Key Trends in Enterprise Networks

Lee Doyle
Group Vice President
Network Infrastructure
IDC

Agenda

- Networking on demand
- Data center networking requirements
- LAN switching: speed, intelligence and power
- Wi-Fi in the enterprise
- Adoption of VoIP
- Essential guidance

Networking on Demand

Network must be transparently accessed by all applications.

- Anytime, anywhere access
- Advent of grid and cluster computing
- Improved network reliability
- Support for a wide range on non-PC devices (e.g., RFID)
- Simplified provisioning and lower management
 (e.g., labor) costs

"This is a process, not an end state"

Data Center on Demand What is Utility Computing?

Industry Definition

IDC Definition

- Utility Computing Infrastructure.
- UCI provides instant IT service or capability
 - on demand to meet pre-established service levels for multiple applications, workloads or business units.
- It provides on/off pay-per-use metering and
 - billing capability.
- The UCI consists of server, storage and networking elements that are part of a virtual pool of resources that can scale and partition automatically to meet the demands

of the service levels of the applications and

Data Center on Demand

Which of the Following Best Describes Your Understanding of "Utility

Source: Utility Computing LOB Quicklook Survey, IDC

Data Center on Demand

Who Will/Is Providing Utility Computing in Your Organization?

Data Center on Demand

IT requirements are transforming the data center

- Commodity servers and blades
- Integration of high-speed storage networks
- Support for multiple OSes
- Advent of grid and cluster computing
- Web applications more critical to business success
- Improved network reliability and high availability
- Improved security for all applications and services
- Simplified provisioning and lower management (e.g., labor) costs

Data Center Networking Challenges Challenges Solutions

- Limited performance for new applications
- Network is not application aware
- Web applications critical to business success
- DOS attacks degrade performance
- Management is OPEXintensive

- 10-GB interconnections for data center
- Adoption of layers 3–7
- Layer 4-7 switches bring mission-critical reliability to applications
- Layer 4-7 switches secure network without performance penalty
- Move beyond equipmentspecific management systems

On Demand Computing Evolution

- Database
- Trans. proc.
- Web host.
- File/print

Phase 1Consolidation

Phase 2
Sharing
compatible
resources,
automation,
virtualization

Phase 3
Sharing all resources

Network Complexity

Network Consolidation

Layer 4-7 Switch Simplifies the Network

On Demand Computing Evolution

- **Database**
- Trans. proc.
- Web host.
- File/print

Phase 1

Layer 2 switch 1 Gig, 10 Gig

Phase 2

Layer 4-7 switch Secure, scale, enable

Phase 3

Next Generation Layer 4-7 switch

New Life for LAN Switching: Speed, Intelligence and Power

Problems

- Limited performance for new applications
- Network is not application aware
- Network not reliable Management capability limited and OPEX intensive

Solutions

- Migration to 1-GB desktop, 10-GB data center
- Adoption of layer 3 and layers 4–7
- High availability network products
- Move beyond equipment specific management systems, need end-toend views

Have you implemented Layer 4-7 switch?

- 1. Yes, comprehensive implementation
- 2. Yes, pilot project
- Plan to implement in 1 year
- No

New Solutions/New Devices

Intelligence Example: VoIP

- Bandwidth needs = low
- Intelligence needs = high

Traffic type: high priority

Intelligence needs:

- Layer 3 switching
 - Prioritization
 - QoS
- Management
 - Troubleshoot
 - Monitor
- High availability

Power Over Ethernet

- Power over Ethernet
 - Applications:

 IP phones, wireless
 APs, cameras
 - Over 10%
 penetration of LAN

 switch shipments
 - \$30/port premium adds to market value

Source: IDC

Market Disruptions

Survey Data: Reasons for Network Upgrades

Higher security	3.34
More access (WAN) bandwidth	2.96
New data applications	2.84
Increased # of users	2.82
More LAN bandwidth	2.80
Greater network robustness	2.72
Voice/streaming media applications2.08	

Scale: 1–5; 5 = High need to upgrade

WLAN Deployment: Tiled vs. Carpeted Environments

- Standards issues continue
- Users demand heterogeneous gear
- Justify ROI for mobile access

Source: IDC market

Wi-Fi Adoption in the Enterprise

Have you implemented WiFi in your organization?

- 1. Yes, comprehensive implementation
- Yes, pilot project
- Plan to implement in 1 year
- 4. No

Wireless Security Improvements

- Identity management everywhere
- Rouge user detection
- Authentication and encryption problems fixed by WPA and 802.1X
- 802.11i further streamlines security processes
- Directional antennas prevent signal leakage
- Management based on users, not ports

Primary Uses of Wireless LAN

Conference room access 68%

Data input and retrieval 52%

Create temporary network 36%

Substitute for wired Ethernet 34%

Pilot project 29%

Monitor for rogue users 21%

Wireless phones 13^o

Multiple responses allowed
N = 130

Source: IDC

Why Wireless LAN Is NOT Installed

Worried about security 64%

No need/no real reason 22%

No business value 16%

Waiting for better technology 9%

Poor performance 7%

Too expensive

Multiple responses allowed

Source: IDC

VoIP (IP PBX) Opportunities

- Market starting mature in 2004/2005
- Revival of hybrid circuit/packet competitors (Nortel, Siemens and Avaya)
- Adoption of IP phones
- Value-added applications (not just cost savings)
 - Voice is data now

Have you implemented VoIP in your enterprise?

- Yes, comprehensive implementation
- 2. Yes, pilot project
- Plan to implement in 1 year
- No

Opportunity Matrix: IP PBX vs. PBX

Distributed offices
Message intensive
Contact centers
Green field — no
installed PBX
Recently upgraded LAN

Centralized offices
Not message intensive
(separate e-mail and
voicemail ok)
Installed PBX
(with capacity)
LAN needs upgrade to
support VoIP

Essential Guidance

- Networking on demand requires intelligence, performance and management improvements
- Server consolidation trends will drive changes in network
- Network intelligence will enable next generation Web services deployments
- Network innovations offer users the ability to differentiate network capabilities and drive ROI
- Wireless integration continues to be difficult
- IP PBX is a platform for value-added applications
- Expect continued enhancements in LAN switching technology (e.g., Power over ethernet)