Configuring TFTP

Once the daemon is started, you need to enable your TFTP server to send your boot file to the
host to be installed. To do this, you edit the /etc/xinet.d/tftp file to enable a TFTP server.
Inside this file find this line:

disable = yes
and change it to this:
disable = no
Next, you enable the TFTP server like so:

$ sudo chkconfig tftp on

Note You don’t need to start the service because it runs under the xinetd service that is already running.
If you run the chkconfig --1ist command, you can see the xinetd services at the end of the listing, and
you can also see that the tftp service is enabled.

You need to ensure your hosts can connect to the Cobbler server through your firewall by
opening some required ports, 69, 80, 25150, and 25151, for example, by creating iptables rules
such as the following:

-A Firewall-etho-INPUT -s 192.168.0.0/24 -p udp -m state --state NEW --dport 69 -j =
ACCEPT

-A Firewall-etho-INPUT -p tcp -m state --state NEW --dport 80 -j ACCEPT

-A Firewall-etho-INPUT -s 192.168.0.0/24 -p tcp -m state --state NEW --dport 25150 =
-3 ACCEPT

CHAPTER 19 CONFIGURATION MANAGEMENT

-A Firewall-etho-INPUT -s 192.168.0.0/24 -p tcp -m state --state NEW --dport 25151 =
-3 ACCEPT

These rules allow access for any host on the 192.168.0.0/24 subnet to the boot server on
the appropriate ports. You can find more information on firewall rules in Chapter 6.

Using Cobbler

Once you've configured Cobbler, you can start to make use of it. Cobbler allows you to specify
a distribution you'd like to build hosts with, imports that distribution’s files, and then creates a
profile. You can then build hosts using this distribution and profile.

Let’s start by creating our first profile using the import command.

$ sudo cobbler import --mirror=/media/cdrom --name=RHEL5 --arch=1386

You issue the cobbler command with the import option. The --mirror option specifies
the source of the distribution you want to package—in our case, we have used our DVD drive,
/media/cdrom, and have assumed our distribution CD or DVD is mounted on this drive.

You can also specify an online repository, for example:

$ sudo cobbler import --mirror=rsync://ftp.iinet.net.au/pub/fedora/linux/releases/w=
10/Fedora/i386/ --name=Fedoral0 --arch=1386

Here we've specified a Fedora 10 build available via rsync (a type of simple file transfer).
Cobbler will download the required files and create a distribution and a profile for our Fedora
10 build.

Tip You will need sufficient disk space on your host to copy whatever distributions you want to keep. For
example, for the RHEL 5 build, you will need about 3GB of space.

Cobbler will run the import process and then return you to the prompt. Depending on the
performance of your host (and, if you are importing over the network, the speed of your con-
nection), this may take some time.

The last two options in our import, --name and - -arch, are the name of the profile we want
to create (e.g., RHEL5) and the architecture (e.g., 386, x86_64, etc.) of the distribution being
imported. Cobbler can usually detect this, but it is safer to specify it. The architecture will then
be suffixed to the name of the profile you are creating (e.g., RHEL5-1386).

After you've created your distribution and profile, you can see it in Cobbler using the report
option, as shown in Listing 19-3.

Listing 19-3. A Cobbler Report

$ sudo cobbler report

distro : RHEL5-1386
architecture : 1386
breed : redhat

created : Tue Feb 24 21:46:33 2009

939

940

CHAPTER 19

comment

initrd

kernel

kernel options
ks metadata
tree build time
modified

mgmt classes

0s version
owners

post kernel options
redhat mgmt key
template files
profile

distro

comment

created

dhcp tag

enable menu
kernel options
kickstart

ks metadata
mgmt classes
modified

name servers
owners

post kernel options
redhat mgmt key
Tepos

server

template files
virt bridge
virt cpus

virt file size
virt path

virt ram

virt type

CONFIGURATION MANAGEMENT

: rhels.2

: /var/www/cobbler/ks mirror/RHEL5/images/pxeboot/initrd.img
1 /var/www/cobbler/ks mirror/RHEL5/images/pxeboot/vmlinuz
{)

: {'tree': "http://@@http_server@@/cblr/links/RHEL5-1386"}
: Thu May 1 09:23:47 2008

: Tue Feb 24 21:52:03 2009

2 [

: rhels

: ['admin']

s {r

1 <<inherit>>

s

: RHEL5-1386

: RHEL5-1386

: Tue Feb 24 21:46:33 2009
: default

: True

: {}

1 /var/lib/cobbler/kickstarts/sample.ks
: {}

: (1]

: Tue Feb 24 21:46:33 2009
2 (1]

: ['admin']

: {}

: <<inherit>>

2 (1]

1 <<inherit>>

: {}

: xenbr0

i1

5

: 512
1 gemu

This option displays all the distributions and their profiles currently imported into

Cobbler.

CHAPTER 19 CONFIGURATION MANAGEMENT

Note You may see more than one distribution and profile created from importing a distribution. For example,
importing RHEL 5 will add the vanilla RHEL 5 distribution and the Xen (which is a type of virtualization we
discuss in Chapter 20) version of RHEL 5.

Listing 19-3 shows our vanilla RHEL 5 distribution and the profile we created, RHEL5-1386.
Most of the information in Listing 19-3 isn’t overly important to us, but we do need to make
note of the kickstart option, which has a value of /var/1ib/cobbler/kickstarts/sample.ks.
This Kickstart file will automate any build of a distribution; we’ll look at it in more detail later
in this chapter.

You can change what Kickstart file this profile uses (or edit other profile values) by editing
your profile using the cobbler profile command. You can also list all the profiles by using the
cobbler profile list command.

$ sudo cobbler profile edit --name=RHEL5-i386 --kickstart=/var/lib/cobbler/ws
kickstarts/custom.ks

Here we've edited the RHEL5-1386 profile to use the Kickstart file /var/1ib/cobbler/
kickstarts/custom.ks.

You can also remove a profile using the remove command or copy one using the copy
command.

$ sudo cobbler profile copy --name=RHEL5-1386 --newname=RHEL5-1386-new
$ sudo cobbler profile remove --name=RHEL5-1386-new

The first command will copy the RHEL5-386 profile to RHEL5-1386-new, and the second
command will delete the RHEL5-1386-new profile and its files.

Note You can see the other options you can edit on your profile by looking at the cobbler command’s
man page.

Building a Host with Cobbler

Now that you’'ve added a profile and a distribution, you can boot a host and install your dis-
tribution. Choose a host (or virtual machine) you wish to build and reboot it. Your host may
automatically search for a boot device on your network, but more likely you will need to adjust
its BIOS settings to adjust the boot order. In order to boot from Cobbler, you need to specify
that your host boots from the network first.

When your host boots, it will request an IP address from the network and get an answer
from your DHCP server, as you can see in Figure 19-1.

MM

942

CHAPTER 19 CONFIGURATION MANAGEMENT

LIENT MAC ADDR: 88 BC 29 3B 22 46 GUID: S564DDFDB-733C-788F-9D49-FA93213B2246
LIENT IP: 192.8.2.162 MASK: 255.255.255.8 DHCP IP: 192.8.2.156
ATEHWAY IP: 192.8.2.1

XELINUX 3.11 2885-89-B2 Copyright (C) 1994-2885 H. Peter Anvin
segment at: BAB9C7FH
segruent size: 2408
segment at: BaBgECCA
segment size: BABD
point found (we hope) at 9ECC:B1B86

$192.8.2.156:192.8.2.1:255.255.255.0

load: pxelinux.cfg-B1-88-Bc-29-3b-22-46
load: pxelinux.cfg-CHABBZAZ

load: pxelinux.cfg-CBABBZA

load: pxelinux.cfg-CBABAZ

load: pxelinux.cfg-CHABA

load: pxelinux.cfg-CHAA

load: pxelinux.cfg-CHA

load: pxelinux.cfg-CH

load: pxelinux.cfg-C

load: pxelinux.cfgrsdefault

Figure 19-1. Network boot

Your host will boot to a command line appropriately called boot:. From here, you can
launch the Cobbler menu by typing menu. You can see an example of this menu in Figure 19-2.

Cobbler | http:s-cobbler.et.redhat.com

(local)
RHEL5-1386

rescue-RHELS-i386

Automatic boot in 7 seconds...

Figure 19-2. The Cobbler menu

From this menu, you can select the profile you'd like to install (e.g., RHEL5-1386). If you
don’t select a profile to be installed, Cobbler will automatically launch the first item on the
menu, (local), which continues the boot process on the local host.

Note If you don’t have an operating system installed on this host, this boot process will obviously fail.

CHAPTER 19 CONFIGURATION MANAGEMENT

If you've selected a profile, then this profile will start the installation process using the
instructions contained in the associated Kickstart file. If you are watching your installation
process, you will see the installation screens progress—all without requiring input from you to
continue or select options.

Using Cobbler, you can also specify configuration options for particular hosts. You don’t
need to do this, but it is useful if you have a specific role in mind for a host and want to specify
a particular profile or Kickstart configuration. To do this, you add hosts to Cobbler, identifying
them via their MAC or IP addresses, using the system command.

$ sudo cobbler system add --name=gateway.example.com --mac=00:0C:29:3B:22:46w=
--profile=RHEL5-1386 --kickstart=gateway.ks

Here we’ve added a system named gateway.example.com with the specified MAC address.

Note You can usually see your MAC address during the network boot process, or you can often find it
printed on a label on your network card.

The new host uses the RHEL5-1386 profile and a Kickstart file called gateway. ks. If a host
with the appropriate MAC address connects to our Cobbler host, then Cobbler will use these
configuration settings to provision the host.

You can list the configured hosts using the 1ist and report options.

$ sudo cobbler system list
gateway.example.com

A full listing of the gateway.example.com system definition can be seen using the report
option.

$ sudo cobbler system report -name=gateway.example.com
We can also delete a system using the remove command:

$ sudo cobbler system remove --name=gateway.example.com

Note You can read about additional Cobbler capabilities on the cobbler command’s man page.

Cobbler Web Interface

Cobbler also has a simple web interface you can use to manage some of its options. It’s pretty
simple at this stage, and the command-line interface is much more fully featured, but it is
available if you wish to implement it. You can find instructions at https://fedorahosted.org/
cobbler/wiki/CobblerhWebInterface.

943

944

CHAPTER 19 CONFIGURATION MANAGEMENT

Troubleshooting Cobbler

You can troubleshoot the network boot process by monitoring elements on your host, includ-
ing your log files, and by using a network monitoring tool like the tcpdump or tshark command.
You can start by monitoring the output of the DHCP process by looking at the /var/log/
messages log files. Cobbler also logs to the /var/log/cobbler/cobbler.log file and the files con-
tained the kickstep and syslog directories also under /var/log/cobbler.
You can also monitor the network traffic passing between your booting host and the boot
server. You can use a variety of network monitoring tools for this:

$ sudo tcpdump port tftp

Cobbler has a wiki page available that contains documentation at https://fedorahosted.
org/cobbler/wiki/UserDocs. The documentation includes some useful tips for troubleshooting
athttps://fedorahosted.org/cobbler/wiki/UserDocs#Troubleshooting. The Cobbler commu-
nity also has a mailing list at https://fedorahosted.org/mailman/listinfo/cobbler and an
active IRC channel on Freenode at #cobbler.

Provisioning with Ubuntu

Like Red Hat, Ubuntu can automatically provision hosts, but it lacks a server solution like
Cobbler. In order to achieve the same result on Ubuntu as on Red Hat, you will have to do a
little more manual configuration of your Ubuntu host to network boot your hosts.

Note Ubuntu can automate the installation process using a tool called Preseed. Ubuntu, however, also
supports Kickstart. We’re going to show you how to use a combination of Kickstart and Preseed to automate
your installation in the next section.

