Best Practices for Securing IP Telephony

Irwin Lazar, CISSP
Senior Analyst
Burton Group
Agenda

- VoIP overview
- VoIP risks
- Mitigation strategies
- Recommendations
VoIP Overview
VoIP Functional Diagram
Signaling Concepts

1 – Offhook & Dial
2 – Call Setup
3 – E.164 Lookup
4 – Call Setup
5 – Ring
5 – Ringback
6 – Offhook
7 – Connect RTP Stream

Call Server

IP WAN
PSTN

IP Phone
What Do These Diagrams Tell Us?

- Voice & data share a common infrastructure
 - No different from a risk perspective
 - Anything that affects data will affect voice

- This represents a major change in the way voice services are provided
 - Historically functions were separate
Hypothesis

- Enterprises implementing VoIP have an even greater need to protect their networks than before
 - There is no fallback mechanism if security is compromised
 - Both data and voice will be effected
Protocols to Know

Signaling protocols:

- **H.323** - used by most vendors
 - Cisco & Siemens use proprietary alternatives

- **SIP** - Session Initiation Protocol
 - Emerging “IP” based protocol

- **H.323** relies on gateways, **SIP** allows direct any-to-any communications
 - Though in reality they are implemented the same way
More Protocols to Know

Voice Bearer Transport Protocols

- **RTP** - Real-Time Protocol
- **RTCP** - Real-Time Control Protocol
- **UDP** - User Datagram Protocol
VoIP Risks
Specific Risks to VoIP

- **External threats**
 - Hacks against phones, call control servers, gateways
 - Denial of Service (DoS) attacks
 - Trojans, viruses, worms
 - Illicit phone system usage
 - VoIP spam
 - Compromise of call data

- **Internal Threats**
 - Eavesdroppers
 - Illicit phone system usage
 - Compromise of call data
A Few Possible Scenarios

- DoS attack on inbound calling gateway
- Worm attack takes down call servers
- Worm/Virus causes excessive network congestion
- Unauthorized calls routed through your gateway
- Calls are secretly recorded
- Improper long distance usage
Scared Yet?

- Well...you should be!
- BUT!
 - You ought to be protecting against most of this stuff already
 - A few of these risks are already out there
 - Unauthorized phone use, outside hacking
 - Mitigation strategies are available
IP Telephony Security

- Mitigation Strategies
Basic Secure IP Telephony Design

Network security principles:

- Logical separation of voice and data via VLANs wherever possible
 - Minimize interconnection points
- VoIP-aware firewalls at interconnection points
- Host-based intrusion detection & virus detection on all call management devices
- Intrusion detection at network exit/entry points
Firewall Concerns

- Firewalls must be VoIP-aware
 - VoIP relies on dynamic port creation for voice traffic
 - Signaling protocols use well known ports
 - NAT may get in the way

- Solution: Session Border Controllers
 - Kagoor, Acme Packets, Jasomi, Nextone, etc.
 - SBCs track call establishment and dynamically handle NAT and port filtering
 - May also act as a calling proxy
Security Architecture

Data VLAN
- Subnet A
- Subnet B

Voice VLAN
- Subnet A
- Subnet B

Call Server VLAN

Data to Data: Full
Voice to Voice: Full
Voice to Data: Blocked
Call Server to Voice: Full
Call Server to Data: Limited
Logical Separation Issues

- Requires Ethernet switches to support 802.1Q VLAN Trunking
- Two implementation methods
 - Ethernet switch in IP phone
 - Ethernet switch in closet performs separation
- Difficult to implement in softphone environments
Phones at 802.1Q Trunks
Call Security Options

- **End-point security:**
 - User authentication for hard/soft phones
 - 802.1x - based
 - Phone authentication to call controller
 - Use of MAC address filters to prevent rogue assignment of IP addresses and transfer of configuration files
Call Security Options (2)

• Call data security
 ▪ SSL/TLS encryption between end-points and call control servers
 • Negative performance impact
 ▪ S/MIME signing & encryption of call data
 ▪ SRTP - Secure RTP

• Prevent anonymous in-bound calling
 ▪ Inbound calls only accepted from trusted or verifiable sources
 • Use of trusted certificate authority
Call Security Options (3)

- Protection against Denial of Service Attacks
 - Only an issue when there is direct connectivity of VoIP “Islands”
 - Use of DoS mitigation techniques or devices
 - E.g. Arbor Networks, Riverhead (Cisco)
Does it Work?

“Breaking through IP telephony security”
Network World - May 24, 2004

- Mier test of Avaya & Cisco VoIP Security
- Findings:
 - Both were secure against hacker attacks against call control infrastructure
 - Both were susceptible to passive probes
 - Avaya phones could be disrupted
- Bottom line: Both systems were reasonably secure IF security architectures were fully implemented
Future Developments

- Security becoming increasingly important
 - Encryption more widely available (Cisco Call Manager 4.0)
 - Better availability of VoIP-aware security products
- Increasing use of softphones presents new challenges
- Remote users also present challenges
 - One solution: Zultys builds IPsec client directly into phones
- Growing concerns as we evolve past “Islands” of VoIP
What About Public Services?

- Public VoIP services are rapidly emerging
 - Network complexity transferred to a service provider
Service Architecture

Enterprise Network
- Analog/ISDN
- SIP
- ATA

Class 5 Switch
- Backup

SIP

Network Gateway

Feature Servers

Service Provider Network
Service Issues

Security

- Risks to corporate data stored on and carried by service providers
- Risks of denial of service attacks on provider infrastructure
- Risks to enterprise data network
- Risks of data carried over the public Internet (for broadband service providers)
- Eavesdropping
- Reliance on service provider for security management
- Are services subject to wiretapping laws?
Recommendations
Recommendations

- Conduct security assessment as part of your VoIP planning

- Recommended evaluation criteria:
 - Corporate security policies
 - Cost vs. Risk
 - Network capabilities (to support 802.1Q for example)
 - Firewall capabilities

- Need for encryption
Recommended Security Guidelines

Best practices:
- Logical separate of voice and data (use VLANs in the LAN)
- Firewalls/IDS at interconnection points
- Host-based IDS for call control servers
- Authenticate both phone and user
- Implement QoS mechanisms to prioritize voice
- Encrypt where necessary

For users of public services
- Work carefully with providers to understand security methodologies & services
What is your primary area of concern with regard to VoIP security?

- Hackers disrupting system: 54%
- Hackers misusing system: 33%
- Internal misuse?: 10%
- No concerns?: 3%
Who is responsible for VoIP security in your organization?

- Internal network security team?
- VoIP management team
- Network management team

 Nobody 23% 8% 50% 20%
Is encryption of voice a requirement?

1. Yes
2. No
3. Not sure

28% 42% 31%
Who manages your VoIP environment?

- Outsourced private solution
- Outsource public solution
- In-sourced
- Not sure?