COBBLER ON UBUNTU

Cobbler is also supported on Ubuntu; however, there are currently no packages built for Ubuntu. If you want
to use Cobbler for Ubuntu, you can build it from source using the instructions at https://fedorahosted.
org/cobbler/wiki/DownloadInstructions or create a package using the instructions in Chapter 7.

Installing Packages

We’'re going to start by setting up a PXE boot server on Ubuntu and installing some pack-
ages. You will need to install a TFTP server (to transfer the files to your target host) and the
inetutils-inetd package to run the TFTP server. If it is not already installed on your host, you
will need to install a DHCP server using the dhcp3-server package. Lastly, to deliver the distri-
bution’s files to the host to be built, we’ll use the Apache web server. If you don’t have Apache
installed, you'll need to install the apache2 package.

$ sudo apt-get install inetutils-inetd tftpd-hpa dhcp3-server apache2

CHAPTER 19 CONFIGURATION MANAGEMENT

Note We show how to configure DHCP in Chapter 9.

Configuring the DHCP Server

Next, you need to configure your DHCP server. If you already have a DHCP server configured,
we recommend updating the configuration to specify a PXE boot server for your existing DHCP
ranges; otherwise you'll need to configure DHCP to provide addresses in an appropriate range
to provision hosts. For example, you could create a DHCP range for provisioning hosts.

To configure our Ubuntu DHCP server, we update the /etc/dhcp3/dhcpd. conf configuration
file. We add the required configuration to the example configuration we created in Chapter 9, as
shown in Listing 19-4.

Listing 19-4. Ubuntu Example DHCP Server Configuration

allow booting;

allow bootp;
ddns-update-style interim;
ddns-ttl 3600;
default-lease-time 600;
max-lease-time 7200;
log-facility local7;

key dynamic-update-key {

algorithm hmac-md5;

secret "3PDRnypPtzJqpbQvbw/B7bhPuHqpUe0Sdi95Z4Ez/I1zhS61dzcK6MI6CdFHkkegpw
TN1kmXOM6GggRNE24aPmOw==";

}

zone 0.168.192.in-addr.arpa. {
key dynamic-update-key;
primary 192.168.0.1;

}

zone example.com. {
key dynamic-update-key;
primary 192.168.0.1;

}

subnet 192.168.0.0 netmask 255.255.255.0 {
filename "pxelinux.0";
next-server 192.168.0.1;
option routers 192.168.0.254;
option domain-name "example.com";
option domain-name-servers 192.168.0.1;
option broadcast-address 192.168.0.255;
group "static" {

945

946

CHAPTER 19 CONFIGURATION MANAGEMENT

use-host-decl-names on;

host au-mel-rhel-1 {
hardware ethernet 00:16:3E:15:3C:(C2;
fixed-address au-mel-rhel-1.example.com;

}

}

pool {
range 192.168.0.101 192.168.0.150;
deny unknown clients;

}

pool {
range 192.168.0.151 192.168.0.200;
allow unknown clients;
default-lease-time 7200;
max-lease-time 21600;

}

Here we add the allow directive for bootp and booting, which tells the DHCP server to
accept network boot requests at the top of our file. In the subnet directive, we add two options,
filename and next-server.

The filename option specifies the name of the file that the DHCP server will deliver to the
host that wishes to net boot. This file contains the initial instructions to boot the host, and you
should specify pxelinux.0 here. We'll install this file shortly.

The next-server option tells our net-booting host the server from which to retrieve the
boot files. You should specify the IP address of the PXE boot server.

Tip After changing your DHCP configuration, you will need to restart the DHCP service.

Configure the TFTP Server

We installed the tftp-hpa package that contains the TFTP server. We now need to config-
ure this server so it can transfer our boot files to the target host. To do this, we edit the /etc/
default/tftp-hpa file:

#Defaults for tftpd-hpa
RUN_DAEMON="yes"
OPTIONS="-1 -s /var/lib/tftpboot"

In the preceding code, we enable the RUN_DAEMON option by setting it to yes. Notice the
OPTIONS line that specifies the -1 and -s options. The -1 option runs the daemon in stand-
alone listen mode. The tftpd service usually runs under inetd, which is a type of daemon
manager; the -1 option tells it to run like a normal daemon. The -s option tells the daemon
the location of our boot files, here /var/1ib/tftpboot. This is where we’ll store our boot files.

Once we’ve configured the tftpd-hpa package, we need to restart the tftpd-hpa service.

$ invoke-rc.d tftpd-hpa restart

CHAPTER 19 CONFIGURATION MANAGEMENT

Installing the Boot Files

You now need to install the files required to boot your host. These files will be installed into
the /var/lib/tftpboot directory. Ubuntu comes with a collection of boot and kernel files spe-
cifically designed for network booting. These are available in the install/netboot directory on
your Ubuntu media:

$ sudo cp -r /media/cdrom/install/netboot/* /var/lib/tftpboot/
or you can download them from the Ubuntu online repositories.

$ cd /tmp

$ 1ftp -c "open http://archive.ubuntu.com/ubuntu/dists/hardy/main/installer-i386/w=
current/images/; mirror netboot/"

$ mv netboot/* /var/lib/tftpboot

$ rm -fr netboot

Here we used the 1ftp command to copy the contents of the netboot directory for the
Ubuntu 8.04 or Hardy release to our /tmp directory. We then moved the contents of this
directory to the /var/lib/tftpboot directory.

Note The 1ftp command is a more sophisticated version of the FTP file transfer command. To see how it
works, refer to its man page.

Configuring the PXE Boot Loader

Now that you have the network boot files, you can configure the boot loader for your environ-
ment. Let’s look at the contents of the /var/1ib/tftpboot directory.

boot.img.gz

mini.iso

netboot.tar.gz

pxelinux.0 -> ubuntu-installer/i386/pxelinux.0
pxelinux.cfg -> ubuntu-installer/i386/pxelinux.cfg
ubuntu-installer

The directory contains five files (two of which are symlinked) and a directory called
ubuntu-installer. The pxelinux.0 (which we configured in our DHCP server’s filename
option), boot. img.gz, and netboot. tar.gz files will do the initial boot of our host. The mini.iso file
is an ISO (burnable to CD) image of the boot files. If you don’t use network-based provision-
ing, you can burn this image to a CD and use it to boot and perform a minimal installation.
The pxelinux.cfg directory contains the configuration files used by PXE to select what boot
image to load (we’ll adjust this for our environment shortly), and the ubuntu-installer direc-
tory contains files required for our PXE boot.

947

948

CHAPTER 19 CONFIGURATION MANAGEMENT

If you look in the pxelinux.cfg directory, you'll find a single file called default. This is the
default configuration file used when booting hosts. Let’s look at its contents:

DISPLAY ubuntu-installer/i386/boot-screens/boot.txt

F1 ubuntu-installer/i386/boot-screens/f1.txt
F2 ubuntu-installer/i386/boot-screens/f2.txt
F3 ubuntu-installer/i386/boot-screens/f3.txt
F4 ubuntu-installer/i386/boot-screens/f4.txt
F5 ubuntu-installer/i386/boot-screens/f5.txt
F6 ubuntu-installer/i386/boot-screens/f6.txt
F7 ubuntu-installer/i386/boot-screens/f7.txt
F8 ubuntu-installer/i386/boot-screens/f8.txt
F9 ubuntu-installer/i386/boot-screens/f9.txt
FO ubuntu-installer/i386/boot-screens/f10.txt

DEFAULT install

LABEL install

kernel ubuntu-installer/i386/1inux

append ks=http://192.0.2.161/ks.cfg vga=normal initrd=ubuntu-installer/i386/w=s
initrd.gz --
LABEL linux

kernel ubuntu-installer/i386/1inux

append vga=normal initrd=ubuntu-installer/i386/initrd.gz --
LABEL cli

kernel ubuntu-installer/i386/1inux

append tasks=standard pkgsel/language-pack-patterns= pkgsel/install-language-=
support=false vga=normal initrd=ubuntu-installer/i386/initrd.gz --

LABEL expert

kernel ubuntu-installer/i386/1inux

append priority=low vga=normal initrd=ubuntu-installer/i386/initrd.gz --
LABEL cli-expert

kernel ubuntu-installer/i386/1inux

append tasks=standard pkgsel/language-pack-patterns= pkgsel/install-language-=
support=false priority=low vga=normal initrd=ubuntu-installer/i386/initrd.gz --

LABEL rescue
kernel ubuntu-installer/i386/1inux
append vga=normal initrd=ubuntu-installer/i386/initrd.gz rescue/enable=true --

PROMPT 0
TIMEOUT O

The file specifies our boot environment, first by specifying the text that will be displayed
when our host boots, via the DISPLAY option, and when each function key is pressed (the F1 to
Fo options). It then uses the LABEL option to specify the various types of boots that we can per-
form. The DEFAULT option specifies the default boot label, in our case install.

CHAPTER 19 CONFIGURATION MANAGEMENT

Each label specifies the kernel to load and the options to pass to that kernel.

Tip You can find documentation on the boot options at https://help.ubuntu.com/community/
BootOptions.

Lastly, the PROMPT and TIMEOUT options control how our boot sequence will operate. The
PROMPT option, if set to 1, will wait at the boot prompt (see Figure 19-3) until a boot label is
selected.

43 ubuntu

The default installation is suitable for most desktop or laptop systenms.
Press F1 for help and advanced installation options.

To install only the command-line base system, type 'cli’ then ENTER.
[For the default installation, press ENTER.

Figure 19-3. The Ubuntu boot prompt

If the PROMPT option is set to 0, then the default boot option will be immediately taken without
waiting for a keypress. The TIMEOUT specifies how long in seconds it will wait at the boot prompt
for that selection. If no option is selected before the timeout expires, then the default label will be
booted. If you want your host to automatically boot and install, then you should set the PROMPT
value to 0.

Rather than using the default configuration option, you can specify individual files in this
directory for the specific host you wish to boot and build. To do this, create a file name using
the target host’s MAC address. For example, if your host’s MAC address is 00:0A:E4:2E:A6:42,
you could create a file called 000AE42EA642 by copying the default file and editing it. When the
host with this MAC address requests a network boot, this configuration file will be used rather
than the default file.

949

950

CHAPTER 19 CONFIGURATION MANAGEMENT

Configuring Apache for Provisioning

Next, you need to add the contents of the distribution you’d like to install to a directory and
enable access via the Apache web server. After the boot process, these distribution files will be
used to install your new host.

To do this, copy the files from the Ubuntu media by creating a directory called ubuntu
under the /var/www directory and copying the contents of the Ubuntu installation media to it.

$ sudo mkdir /var/www/ubuntu
$ sudo cp -r /media/cdrom/* /var/www/ubuntu/

You can achieve the same result by directly mounting the CD or DVD. Using the mount
command, use the --bind option to make the mounted CD or DVD available in the /var/www/
ubuntu directory. This means you don’t need to install the files onto your PXE boot host. The
following command mounts whatever CD or DVD is mounted at /media/cdrom again at /var/
www/ubuntu.

$ sudo mount --bind /media/cdrom/ /var/www/ubuntu/

The Apache web server should then serve these files out via HTTP. In our Kickstart con-
figuration file, we’ll tell the host how to find these files when it wants to install our distribution.

Note We talk about how to configure and run Apache in Chapter 11.

Firewall Configuration

You also need to ensure your firewall is configured to allow the required access for network
booting. To do this, you need to have port 69 open for the TFTP server and port 80 open for
HTTP traffic. The following are some appropriate iptables rules:

-A Firewall-etho-INPUT -s 192.168.0.0/24 -p udp -m state --state NEW --dport 69 =
-j ACCEPT
-A Firewall-etho-INPUT -p tcp -m state --state NEW --dport 80 -j ACCEPT

These rules allow access for any host on the 192.168.0.0/24 subnet to the boot server on
the appropriate ports. You can read more about firewall rules in Chapter 6.

Specifying the Kickstart File

To finish this configuration, you’ll create and specify a Kickstart file to automate the actual
installation process. You'll store this file in /var/www/ubuntu and make it available via the
Apache web server, just like your distribution’s installation files. Let’s create a file now:

$ sudo touch /var/www/ubuntu/ks.cfg

We created a file called ks . cfg in the /var/www/ubuntu directory.

CHAPTER 19 CONFIGURATION MANAGEMENT

Note If you mounted a DVD directory (as described previously), storing the ks . cfg file in the /var/www/
ubuntu directory won’t work, and you’ll need to locate the file elsewhere (e.g., by creating another directory
and placing it there).

Let’s now edit the ks.cfg file to include some very basic configuration.

install
url --url http://192.168.0.1/ubuntu/

Our example file has two Kickstart options, install and url. The install option tells Kick-
start to install rather than the alternative, upgrade, which upgrades an existing installation. The
url option tells Kickstart where to find the files required to install the distribution; these are
the files we are serving out via our Apache web server.

Note When you boot a host with this example file, the installation starts, but since you haven’t specified
any answers to installation questions, you still need to answer each question. You’ll add to this file in the next
section and answer the required questions.

To use our ks. cfg configuration file, we need to tell our boot server where to find it. We
do this by adding an additional option to one or more labels in our PXE configuration file, for
example, /var/1lib/tftpboot/pxelinux.cfg/default. Let’s look at the install label from the
default file:

LABEL install

kernel ubuntu-installer/i386/1inux

append ks=http://192.168.0.1/ubuntu/ks.cfg vga=normales
initrd=ubuntu-installer/i386/initrd.gz --

You can see we’ve added the ks option to our kernel boot options. The ks option tells
the boot server where to find our Kickstart file, in our case via HTTP at http://192.168.0.1/
ubuntu/ks.cfg.

Network Booting an Ubuntu Host

You have set up your Ubuntu boot server and specified your distribution’s installation files,
and now you can boot and install hosts. To do this, you'll configure your host to boot from the
network, usually using the appropriate BIOS setting.

The booting host will attempt to acquire an IP address from your DHCP server. If it gets an
IP address, then it will request boot instructions. The DHCP server will provide the pxelinux.0
file and direct the booting host to the PXE server. The PXE server will provide the appropriate
boot files and display the Ubuntu boot screen, as shown in Figure 19-4.

951

952 CHAPTER 19 CONFIGURATION MANAGEMENT

<3 ubuntu

The default installation is suitable for most desktop or laptop systems.
Press F1 for help and advanced installation options.

To install only the command-line base system, type 'cli’ then ENTER.
[For the default installation, press ENTER.

Figure 19-4. The Ubuntu boot screen

After bootup, the Kickstart configuration file will be retrieved and the installation process
will be initiated. We’ll look at automating that process in the next section.

Troubleshooting Ubuntu Network Booting

Troubleshooting the network boot process requires monitoring several elements on your
host, including your log files, and using a network monitoring tool like the tcpdump or tshark
command.

Let’s start by monitoring the output of the DHCP process by looking at /var/log/daemon.
log. You can also monitor the network traffic passing between your booting host and the boot
server using a variety of network monitoring tools:

$ sudo tshark port tftp
Capturing on etho

0.000000 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: pxelinux.0\000, ‘=
Transfer type: octet\000

0.126924 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: pxelinux.0\000, ‘=
Transfer type: octet\000

0.238396 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: w»
pxelinux.cfg/564ddfdb-733c-708f-9d49-fa93213b2246\000, Transfer type: octet\000

0.242177 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: w»
pxelinux.cfg/01-00-0c-29-3b-22-46\000, Transfer type: octet\000

0.244886 192.168.0.1 -> 192.168.0.161 TFTP Read Request, =
File: pxelinux.cfg/C00002A4\000, Transfer type: octet\000

0.246654 192.168.0.1 -> 192.168.0.161 TFTP Read Request, =
File: pxelinux.cfg/C00002A\000, Transfer type: octet\000

CHAPTER 19 CONFIGURATION MANAGEMENT

0.248279 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: =
pxelinux.cfg/C00002\000, Transfer type: octet\000

0.289393 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: =
pxelinux.cfg/C0000\000, Transfer type: octet\000

0.306368 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: =
pxelinux.cfg/C000\000, Transfer type: octet\000

0.311124 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: =
pxelinux.cfg/C00\000, Transfer type: octet\000

0.315184 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: =
pxelinux.cfg/Co\000, Transfer type: octet\000

0.318966 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: =
pxelinux.cfg/C\000, Transfer type: octet\000

0.333135 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: =
pxelinux.cfg/default\000, Transfer type: octet\000

0.355684 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: =
ubuntu-installer/i386/boot-screens/boot.txt\000, Transfer type: octet\000

0.361184 192.168.0.1 -> 192.168.0.161 TFTP Read Request, File: =
ubuntu-installer/i386/boot-screens/splash.rle\000, Transfer type: octet\000

Here we used the tshark command (installed via the tshark package) to monitor all traffic
on port 69 (the TFTP port). You can see the request for the pxelinux. 0 file and our pxelinux.cfg/
default configuration file, and finally the display of the Ubuntu boot screen.

Note You can find more information about network booting at https://help.ubuntu.com/8.04/
installation-guide/i386/install-methods.html.

Kickstart and Preseed

On Red Hat, the language used to automatically install your host is called Kickstart. On Ubuntu,
it is called Preseed. Kickstart, however, is also supported on Ubuntu in a form called Kickseed.
The current Kickseed support can’t configure Ubuntu completely, but helpfully it can also use
selected Preseed directives to address any gaps. For simplicity’s sake and because it’s an easier
language to use, we're going to show you how to use Kickstart to automate your installation for
both Red Hat and Ubuntu. Where something isn’t supported on Ubuntu, we’ll show you how to
use Preseed to configure it.

Note Kickstart support for Ubuntu is growing regularly. The 8.10 and the Jaunty release (i.e., the future
9.04 release) will enhance this support further.

A Kickstart configuration file contains the instructions required to automate the installa-
tion process. It’s a simple scripted process for most installation options, but it can be extended
to do some complex configuration. Kickstart is heavily used on Red Hat, and more recently on

953

954

CHAPTER 19 CONFIGURATION MANAGEMENT

Ubuntu, so it’s well documented. You can find detailed documentation for Kickstart on RHEL
5athttps://www.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5/html/Installation_
Guide/ch-kickstart2.html. This manual is also useful for provisioning Ubuntu hosts, as it uses
many of the same directives. Again, when a particular directive isn’t supported in Ubuntu,
we’ll provide you with the Preseed equivalent.

You can find documentation on Preseed and its directives at https://help.ubuntu.com/8.04/
installation-guide/i386/appendix-preseed.html. We’'ll work with a few of these directives
later in this section.

You've already seen how to specify Kickstart files to your provisioning environments,
using both Cobbler on Red Hat and the PXE boot configuration on Ubuntu. Let’s start by look-
ing at some of the contents of a simple Kickstart file in Listing 19-5.

Listing 19-5. A Kickstart File

install

System authorization information
auth --useshadow --enablemds

System bootloader configuration
bootloader --location=mbr

Partition clearing information
clearpart --all --initlabel

Use text mode install

text

Listing 19-5 shows a list of configuration directives starting with the install option, which
dictates the behavior of the installation process by performing an installation. The alternative
is upgrade, which automates an upgrade of a host.

You can then see configuration directives with options, for example, auth --useshadow
--enablemds, which tell Kickstart how to answer particular installation questions. The auth
statement has the values --useshadow and --enablemds5 here, which enable shadow passwords
and use of MD5, respectively.

The option that follows, bootloader with a value of --location=mbr, tells Kickstart to install
the boot loader into the MBR. Next is the directive clearpart, which clears all partitions on the
host and creates default labels for them. The final option, text, specifies we should use text-based
installation as opposed to the GUI.

Tip You can use Kickstart to upgrade hosts as well as install them. If you have an existing host, you can
network boot from a new version of your operating system and use a Kickstart file to script and upgrade.

There are too many directives to discuss them individually, so we show you in Table 19-1
the directives that must be specified and some of the other major directives that you may find
useful.

CHAPTER 19 CONFIGURATION MANAGEMENT

Table 19-1. Required Kickstart Directives

Directive Description

auth Configures authentication.

bootloader Configures the boot loader.

keyboard Configures the keyboard type.

lang Configures the language on the host.

part Configures partitions. This is required for installation, but not if
upgrading.

rootpw Specifies the password of the root user.

timezone Specifies the time zone the host is in.

You can also find a useful list of the available directives with explanations at http://
www.redhat.com/docs/manuals/enterprise/RHEL-5-manual/Installation_Guide-en-US/
s1-kickstart2-options.html.

Tip If you are on Red Hat, you can see an example Kickstart file that was created when you installed your
host in the /root/anaconda-ks. cfg file. This will show you how your current host is built and can be used
as an example to build similar hosts.

Installation Source

You've already seen the install and upgrade directives that specify the behavior of the instal-
lation. You can also specify the source of your installation files. In the Ubuntu provisioning
section, you saw the url directive, which tells Kickstart to look for its installation files at an
HTTP URL (e.g., http://192.168.0.1/ubuntu).

url --url http://192.168.0.1/ubuntu/

For Cobbler, we define a variable to specify the location of our installation source.
url --url=$tree

The url directive can also be used to specify an FTP server:
url --url ftp://jsmith:passsword@192.168.0.1/ubuntu

We can specify some alternative sources, including cdrom, when installing from a locally
mounted CD or DVD and hard drive to install from a local partition.

harddrive --dir=/ubuntu --partition=/installsource

Keyboard, Language, and Time Zone

The next snippet we’re going to show you configures our keyboard, language, and time zone.

955

956

CHAPTER 19 CONFIGURATION MANAGEMENT

System keyboard

keyboard us

System language

lang en AU

System timezone

timezone Australia/Melbourne

Here we've specified us as the value for the keyboard directive to indicate a US keyboard.
We’ve specified our language as en_AU (English Australian) and our time zone as Australia/
Melbourne.

Tip The keyboard, language, and time zone options are identical on Red Hat and Ubuntu.

Managing Users

You can also set the root user’s password with the Kickstart rootpw directive.
rootpw --iscrypted 1V.rhw$VUj.euMxoVoWkcQSanpGio

The rootpw directive is a required Kickstart option for all Kickstart files. It can take either
a plain-text value or an encrypted value for the root user’s password when the --iscrtypted
option is specified. You can create this encrypted password using the grub-md5-crypt command
like so:

$ grub-md5-crypt

Password:

Retype password:

1V.rhw$VU7j . euMxoV9IhkcQSanpGio

Specify the password you'd like to be encrypted and then retype it when prompted. You
should then cut and paste the encrypted password into the Kickstart file.

On Ubuntu, the rootpw directive defaults to the --disabled option, in keeping with Ubuntu’s
approach of disabling the root user.

rootpw --disabled

Note The --disabled option is not available on Red Hat hosts.

On Ubuntu, Kickstart can also create a new user with the user directive.
user jsmith --fullname "John Smith" --password password

The preceding code creates a new user called jsmith, with a full name of John Smith and a
password of password. By adding the --iscrypted option, you can add a user with an encrypted
password. We would create our encrypted password as we did with the rootpw directive.

CHAPTER 19 CONFIGURATION MANAGEMENT

Firewall and Network

On Red Hat, you can configure your host’s initial firewall and network configuration.

Firewall configuration

firewall --enabled --http --ssh --smtp
SELinux configuration

selinux --disabled

Here we enabled the firewall with the firewall option and allowed access via HTTP, SSH,
and SMTP. (You can disable the firewall with the --disabled option.) We also disabled SELinux
using the selinux --disabled option.

Ubuntu cannot change firewall configuration through either Kickstart or Preseed, so you
should just set this value as follows:

firewall --disabled

On both Red Hat and Ubuntu, you can configure your network connections with Kickstart
like so:

Network information
network --bootproto=static --device=eth0 --gateway=192.168.0.254 =
--1p=192.168.0.1 --nameserver=192.168.0.1 --netmask=255.255.255.0 --onboot=on

You can also specify network configuration for one or more interfaces using the network
option. You can see we've set the various options required to configure the eth0 interface. You
can also specify DHCP, for example:

network --bootproto=dhcp --device=etho --onboot=on

On Red Hat with Cobbler, if you're working with a specific host (one created with the
cobbler system command), you can pass specific network configuration values to the Cobbler
system configuration.

$ sudo cobbler system edit --name=gateway.example.com --mac=00:0C:29:3B:22:46w
--profile=RHEL5 --interface=0 --ip=192.168.0.1 --subnet=255.255.255.0 --=
gateway=192.168.0.254 --hostname=gateway --static=1

Here we’ve specified the edit command to change an existing Cobbler-defined system and
passed network configuration values to our system. This would define a static network configu-
ration for interface eth0. We specify that the configuration is static using the --static=1 option;
we would specify --static=0 for a DHCP configuration. The interface to be configured is speci-
fied using the --interface=0 option.

Then, instead of specifying a network line, in our Kickstart file we specify what Cobbler
calls a snippet.

$SNIPPET('network_config")

When building your host, Cobbler passes the network configuration you've specified to
this snippet and a template it contains. This is then converted into the appropriate network
line and your host is configured.

957

958

CHAPTER 19 CONFIGURATION MANAGEMENT

Tip This snippet is a simple use of Cobbler’s snippet system. You can define a variety of other actions
using snippets, and you can see a selection of these in the /var/1ib/cobbler/snippets directory, includ-
ing the network config snippet we used in this section. You can see how to use these snippets in the
sample.ks file, and you can find instructions on how to make use of templates and snippets at https://
fedorahosted.org/cobbler/wiki/KickstartTemplating and https://fedorahosted.org/cobbler/
wiki/KickstartSnippets.

Disks and Partitions

You've already seen one option Kickstart uses to configure disks and partitions, clearpart,
which clears the partitions on the host. You can then use the part option to configure parti-
tions on the host like so:

Partition clearing information

clearpart --all --initlabel

part /boot --asprimary --bytes-per-inode=4096 --fstype="ext3" --size=150
part / --asprimary --bytes-per-inode=4096 --fstype="ext3" --size=4000
part swap --bytes-per-inode=4096 --fstype="swap" --size=512

Note On Red Hat, you can create a similar configuration just by specifying the autopart option. The
autopart option automatically creates three partitions. The first partition is a 1GB or larger root (/) partition,
the second is a swap partition, and the third is an appropriate boot partition for the architecture. One or more
of the default partition sizes can be redefined with the part directive.

You use the part option to create specific partitions. In the preceding code, we first cre-
ated two partitions, /boot and /, both ext3. We specified a size of 150MB for the /boot partition
and a size of 4000MB (or 4GB) for the / or root partition. We also created a swap partition with
a size of 512MB.

Using Kickstart on Red Hat, we can create software RAID configurations, for example:

part raid.01 --asprimary --bytes-per-inode=4096 --fstype="raid" --grow --ondisk=sda =
--size=1

part raid.02 --asprimary --bytes-per-inode=4096 --fstype="raid" --grow --ondisk=sdb =
--size=1

part raid.03 --asprimary --bytes-per-inode=4096 --fstype="raid" --grow --ondisk=sdc =
--size=1

part raid.04 --asprimary --bytes-per-inode=4096 --fstype="raid" --grow --ondisk=sdd =
--size=1

part raid.05 --asprimary --bytes-per-inode=4096 --fstype="raid" --grow --ondisk=sde =
--size=1

raid / --bytes-per-inode=4096 --device=md0 --fstype="ext3" --level=5 raid.01 raid.02 =
raid.03 raid.o4 raid.o5

CHAPTER 19 CONFIGURATION MANAGEMENT

We specified five RAID disks, and each disk uses its entire contents as indicated by the
--grow option. The respective disk to be used is specified with the --ondisk option, here rang-
ing from sda to sde. Lastly, we used the raid option to specify the mdo RAID disk as the / or root
partition.

Caution On Ubuntu, Kickstart doesn’t support RAID, although Preseed does partially. In version 8.04 of
Ubuntu Preseed, RAID support is largely experimental and we don’t recommend you provision and configure
hosts with RAID configurations using it.

You can also create partitions using LVM during an automated installation. On Red Hat,
for example, you would create them like so:

part /boot --fstype ext3 --size=150

part swap --size=1024

part pvl --size=1 --grow

volgroup vg root pvi

logvol / --vgname=vg root --size=81920 --name=lv_root

In the preceding sample, we created a 150MB boot partition, a 1GB swap partition, and a
physical volume called pvl on the remainder of the disk, using the --grow option to fill the rest
of the disk. We then created an 80GB LVM logical volume called vg_root.

On Ubuntu, you can use the preseed directive to use Preseed to configure LVM inside your
Kickstart file.

preseed --owner d-i partman-auto/method string lvm
preseed --owner d-i partman-lvm/device_remove lvm boolean true
preseed --owner d-i partman-lvm/confirm boolean true
preseed --owner d-i partman-auto/choose recipe select atomic
preseed --owner d-i partman/confirm write new label boolean true
preseed --owner d-i partman/choose partition select finish

d-i

preseed --owner d-i partman/confirm boolean true

The preseed directive is very simple and is a way of including Preseed directives in your
Kickstart configuration. The directive is structured as follows:

preseed --owner owner key/sub-key value

The first part, preseed, tells Kickstart you are using a Preseed directive. The --owner option
tells Preseed which application or function the directive belongs to—for example, d-1i indicates
that the Preseed directive belongs to the Debian installer.

Note If you don’t specify an - -owner option, Preseed defaults to a value of d-1i.

959

960

CHAPTER 19 CONFIGURATION MANAGEMENT

The key/subkey values specify the Preseed option to set; these values are structured as a
collection of keys with a series of subkeys beneath each key. For example, the partman key con-
tains all the Preseed options for configuring partitions. Here, underneath this key, you can see
the confirm and confirm write new label subkeys.

partman/confirm
partman/confirm write_new_label

The type field contains the type of the value, for example, a string or a Boolean entry. The
value field contains the actual value of the setting.

Let’s apply Kickstart’s preseed directive to our LVM configuration. We first select the LVM
partitioning method:

preseed --owner d-i partman-auto/method string lvm

Then we remove any existing LVM devices using the device_remove_lvm directive and skip
the confirmation message using the confirm directive.

preseed --owner d-i partman-lvm/device remove lvm boolean true
preseed --owner d-i partman-lvm/confirm boolean true

We then choose our partitioning method, in this case atomic, using the partman/choose_
recipe key.

preseed --owner d-i partman-auto/choose_recipe select atomic

The atomic method creates all files in one partition, the recommended default for Ubuntu
installations. Instead of atomic, we could specify home for a separate /home partition, and multi
for separate /home, /usr, /var, and /tmp partitions.

We next tell Kickstart to automatically finish and write the LVM configuration.

preseed --owner d-i partman/choose partition select finish
preseed --owner d-i partman/confirm boolean true

Tip Support for native Kickstart—not using the preseed directive—for LVM configuration will be available
in Ubuntu release 9.04.

You can also customize the exact disk and partition configuration using recipes you can
read about at https://help.ubuntu.com/8.04/installation-guide/i386/preseed-contents.html.

Note We discuss partitioning, software RAID, and LVM in Chapter 8.

CHAPTER 19 CONFIGURATION MANAGEMENT

Package Management

Using Kickstart, you can specify the packages you wish to install. On Red Hat, you specify a
section starting with %packages and then the list of package groups or packages you wish to
install.

%packages

@ Administration Tools

@ Server Configuration Tools
@ System Tools

@ Text-based Internet

dhep

We specify an at symbol (@), a space, and then the name of the package group we wish to
install, for example, Administration Tools. We can also specify individual packages by listing
them by name without the @ symbol and space, as we have here with the dhcp package.

Ubuntu uses a similar setup:

%packages
@ kubuntu-desktop
dhcp-client

Here we've installed the Kubuntu-Desktop package group and the dhcp-client package.

Note We discuss package groups in Chapter 7.

Installation Behavior

You can configure some of the behavior of the installation process, for example:

Run the Setup Agent on first boot
firstboot -disable

Skip installation key

key --skip

Reboot after installation

reboot

Both the firstboot and key directives are specific to Red Hat and are not relevant on
Ubuntu. The firstboot directive specifies whether the postinstallation menus that normally
run on your first boot are enabled. Use --enable to have the menus run or --disable to skip
them. The key directive controls entering a Red Hat installation key; use the --skip option to
skip the entry screen.

961

962 CHAPTER 19 CONFIGURATION MANAGEMENT

RED HAT INSTALLATION KEYS

Kickstart also supports specifying Red Hat installation keys in your build (as discussed in Chapter 2). To do so,
add the following values to your Kickstart file.

RHEL Install Key
key $getVar('rhel key', '--skip')

You can then specify some Kickstart metadata using the Cobbler system command for each host like so:

$ sudo cobbler system edit --name=00:0C:29:3B:22:46 w»
--ksmeta="rhel key=4ea373203ae2bd77"

You replace the key, 4ea373203ae2bd77, with your installation key for that host. If you don’t specify a
key, Kickstart will use the - -skip option to skip the application of an installation key.

The reboot directive tells Kickstart to reboot the host after installation. You can also spec-
ify the shutdown directive to tell the host to shut down after installation.

Pre- and Postinstallation

You can run scripts before and after Kickstart installs your host. The prerun scripts run after
the Kickstart configuration file has been parsed, but before your host is configured. Any prerun
script is specified at the end of the Kickstart file and prefixed with the line %pre.

The postrun scripts are triggered after your configuration is complete and your host is
installed. They should also be specified at the end of the Kickstart file and prefixed by a %post
line. This is the %post section from our sample.ks configuration file:

%post
$SNIPPET('post install kernel options')
$SNIPPET('post install network config')
$SNIPPET('redhat register')

Here we've specified three postrun Cobbler snippets that configure kernel and network
options and register the host with Red Hat (as we are using RHN).
This postrun scripting space is useful to run any required setup applications or scripts.

Kickstart Configurator

Also available to create Kickstart files is the GUI-based Kickstart Configurator (see http://www.
redhat.com/docs/manuals/enterprise/RHEL-5-manual/Installation_Guide-en-US/ch-redhat-
config-kickstart.html). You can install this application using the system-config-kickstart
package on Red Hat:

$ sudo yum install system-config-kickstart
On Ubuntu, you would use the following:

$ sudo apt-get install system-config-kickstart

CHAPTER 19 CONFIGURATION MANAGEMENT

You can then launch Kickstart Configurator from the Applications » System Tools »
Kickstart menu or via the following:

$ system-config-kickstart

Figure 19-5 shows the application’s interface.

@ Applications Places System@ % W 140am Q)

Browse and run installed applications
| Kickstart Configurator:

File Help

Basic Configuration Basic Configuration (required)

Installation Method Default Language: [English (Australia)

Boot Loader Options Keyboard: [u S. English

Partition Information

Time Zone Australia/Melbourne
Network Configuration [/M

Authentication [[] Use UTC clock

Firewall Configuration Root Passwaord: [

Display Configuration

Confirm Password:
Package Selection [

Pre-Installation Script [“] Encrypt root password

Post-Installation Script Specify installation key I

Target Architecture [XBG, AMDGE4, or Intel EM&4T

Reboot system after installation
Perform installation in text mode (graphical is default)

[] Perform installation in interactive mode

Figure 19-5. The Kickstart Configurator interface

Using Kickstart Configurator is often an easy way to quickly create simple Kickstart
configurations if you don’t wish to edit them on the command line.

Complete Kickstart Configurations

You've seen snippets of Kickstart (and some Preseed) configurations thus far. Let’s now look at
complete examples for both Red Hat and Ubuntu.
First up is a complete example for Red Hat:

install

reboot

url --url=%$tree

key --skip

firstboot --disable

auth --enablemd5 --useshadow
bootloader --loader=mbr
keyboard us

963

964

CHAPTER 19 CONFIGURATION MANAGEMENT

lang en AU

timezone Australia/Melbourne

rootpw --iscrypted 1V.rhw$VUj.euMxoVokcQSanpGio
firewall --enabled --http --ssh --smtp

selinux --disabled

network --bootproto=dhcp --device=etho --onboot=on
clearpart --all -initlabel

autopart

%packages

@ Administration Tools

@ Server Configuration Tools

@ System Tools

@ Text-based Internet

dhcp

Here we created a very simple installation script. We're performing an installation and
rebooting after the installation. We configured the required values like the keyboard, language,
and time zone, and we created a password for the root user. We also enabled the firewall
including access to the HTTP, SSH, and SMTP ports, and we requested a DHCP address for the
ethO interface. We cleared any existing partitions and then used the autopart directive to auto-
matically partition the first disk on the host. Lastly, we installed a series of package groups as
well as the dhcp package.

Here’s a complete configuration on Ubuntu:

install

reboot

url --url http://192.0.2.161/ubuntu/

auth --useshadow --enablemds

bootloader --location=mbr

keyboard us

lang en AU

timezone Australia/Melbourne

rootpw --disabled

user jsmith --fullname "John Smith" --password password
selinux --disabled

firewall --disabled

network --bootproto=dhcp --device=etho --onboot=on

preseed --owner d-i partman-auto/method string lvm

preseed --owner partman-lvm/device remove lvm boolean true
preseed --owner partman-lvm/confirm boolean true

preseed --owner partman-auto/choose_recipe select atomic
preseed --owner partman/confirm write new label boolean true
preseed --owner partman/choose partition select finish
preseed --owner partman/confirm boolean true

%packages

@ kubuntu-desktop

dhcp-client

d-i
d-i
d-i
d-i
d-i
d-i

CHAPTER 19 CONFIGURATION MANAGEMENT

Our Ubuntu configuration is very similar to our Red Hat configuration, but it’s custom-
ized to suit the distribution—for example, we disabled the root user using the rootpw directive.
You can also see where we used the preseed directive to directly specify some Preseed options
to automatically configure LVM on our host.

Note Both of the complete Kickstart files presented in this section are available with the source code for
this book, which you can find in the Source Code area of the Apress website (http://www.apress.com).

Configuration Management

We’ve shown you throughout this book that configuring a Linux server includes quite a few
tasks, for example, configuring hosts; creating users; and managing applications, daemons,
and services. These tasks can be repeated many times in the life cycle of one host in order to
add new configurations or remedy a configuration that has changed through error, entropy, or
development. They can also be time-consuming and are generally not an effective use of time
and effort.

The usual first response to this issue is to try to automate the tasks, which leads to the
development of custom-built scripts and applications. Very few scripts developed in this ad hoc
manner are ever published, documented, or reused, so the same tool is developed over and over
again. These scripts also tend not to scale well, and they often require frequent maintenance.

Configuration management tools can automate these tasks efficiently and allow a consis-
tent and repeatable life cycle for your hosts. We're going to show you how to use one of these
tools, Puppet, to automate your configuration.

Introducing Puppet

Puppet (http://reductivelabs.com/) is an open source configuration management tool that
relies on a client/server deployment model. It is licensed using the GPLv2 license. We're going
to give you an overview of Puppet and how to use it to configure your environment and your
hosts.

When using Puppet, central servers, called Puppet masters, are installed and configured.
Client software is then installed on the target hosts, called puppets or nodes, that you wish to
manage. Configuration is defined on the Puppet master, compiled, and then applied to the
Puppet clients when they connect.

To provide client/server connectivity, Puppet uses XML-RPC web services running over
HTTPS on TCP port 8140. To provide security, the sessions are encrypted and authenticated
with internally generated self-signed certificates. Each Puppet client generates a self-signed
certificate that is then validated and authorized on the Puppet master.

Thereafter, each client contacts the server—by default every 30 minutes, but this interval is
customizable—to confirm that its configuration is up to date. If a new configuration is available
or the configuration has changed, it is recompiled and then applied to the client. If required, a
configuration update can also be triggered from the server, forcing configuration down to the
client. If any existing configuration has varied on the client, it is corrected with the original con-
figuration from the server. The results of any activity are logged and transmitted to the server.

965

966

CHAPTER 19 CONFIGURATION MANAGEMENT

At the heart of how Puppet works is a language that allows you to articulate and express
your configuration. Your configuration components are organized into entities called resources,
which in turn can be grouped together in collections. Resources consist of the following:

* Type
e Title

o Attributes

Listing 19-6 shows an example of a simple resource.

Listing 19-6. A Puppet Resource

file { "/etc/passwd":
owner => "root",
group => "root",
mode => 0644,

The resource in Listing 19-6 is a file type resource. The file resource configures the attri-
butes of files under management. In this case, it configures the /etc/passwd file and sets its
owner and group to the root user and its permissions to 0644.

The resource type tells Puppet what kind of resource you are managing—for example,
the user and file types are used for managing user and file operations on your nodes, respec-
tively. Puppet comes with a number of resource types by default, including types to manage
files, services, packages, cron jobs, and file systems, among others.

Tip You can see a full list of the built-in resource types at http://reductivelabs.com/trac/puppet/
wiki/TypeReference. You can also develop your own types in the Ruby programming language.

The resource’s title identifies it to Puppet. Each title is made up of the name of the resource
type (e.g., file) and the name of the resource (e.g., /etc/passwd). These two values are combined
to make the resource’s title (e.g., File["/etc/passwd"]).

Note In a resource title, the name of the resource type is capitalized (File), and the name of the resource
is encapsulated in block brackets and double quotes (["/etc/passwd"]).

Here the name, /etc/passwd, also tells Puppet the path of the file to be managed. Each
resource managed by Puppet must be unique—for example, there can be only one resource
called File["/etc/passwd"].

The attributes of a resource describe the configuration details being managed, such as
defining a particular user and the attributes of that user (e.g., the groups the user belongs to or
the location of the user’s home directory). In Listing 19-6, we are managing the owner, group,

CHAPTER 19 CONFIGURATION MANAGEMENT

and mode (or permissions) attributes of the file. Each attribute is separated from its value with
the => symbols and is terminated with a comma.

Puppet also uses the concept of collections, which allow you to group together many
resources. For example, an application such as Apache is made up of a package, a service, and
a number of configuration files. In Puppet, each of these components would be represented as
aresource (or resources) and then collected together and applied to a node. We'll look at some
of these collection types later in this chapter.

Installing Puppet

Let’s start by installing Puppet. For Puppet, the client and server installations are slightly
different, and we’ll show you how to install each.

Red Hat Installation

On Red Hat, on both servers and clients, you need to install some prerequisites, including the
Ruby programming language.

$ sudo yum install ruby ruby-shadow

Next, you'll add the EPEL repository to your host and then install a number of packages
from that repository. You can add the EPEL repository, if it’s not already added to your Yum
configuration, by adding the epel-release RPM.

$ sudo rpm -Uvh http://download.fedora.redhat.com/pub/epel/5/1386/w=
epel-release-5-3.noarch.rpm

On the server or master, you install the puppet, puppet-master, and facter packages from
the EPEL repository.

$ sudo yum install puppet puppet-server facter

The puppet package contains the client, the puppet-master package contains the server,
and the facter package contains a system inventory tool called Facter. Facter gathers informa-
tion or facts about your hosts that is used to help customize your Puppet configuration.

On the client, you need to install only the puppet and facter packages.

$ sudo yum install puppet facter

Ubuntu Installation

On Ubuntu, the required packages are puppet, puppetmaster, and facter. The puppet package
contains the Puppet client, the puppetmaster package contains the master, and the facter
package contains the Facter system inventory tool.

On the server or master, you need to install this:

$ sudo apt-get install puppet puppetmaster facter
On the client, you need the following:

$ sudo apt-get install puppet facter

967

968

CHAPTER 19 CONFIGURATION MANAGEMENT

Note Installing the puppet, puppetmaster, and facter packages will also install some prerequisite
packages.

Configuring Puppet

We'll start configuring Puppet by setting up our Puppet master. Our configuration, including
our manifests (the files containing our host configuration), will be located under the /etc/
puppet directory. Puppet’s principal configuration file is located at /etc/puppet/puppet.conf.

We’re going to store our actual configuration in a directory called manifests under the
/etc/puppet directory. This directory is created when the Puppet packages are installed. The
manifests directory needs to contain a file called site.pp that is the root of our configuration.
Let’s create that now.

$ sudo touch /etc/puppet/manifests/site.pp

Note Manifest files containing configuration have a suffix of . pp.

We’re also going to create three more directories, classes, nodes, and files, that will hold
additional configuration files.

$ sudo mkdir /etc/puppet/manifests/{classes,files,nodes}

The files directory will hold any files we want to send to our managed clients. The nodes
directory will contain definitions of our clients or nodes. The classes directory will contain our
classes. Classes are collections of resources—for example, an Apache class containing all the
resources needed to configure Apache.

We’ll continue our configuration by defining these new directories in our site.pp file, as
shown in Listing 19-7.

Listing 19-7. The site.pp File

import "nodes/*.pp"
import "classes/*.pp"

$puppetserver = "puppet.example.com"

The import statement tells Puppet to load all files with a suffix of . pp in both the nodes
and classes directories into Puppet. The $puppetserver statement sets a variable. In Puppet,
configuration statements starting with a dollar sign ($) are variables and can be used to specify
values in a Puppet configuration.

In Listing 19-7, we've created a variable that contains the fully qualified domain name of
our Puppet server, enclosed in double quotes.

CHAPTER 19 CONFIGURATION MANAGEMENT

Note You can find quoting rules for Puppet at http://reductivelabs.com/trac/puppet/wiki/
LanguageTutorial#quoting.

We recommend you create a DNS CNAME for your Puppet host (e.g., puppet.example.com),
or add it to your /etc/hosts file:

/etc/hosts
127.0.0.1 localhost
192.168.0.1 au-mel-ubuntu-1 au-mel-ubuntu-1.example.com puppet puppet.example.com

Note We cover how to create CNAMES in Chapter 9.

We also need to specify the fully qualified domain name in our /etc/puppet/puppet.conf
configuration file. The configuration file is divided into sections, and each section configures a
particular element of Puppet. For example, the [puppetd] section configures the Puppet client,
and the [puppetmasterd] section configures the Puppet master or server. We're going to add only
one entry, certname, to this file to get started. We’ll add the certname value to the [puppetmasterd]
section (if the section doesn’t already exist in your file, then create the section).

[puppetmasterd]
certname=puppet.example.com

Note Replace puppet.example.com with the fully qualified domain name of your host.

Adding the certname option addresses a bug with the Ruby SSL code present on many Ubuntu
and Red Hat hosts. You can read more about the precise bug at http://reductivelabs.com/trac/
puppet/wiki/RubySSL-2007-006.

Setting Up Puppet File Serving

In addition to configuring a variety of resources, Puppet can also serve out files—for example,
it can deliver configuration files to a node. This file server is configured via the /etc/puppet/
fileserver.conf configuration file. You can see a sample of this file in Listing 19-8.

Listing 19-8. The fileserver.conf Configuration File

[files]
path /etc/puppet/manifests/files
allow 192.168.0.0/24
allow 127.0.0.1

969

970

CHAPTER 19 CONFIGURATION MANAGEMENT

File server configuration is very simple. We specify a file share—in our case called files—
and enclose it in square brackets []. Next, we specify the path for the file share, which here
is the directory we created earlier, /etc/puppet/manifests/files. We can then specify allow
and/or deny statements to control access to our file share. Here we’ve allowed access to the file
share from anyone in the 192.168.0.0/24 subnet and from the localhost, 127.0.0.1.

Tip You can read more about file serving at http: //reductivelabs.com/trac/puppet/wiki/
FileServingConfiguration.

Puppet Firewall Configuration

The Puppet master runs on TCP port 8140. This port needs to be open on your master’s fire-
wall, and your client must be able to route and connect to the master. To do this, you need to
have some appropriate firewall rules on your master, such as the following:

-A Firewall-etho-INPUT -p tcp -m state --state NEW --dport 8140 -j ACCEPT

The preceding line allows access from everywhere to TCP port 8140.

Starting Puppet Server

The Puppet master can be started via an init script. On Red Hat, we run the init script with
the service command like so:

$ sudo service puppetmaster start
On Ubuntu, we run it using the invoke-rc.d command.

$ sudo invoke-rc.d puppetmaster start

Note Output from the daemon can be seen in /var/log/messages on Red Hat hosts and /var/log/
daemon. log on Ubuntu hosts.

Connecting Our First Client

Once you have the Puppet master configured and started, you can configure and initiate your
first client. On the client, as we mentioned earlier, you need to install the puppet and facter
packages using your distribution’s package management system. We’re going to install a client
on the gateway.example.com host and then connect to our puppet.example.com host. This
installation will also create a /etc/puppet directory with a puppet. conf configuration file.

When connecting our client, we first want to run the Puppet client from the command line
rather than as a service. This will allow us to see what is going on when we connect. The Pup-
pet client binary is called puppetd, and you can see a connection to the master initiated in
Listing 19-9.

CHAPTER 19 CONFIGURATION MANAGEMENT

Listing 19-9. Puppet Client Connection to the Puppet Master

gateway$ puppetd --server=puppet.example.com --no-daemonize --verbose

info: Creating a new certificate request for gateway.example.com

info: Creating a new SSL key at /var/lib/puppet/ssl/private keys/gateway.example.comes
.pem

warning: peer certificate won't be verified in this SSL session

notice: Did not receive certificate

In Listing 19-9, we executed the puppetd binary with a number of options. The first option,
--server, specifies the name or address of the Puppet master to connect to. We can also spec-
ify this in the main section of the /etc/puppet/puppet.conf configuration file on the client.

[main]
server=puppet.example.com

The --no-daemonize option runs the Puppet client in the foreground and prevents it from
running as a daemon, which is the default behavior. The --verbose option enables verbose
output from the client.

Tip The --debug option provides further output that is useful for troubleshooting.

In Listing 19-9, you can see the output from our connection. The client has created a cer-
tificate signing request and a private key to secure our connection. Puppet uses SSL certificates
to authenticate connections between the master and the client. The client is now waiting for
the master to sign its certificate and enable the connection. At this point, the client is still run-
ning and awaiting the signed certificate. It will continue to check for a signed certificate every
two minutes until it receives one or is canceled (using Ctrl+C or the like).

Note You can change the time the Puppet client will wait using the - -waitforcert option. You can
specify a time in seconds or 0 to not wait for a certificate.

Now on the master, we need to sign the certificate. We do this using the puppetca binary.

puppet$ puppetca --list
gateway.example.com

Tip You can find a full list of the binaries that come with Puppet at http://reductivelabs.com/trac/
puppet/wiki/PuppetExecutables.

97

972

CHAPTER 19 CONFIGURATION MANAGEMENT

The --1ist option displays all the certificates waiting to be signed. We can then sign our
certificate using the --sign option.

puppet$ puppetca --sign gateway.example.com
Signed gateway.example.com

Note You can sign all waiting certificates with the puppetca --sign --all command.

On the client, two minutes after we’ve signed our certificate, we should see the following
entries:

notice: Got signed certificate

notice: Starting Puppet client version 0.24.7

err: Could not retrieve catalog: Could not find default node or by name withws
'gateway.example.com, gateway' on node gateway.example.com

The client is now authenticated with the master, but we have another message present:

err: Could not retrieve catalog: Could not find default node or by name withws
'gateway.example.com, gateway' on node gateway.example.com

The client has connected, but because we don’t have anything configured for the client,
we received an error message.

Caution Itis important that the time is accurate on your master and client. SSL connections rely on the
clock on hosts being correct. If the clocks are incorrect, then your connection may fail with an error, indicat-
ing that your certificates are not trusted. You can use NTP, which we discuss in Chapter 9, to ensure your
host’s clocks are accurate.

Creating Our First Configuration

Now our client has connected and we’re going to add some configuration for it. On the Puppet
master, we need to add a node definition and some configuration to apply to our client.

We’ll start with the node configuration. To do this, we’re going to create a file called
gateway.example.com.pp in our /etc/puppet/manifests/nodes/ directory. You can see the con-
tents of this file in Listing 19-10.

Listing 19-10. Our Node Configuration

node "gateway.example.com" {
include sudo

}

CHAPTER 19 CONFIGURATION MANAGEMENT

The node directive defines a node or client configuration to Puppet. Each client needs a
node directive, and inside the node you define the configuration that applies to the client. You
specify the client name, enclosed in double quotes, and then you specify the configuration
that applies to it inside curly braces { }.

Note You can also specify a special node called default. If no node definition exists, then the contents
of this node are applied to the client.

You can specify multiple clients in a node directive by separating each with a comma like
s0:

node "gateway.example.com", "headoffice.example.com" {
include sudo

}

Note At this stage, you can’t specify nodes with wildcards (e.g., *.example.com). Puppet, however, does
have an inheritance model in which you can have one node inherit values from another node. You can read
about node inheritance at http://reductivelabs.com/trac/puppet/wiki/LanguageTutorial#fnodes.

Inside our node definition you can see the include directive. The include directive adds
classes (collections of resources) to our client’s configuration. In this case, we're adding a class
called sudo. You can include multiple classes by using multiple include directives or separat-
ing each class with commas.

include sudo,sshd

Let’s add this class to our Puppet configuration. We're going to create a file called sudo.pp
in the /etc/puppet/manifests/classes directory. You can see its contents in Listing 19-11.

Listing 19-11. The sudo Class

class sudo {
package { sudo:
ensure => present,

}

file { "/etc/sudoers":
source => "puppet://$puppetserver/files/etc/sudoers”,
owner => "root",
group => "root",
mode => 0440,

973

974

CHAPTER 19 CONFIGURATION MANAGEMENT

VERSION CONTROL

As your configuration gets more complicated, you should consider adding it to a version control system such
as Subversion. A version control system allows you to record and track changes to files, and is commonly
used by software developers. For configuration management, version control allows you to track changes to
your configuration. This is highly useful if you need to revert to a previously known state or make changes
without impacting your running configuration.

You can find information about how to use Subversion at http://svnbook.red-bean.com/ and
some specific ideas about how to use it with Puppet at http://reductivelabs.com/trac/puppet/
wiki/VersionControlPuppet.

You can see we've added a class directive and called it sudo. The contents of our class are
specified between the curly braces.

We've specified two resources inside our class, a package resource and a file resource.
The package resource, Package["sudo"], specifies that the package sudo must be installed
using the attribute ensure and setting its value to present. To remove the package, we would
set the ensure attribute to absent. If we wanted to ensure that the sudo package was always up
to date, we would specify a value of latest for the ensure attribute like so:

package { sudo:
ensure => latest,

}

On every Puppet run, the client will now check that the currently installed version of the
sudo package is the latest. If it is the latest version, then Puppet will do nothing; if a later ver-
sion is available, then Puppet will install it.

To manage your packages, Puppet uses the default package manager. For example, on Red
Hat it will use yum and on Debian it will use aptitude to install, remove, or update your package.
This is one of the more convenient features of Puppet—you specify the package resource, and
Puppet detects the appropriate package manager to use and installs the required package. You
don’t need to do anything else or even understand how the package manager works.

Note We’ve discovered that Puppet calls the various items it can configure fypes, for example, the
package type. The code that interacts with a particular operating system (e.g., the code that interacts with
the Yum package manager) is called a provider. Each type may have multiple providers. For example, the
package type has providers for Yum, Aptitude, up2date, Ruby Gems, ports, portage, rug, and 0SX DMG files,
among many other package managers. The package providers allow Puppet to configure packages on a wide
variety of Unix operating systems and Linux distributions.

Next, we've specified a file resource, File["/etc/sudoers"]. You've seen some of the attri-
butes of this resource before: the owner, group, and mode attributes. The source attribute allows
Puppet to retrieve a file from the Puppet file server and deliver it to the client. The value of this
attribute is the name of the Puppet file server and the location and name of the file to retrieve.

CHAPTER 19 CONFIGURATION MANAGEMENT

puppet://$puppetserver/files/etc/sudoers

Let’s break down this value. The puppet:// part specifies that Puppet will use the Puppet
file server protocol to retrieve the file.

Note Currently this is the only protocol available. In future versions of Puppet, the file server will support
other protocols, such as HTTP or rsync. This support is expected in versions after 0.25.0.

The $puppetserver variable contains the hostname of our Puppet server. We created this
variable and placed it in our site.pp file earlier. Instead of the variable, you can specify the
hostname of the file server here.

puppet://puppet.example.com/files/etc/sudoers

The next portion of our source value specifies the file share and the specific file to serve.
Here the share is files, which we created earlier in our fileserver. conf file, and the specific file
to load is /etc/sudoers. This assumes the file sudoers is in the directory /etc/puppet/manifests/
files/etc/sudoers. Let’s copy a sudoers file there now. We’ll use the default sudoers file on our
host.

puppet$ mkdir -p /etc/puppet/manifests/files/etc/
puppet$ cp /etc/sudoers /etc/puppet/manifests/files/etc/sudoers

CREATING A PUPPET CONFIGURATION

The best way to convert your existing configuration to Puppet is to start small. Choose a function or applica-
tion, such as sudo or the SSH daemon, and convert its configuration management from manual to managed
with Puppet. When these functions are stable, add additional components to your Puppet configuration. A
good way to approach this task is to classify your hosts by their functions. For example, our gateway.exam-
ple.com host runs a number of services such as Apache, Postfix, and OpenVPN, so a logical first step would
be to configure these services and then slowly add the additional functions also supported on this host.

Applying Our First Configuration

We've created our first configuration and we’re going to apply it on our client. Back on the
gateway.example.com host, we run the Puppet client again, as shown in Listing 19-12.

Listing 19-12. Applying Our First Configuration

gateway$ puppetd --server=puppet.example.com --no-daemonize --verbose
notice: Starting Puppet client version 0.24.7

info: Caching catalog at /var/lib/puppet/localconfig.yaml

notice: Starting catalog run

info: Filebucket[/var/lib/puppet/clientbucket]: w=

975

976 CHAPTER 19 CONFIGURATION MANAGEMENT

Adding /etc/sudoers(a8ae43fcf346af54d473b13b17d6d037)

notice: //Node[gateway.example.com]/sudo/File[/etc/sudoers]: Filebucketed to with =
sum a8ae43fcf346af54d473b13b17d6d037

notice: //Node[gateway.example.com]/sudo/File[/etc/sudoers]/source: replacing from w»
source puppet://puppet.example.com/files/sudoers with contents w»
{md5}7255bc94cd66fc3416f991aed81aba47

notice: //Node[gateway.example.com]/sudo/File[/etc/sudoers]/mode: mode changed '640' =
to '440'

notice: Finished catalog run in 3.52 seconds

Tip Puppet logs to the /var/log/messages file on Red Hat and the /var/log/daemon. log file on
Ubuntu.

In Listing 19-12, we’ve run the Puppet client, puppetd, and connected to the master. We
can see a catalog run commence on our client. In Puppet, the combined configuration to be
applied to a host is a catalog and the process of applying it is called a run.

Tip You can find a glossary of Puppet terminology at http: //reductivelabs.com/trac/puppet/
wiki/GlossaryOfTerms.

In the first step of our run, we see a line describing a filebucket. The filebucket is a spe-
cial type used to back up files, and you’ll note we didn’t specify this type. Puppet automatically
backs up files that are going to be changed or replaced (in this case, our host already has an
/etc/sudoers file and we’re going to replace it with our new file from the Puppet master). Here
Puppet will copy the file to a directory on the client, usually underneath /var/1ib/puppet/
clientbucket. This means if we want to get this file back, we can manually retrieve it.

Tip Puppet can also back up the file to our master using the filebucket type. See http://reductivelabs.
com/trac/puppet/wiki/TypeReference#ifilebucket.

After backing up the file, Puppet copies the new /etc/sudoers file from the master.

Tip Puppet also has a testing mode called noop. In this mode, Puppet doesn’t update your configuration
but merely tells you what it would have done. This is very useful for testing your configuration prior to apply-
ing it. You can run the Puppet client in noop mode by using the --noop option with the puppetd command.

CHAPTER 19 CONFIGURATION MANAGEMENT

Lastly, Puppet has changed the permissions of the new file to 0440. But why didn’t Puppet
change the owner and group of the file, too? Well, in this case, the file is already owned by the
root user and belongs to the root group, so Puppet changes nothing. Puppet will make changes
on the client only if something needs to be changed. If your current configuration is correct,
then Puppet will not do anything.

So that’s it. Puppet has configured our client. If the Puppet client was now running as a
daemon, it would wait 30 minutes (by default) and then connect to the master again to check
if the configuration has changed on our client or if a new configuration is available from the
master. We can adjust this run interval using the runinterval option in the /etc/puppet/
puppet.conf configuration file.

[puppetd]
runinterval=3600

Here we’ve adjusted the run interval to 3600 seconds, or 60 minutes.

PUPPET BEST PRACTICES

Puppet configuration can get quite complex. One of Puppet’s users, Stanford University, has written a best
practices guide that offers some advice about how to configure Puppet. The Puppet Best Practices guide is
available at http://reductivelabs.com/trac/puppet/wiki/PuppetBestPractice. Remember,
this document contains only guidelines, and the information within may not completely suit your environment.

Specifying Configuration for Multiple Hosts

We've barely scratched the surface of Puppet’s configuration capabilities, so let’s look at
extending our current configuration to multiple clients or nodes. We’ll demonstrate how to
differentiate configuration on two clients and apply slightly different configuration to each.

To implement this differentiation, we’re going to use Puppet’s partner tool, Facter. Facter
is a system inventory tool that returns facts about your hosts. We can run Facter from the com-
mand line using the facter binary to see what it knows about our gateway.example.com client.

gateway$ sudo facter
architecture => 1386

domain => example.com
facterversion => 1.5.2

fgdn => gateway.example.com
hardwareisa => 1686
hardwaremodel => 1686

hostname => gateway

id => root

interfaces => etho,eth1
ipaddress => 192.168.0.254
ipaddress_etho => 192.168.0.254
ipaddress_eth1 => 10.0.2.155
kernel => Linux

kernelrelease => 2.6.18-92.el5

977

978 CHAPTER 19 CONFIGURATION MANAGEMENT

kernelversion => 2.6.18
operatingsystem => RedHat
operatingsystemrelease => 5

We’ve shown you a small selection of the facts available in Facter, but you can see that it
knows a lot about our host, including its name, network information, operating system, and
even the release of the operating system.

So how is this useful to Puppet? Well, each of these facts is available to Puppet as a vari-
able. Puppet runs Facter prior to applying any configuration, collects the client’s facts, and
then sends them to the Puppet master for use in configuring the client. For example, the
hostname fact is available in our Puppet configuration as the variable $hostname. Let’s look at
an example in Listing 19-13.

MORE ABOUT FACTER

Facter supports adding facts via environment variables. Any environment variable on your client that is
prefixed with FACTER (e.g., FACTER _LOCATION) will be available as the variable $1ocation in your Pup-
pet configuration. You can read more about this at http://reductivelabs.com/trac/puppet/wiki/
FrequentlyAskedQuestions#can-i-access-environmental-variables-with-facter.

Facter is also highly extensible. With a small amount of Ruby code, you can add your own facts, for
example, information customized to your environment. You can read about how to add these custom facts at
http://reductivelabs.com/trac/puppet/wiki/AddingFacts.

Listing 19-13. Using Facts

class sudo {
package { sudo:
ensure => present,

}

file { "/etc/sudoers":
source => "puppet://$puppetserver/files/$hostname/etc/sudoers"”,
owner => "root",
group => "root",
mode => 0440,

You can see the sudo class we previously defined with one small change in the source attri-
bute of the File["/etc/sudoers"] resource.

puppet://$puppetserver/files/$hostname/etc/sudoers

We’ve added the $hostname variable to the source attribute’s value. Now instead of looking
for the file in the /etc/puppet/manifests/files/etc/ directory, it will look in the /etc/puppet/
manifests/files/$hostname/etc directory. When the client connects, the $hostname variable

CHAPTER 19 CONFIGURATION MANAGEMENT

will be replaced with the hostname of the client connecting—for example, if the gateway host
connected, then the source attribute would become /etc/puppet/manifests/files/gateway/
etc. We can now have a different sudoers file for particular clients; for instance, we could have
the following:

/etc/puppet/manifests/files/gateway/etc/sudoers
/etc/puppet/manifests/files/headoffice/etc/sudoers

Depending on which client connected, they would get a file appropriate to them. But this isn’t
the only use for facts. We can also use facts to determine how to configure a particular node, as
shown in Listing 19-14.

Listing 19-14. A Fact in a Case Statement

node default {

case $operatingsystem
redhat: { include redhat } # include the redhat class
ubuntu { include ubuntu } # include the ubuntu class
default: { include generic } # include the generic class

Here we created our default node definition, which is the node configuration used for all
nodes that don’t explicitly have a node defined. Inside this node definition, we used a feature
of the Puppet language, a case statement. The case statement, a concept common to many
programming languages, specifies a result based on the value of a variable—in this case, the
$operatingsystem fact, which contains the name of the operating system running on the client
(e.g., redhat for Red Hat or ubuntu for Ubuntu).

Tip Puppet has two other types of conditionals: selectors and if/else clauses. You can read about these at
http://reductivelabs.com/trac/puppet/wiki/LanguageTutorial#fconditionals.

In Listing 19-14, if the value of the $operatingsystemis redhat, then the redhat class is
included on this client. If the value is ubuntu, then the ubuntu class is included. The last value,
default, is the behavior if the value does not match either redhat or ubuntu. In this case, the
generic class is applied to the client.

In a case statement, we can also specify multiple values by separating each with a comma
like so:

case $operatingsystem
redhat,centos: { include redhat } # include the redhat class
ubuntu,debian { include ubuntu } # include the ubuntu class
default: { include generic } # include the generic class

979

980

CHAPTER 19 CONFIGURATION MANAGEMENT

Now if the value is redhat or centos, then the redhat class would be included, and if the value
is ubuntu or debian, then the ubuntu class would be included.
We’ve used another Puppet conditional, a selector, in Listing 19-15.

Listing 19-15. A Selector

service { "sshdaemon":
name => $operatingsystem ? {
redhat => "sshd",
ubuntu => "ssh",
default => "ssh",
}

ensure => running,

In Listing 19-15, we introduced a new type, service, that manages services on hosts.
We've titled our service resource sshdaemon, but we’ve used another attribute called name to
specify the name that will be used to start or stop the service on the client. We’ve used a Pup-
petlanguage construct called a selector, combined with the $operatingsystem fact, to specify
the name attribute. This is because on each operating system we’ve specified, the SSH daemon
is called something different. For example, on Red Hat the SSH daemon’s init script is called
sshd, while on Ubuntu it is called ssh.

The name attribute uses the value of the $operatingsystem fact to specify what the daemon
will be called on each distribution. Puppet, in turn, uses this to determine what service to start
or stop. So if the value of the $operatingsystemfactis redhat, then the service resource will
use the name sshd to manage the SSH daemon. The default value is used when the value of
the $operatingsystemis neither redhat nor ubuntu.

Lastly, the ensure attribute has been set to running to ensure the service will be started. We
could set the ensure attribute to stopped to ensure it is not started.

Note The Puppet language has a lot of useful features. You can find a full tutorial of the language at
http://reductivelabs.com/trac/puppet/wiki/LanguageTutorial.

Relating Resources

Resources in Puppet also have the concept of relationships. For example, a service resource
can be connected to the package that installs it. Using this, we could trigger a restart of the
service when a new version of the package is installed. This allows us to do some useful things.
Consider the simple example in Listing 19-16.

Listing 19-16. Requiring Resources

class ssh {
service { "sshdaemon":
name => $operatingsystem ? {
redhat => "sshd",
ubuntu => "ssh",

CHAPTER 19 CONFIGURATION MANAGEMENT

default => "ssh",
1
ensure => running,
require => File["/etc/ssh/sshd config"],

}

file { "/etc/ssh/sshd config":
path => "/etc/ssh/sshd_config",
owner => root,
group => root,
mode => 644,
source => "puppet://$puppetserver/files/etc/ssh/sshd config",
notify => Service[sshdaemon],

Listing 19-16 shows a new class called ssh, which contains the service resource we cre-
ated in Listing 19-15. We have created a file resource to manage the /etc/ssh/sshd_config
file. You've seen almost all the attributes in these resources except require in the service
resource and notify in the file resource. These are not, however, normal attributes—they are
called metaparameters. Let’s look at each metaparameter and see what it does.

The require metaparameter allows you to build a relationship to one or more resources.
Any resource you specify in the require metaparameter will be configured before this resource,
hence Puppet will process and configure the File["/etc/ssh/sshd config"] resource before
the Service["sshdaemon"] resource. This approach ensures that the appropriate configuration
file is installed prior to starting the SSH daemon service. You could do a similar thing with a
package resource.

class httpd {
package { "httpd":
ensure => present,

}

service { "httpd":
ensure => running,
enabled => true,
require => Package["httpd"],

Here the package resource, Package["httpd"], must be installed before the
Service["httpd"] service can be started.

Tip We've also added the enabled attribute to the Service["http"] resource. When set to true, this
attribute ensures our service starts when the host boots (similar to using the chkconfig or update-rc.d
command).

981

982

CHAPTER 19 CONFIGURATION MANAGEMENT

We’ve also specified another metaparameter, this one called notify, in Listing 19-16.
This metaparameter has been added to the File["/etc/ssh/sshd_config"] resource. The
notify metaparameter tells other resources about changes and updates to a resource. In this
case, if the File["/etc/ssh/sshd _config"] resource is changed (e.g., if the configuration file is
updated), then Puppet will notify the Service["sshdaemon"] resource, causing it to be run and
thus restarting the SSH daemon service.

Tip Two other relationships you can construct are subscribe and before. You can see both of these at
http://reductivelabs.com/trac/puppet/wiki/TypeReference#tmetaparameters and also read
about other available metaparameters you may find useful.

Using Templates

In addition to retrieving files from the Puppet file server, you can also make use of a template
function to apply specific values inside those files to configure a service or application. Puppet
templates use a Ruby template language called ERB (see http://www.ruby-doc.org/stdlib/
libdoc/erb/rdoc/). It’s very simple to use, as you can see in Listing 19-17.

Listing 19-17. Using Templates

file { "/etc/ssh/sshd config":
path => "/etc/ssh/sshd_config",
owner => root,
group => root,
mode => 644,
content => template("/etc/ssh/sshd_config.erb"),
notify => Service[sshdaemon],

}

In Listing 19-17, we used the same File["/etc/ssh/sshd_config"] resource we created
earlier, but we exchanged the source attribute for the content attribute. With the content attri-
bute, rather than a file being retrieved from the Puppet file server, the contents of the file are
populated from this attribute. The contents of the file can be specified in a string like so:

content => "this is the content of a file",

Or, as Listing 19-17 shows, we can use a special Puppet function called template. To use
the template function, we specify a template file, and Puppet populates any ERB code inside
the template with appropriate values. Listing 19-18 shows a very simple template.

Listing 19-18. sshd _config Template

Port 22
Protocol 2
ListenAddress <%= ipaddress etho %>

CHAPTER 19 CONFIGURATION MANAGEMENT

SyslogFacility AUTHPRIV
PermitRootLogin no
PasswordAuthentication no
ChallengeResponseAuthentication no
GSSAPIAuthentication yes
GSSAPICleanupCredentials yes
UsePAM yes

X11Forwarding yes

Banner /etc/motd

We’ve only used one piece of ERB in Listing 19-18, to specify the ListenAddress of our
SSH daemon, <%= ipaddress etho %>. The <%= value %> syntax is how you specify variables
in a template. Here we specified that Puppet should set the ListenAddress to the value of the
$ipaddress etho variable. This variable is, in turn, the value of the ipaddress_etho fact, which
contains the IP address of the ethO interface.

When we now connect a client that applies the File["/etc/ssh/sshd_config"] resource,
the value of the ipaddress_etho fact on the client will be added to the template and then
applied on the client in the /etc/ssh/sshd_config file.

You can perform a wide variety of functions in an ERB template—more than just specify-
ing variables, including basic Ruby expressions. You can read about how to use templates in
more detail at http://reductivelabs.com/trac/puppet/wiki/PuppetTemplating, and you can
see another example of a typical template at http://reductivelabs.com/trac/puppet/wiki/
Recipes/ResolvConf.

Puppet looks for templates in a directory specified by the templatedir configuration
option. This option usually defaults to /var/1ib/puppet/templates. We're going to override
this to put our templates with the rest of our manifests and configuration. In the puppet.conf
configuration file on the Puppet master, we add the following:

[puppetmasterd]
templatedir=/etc/puppet/manifests/templates

The template specified in Listing 19-17 is now located at /etc/puppet/manifests/
templates/etc/ssh/sshd _config.

PUPPET AND PROVISIONING

You can also combine Puppet with your provisioning environment and boot servers. You can find instructions
on how to combine Puppet with both Cobbler and Ubuntu Preseed at http://reductivelabs.com/trac/
puppet/wiki/BootstrappinghithPuppet.

Definitions

You've already seen one type of Puppet collection: a class. There is another type of collection:
the definition or define directive. Definitions are used for a configuration that has multiple
instances on a client. The best way to think about a definition is as a reusable snippet of con-
figuration that you can call with arguments.

983

984

CHAPTER 19 CONFIGURATION MANAGEMENT

This reuse is also the key difference between classes and definitions. Classes contain
single instances of resources—for example, a class could contain a package resource that
defined the httpd package. This package will exist only once on a node and hence is installed,
removed, or managed using a class. But some configurations exist multiple times on your
clients—for example, the httpd server may have multiple virtual hosts defined. You could then
create a definition to configure virtual hosts and pass in appropriate arguments to configure
each. As long as each set of arguments is different, Puppet will configure the new virtual host
every time the definition is evaluated.

A definition is created by using the define directive, specifying a title for the definition and
then listing any arguments in brackets. The definition itself is specified next and is enclosed
in curly braces. Listing 19-19 contains a definition that runs a script to configure a new virtual
host.

Listing 19-19. Definition

define new_vhost ($ipaddress, $domain) {

exec { "/usr/sbin/create vhost --vhost $title --ip $ipaddress --domain w»
$domain":

}
}

new_vhost { vhost1:
ip => "192.0.2.155",
domainname => "vhost1l.example.com"

In Listing 19-19, we created a definition called new_vhost that has arguments of the variables
$ipaddress and $domain. Inside the definition, we used the exec resource type (this is another
type; it executes an external script). We specified three variables, $title and the previously men-
tioned $ipaddress and $domain variables, in the script defined in the exec resource type.

Note The $title variable is available in all resources and contains the title of the resource.

On the next lines, we have actually called the new_vhost definition. We call it much like we
define a resource type. We specify the name of the definition being called, the title, which in
this case is vhost1 (which is also the value of the $title variable). We then specify the remain-
ing variables to be passed to the definition in the same format as we would specify attributes
in a resource.

If we use this definition, we’ll see a log message on the client much like the following:

notice://new_vhost[vhost1]/Exec[/usr/sbin/create vhost --vhost vhosti --ipes
192.0.2.155 --domain vhostil.example.com]/returns: executed successfully

CHAPTER 19 CONFIGURATION MANAGEMENT

Tip You also saw a definition being used in a recipe, http://reductivelabs.com/trac/puppet/
wiki/Recipes/ResolvConf, that we linked to earlier.

More Puppet

We’ve barely touched on Puppet in this chapter—there’s a lot more to see. In the sections that
follow, we’ll describe some of the topics we haven’t covered that you can explore further to
make the best use of Puppet.

Modules

You've already seen two collections of resources, classes and definitions, but Puppet has
another, more complex type of collection called a module. You can combine collections of
classes, definitions, templates, files, and resources into modules. Modules are portable col-
lections of configuration; for example, a module might contain all the resources required to
configure Postfix or Apache.

You can read about how to use modules at http://reductivelabs.com/trac/puppet/wiki/
PuppetModules. Also on this page are links to a huge number of user-contributed modules.
Someone else has almost certainly written a module to configure a service or application you
may want, and in many cases you can just download and reuse these modules to save having
to write ones yourself.

You can read about how to create your own modules and how they are structured at
http://reductivelabs.com/trac/puppet/wiki/ModuleOrganisation.

Functions

Puppet also has a collection of functions. Functions are useful commands that can be run on
the Puppet master to perform actions. You've already seen two functions: template, which we
used to create a template configuration file, and include, which we used to specify the classes
for our nodes. There are a number of other functions, including the generate function that
calls external commands and returns the result, and the notice function that logs messages on
the master and is useful for testing a configuration.

You can see a full list of functions at http://reductivelabs.com/trac/puppet/wiki/
FunctionReference and find some documentation on how to write your own functions at
http://reductivelabs.com/trac/puppet/wiki/WritingYourOwnFunctions.

Reports

Puppet has the ability to report on events that have occurred on your nodes or clients. Report-

ing is pretty basic right now; you can see the current reports at http://reductivelabs.com/trac/
puppet/wiki/ReportReference. You can also find some examples of how to use reports and build
your own custom reports at http://reductivelabs.com/trac/puppet/wiki/ReportsAndReporting.

985

986

CHAPTER 19 CONFIGURATION MANAGEMENT

External Nodes

As you might imagine, when you begin to have a lot of nodes your configuration can become
quite complex. If it becomes cumbersome to define all your nodes and their configuration in
manifests, then you can use a feature known as external nodes to better scale this. External
nodes allow you to store your nodes and their configuration in an external source. For exam-
ple, you can store node information in a database or an LDAP directory. You can read more
about external and LDAP nodes at http://reductivelabs.com/trac/puppet/wiki/ExternalNodes
and http://reductivelabs.com/trac/puppet/wiki/LDAPNodes, respectively.

Environments

One of Puppet’s most useful features is support for the concept of environments. Environments
allow you to specify configuration for particular environments—for example, you might have
development, test, and production environments. Puppet allows you to maintain parallel sets
of configuration for each environment and apply them to different clients.

This is a powerful mechanism for catering for a variety of scenarios—for example, creating
a development » testing » production life cycle for managing custom-designed infrastructure
and applications. You can also use environments to maintain separate sets of configuration for
sites or security zones—for example, separate configuration for Demilitarized Zones (DMZs)
and the internal network.

You can read about environments at http://reductivelabs.com/trac/puppet/wiki/
UsingMultipleEnvironments.

Documenting Your Configuration

A bane of many system administrators is documentation, both needing to write it and needing
to keep it up to date. Puppet has some useful built-in tools that allow you to document your
configuration manifests and modules. By running the puppetdoc binary, you can have Puppet
scan your manifests and configuration and generate documentation in HTML, among other
formats. You can read about manifest documentation at http://reductivelabs.com/trac/
puppet/wiki/PuppetManifestDocumentation.

SCALING PUPPET

The default Puppet master uses an internal web server called Webrick. Generally this web server supports only a
small number of clients, usually 30 to 50. To scale Puppet beyond this number of clients, you need to make use
of the alternative web server, Mongrel. You can read about Puppet scalability at http: //reductivelabs.com/
trac/puppet/wiki/PuppetScalability and http://reductivelabs.com/trac/puppet/wiki/
UsingMongrel.

Troubleshooting Puppet

Puppet has a big and helpful community as well as extensive documentation. In addition, one
of the authors of this book, James Turnbull, has written a book specifically about Puppet called
Pulling Strings with Puppet (Apress, 2008). In addition to the book, you can see Puppet’s wiki

CHAPTER 19 CONFIGURATION MANAGEMENT

athttp://reductivelabs.com/trac/puppet/wiki. It includes a lot of useful resources such as
the following reference pages:

* Configuration Reference: http://reductivelabs.com/trac/puppet/wiki/TypeReference
e Type Reference: http://reductivelabs.com/trac/puppet/wiki/TypeReference
* Report Reference: http://reductivelabs.com/trac/puppet/wiki/ReportReference

* Function Reference: http://reductivelabs.com/trac/puppet/wiki/FunctionReference
Also helpful on the wiki are the following resources:

e Language Tutorial: http://reductivelabs.com/trac/puppet/wiki/LanguageTutorial
* Getting Started guide: http://reductivelabs.com/trac/puppet/wiki/GettingStarted
e FAQ:http://reductivelabs.com/trac/puppet/wiki/FrequentlyAskedQuestions

In addition, you can find details of Puppet’s mailing lists, the #puppet IRC channel, and a
variety of other resources, including the ticketing system at http://reductivelabs.com/trac/
puppet/wiki/GettingHelp.

Summary

In this chapter, we’ve introduced you to some simple provisioning tools that make the process
of building and installing your hosts quick and easy. You've learned how to do the following:

¢ Configure a network boot infrastructure.
¢ Automatically boot a host with a chosen operating system.

¢ Install a chosen operating system and automatically answer the installation questions.

We've also introduced a configuration management tool, Puppet, that will help you con-
sistently and accurately manage your environment. You've learned how to do the following:

e Install Puppet.
¢ Configure Puppet.
* Use Puppet to manage the configuration of your hosts.

¢ Use the more advanced features of Puppet.

In the next chapter, we’ll demonstrate how you make can use of virtualization and virtual
servers to deploy your infrastructure cheaply and efficiently.

987

