
CHAPTER

3
Oracle SQL

59

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 /

IN THIS CHAPTER:
Basic SELECT Statement

SELECT List
FROM Clause

Join Types
Filtering
Ordering
Grouping

Group Filtering
Operators

Oracle Comparison Conditions
Aggregation

Working with Dates
Working with Strings

Working with Numbers
Other Common Functions

Pseudo Columns
Subqueries

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:23 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 0 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

T
he purpose of this chapter is to cover Oracle SQL basics as they relate

to Crystal Reports. A generic knowledge of the SQL SELECT statement

is assumed and only Oracle-specific, new to 9i, or otherwise uncommon

options are discussed in any detail. New join options available in Oracle 9i are also

covered. The SELECT list, FROM clause, WHERE clause, ORDER BY clause,

and GROUP BY clause are explained, and how they are generated from Crystal

Reports is shown. Oracle operators, comparison conditions, and aggregation

functions are covered, and working with Oracle dates, strings, and numbers is

described. Commonly used Oracle-specific functions and pseudo columns are

covered, and the use of subqueries will also be discussed.

Basic SELECT Statement
The basic SELECT statement can take one of the following two forms. Refer to

Oracle documentation for a full list of possible clauses and options. Various clauses

of the SELECT statement are discussed in more detail in following sections.

The first form uses the WHERE clause to create the table joins:

SELECT [list of columns or expressions separated by commas]

FROM [list of tables separated by commas]

WHERE [join conditions and filtering conditions]

GROUP BY [optional list of columns to group by]

ORDER BY [optional list of columns to order by]

HAVING [optional group filtering conditions]

The second form uses the new Oracle 9i join syntax:

NOTE

The second form is not available in Oracle 8i or previous versions.

SELECT [list of columns or expressions separated by commas]

FROM [tables with join expressions]

WHERE [filtering conditions]

GROUP BY [optional list of columns to group by]

ORDER BY [optional list of columns to order by]

HAVING [optional group filtering conditions]

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

Aliases can be created for columns, expressions, or tables simply by inserting the

desired alias immediately following the column name, expression, or table name.

The keyword AS may be used for clarity preceding the alias. Column or expression

aliases are returned as the column name and table aliases are used as shortcuts for

the full schema qualified table name, within the query for linking, or when it is

otherwise necessary to distinguish which table a field belongs to.

It is rare for Oracle table, view, or column names to be defined with mixed-case

characters. They are usually defined in uppercase only. If the objects are defined in

Oracle using uppercase, they can be listed in the query in upper, lower, or mixed case

and the query will succeed. If an object name is defined with mixed case in Oracle,

then the object name must be enclosed in double quotes in the SELECT statement;

otherwise, Oracle will return an error saying that the object cannot be found.

The keyword DISTINCT can be added before the SELECT list to return only

one row if there are multiple rows with the same column values. The DISTINCT

keyword applies to the entire SELECT list and can cause increases in processing

time due to the comparing and filtering that must be done. Avoid using DISTINCT

if it is not required.

Except for omission of the HAVING clause, Crystal Reports constructs SELECT

statements of the first form when you use the Crystal experts to create a report.

Crystal always creates aliases for tables where the alias is the table name without the

schema name and will always prefix column names with the alias it defined for the

table. Crystal also always encloses object names with double quotes. If you want to

return distinct records, choose the Database menu item and then the Select Distinct

Records option, and DISTINCT will be added to the query.

SELECT List
The SELECT list is simply a list of columns or expressions that the user wishes to

return. Columns are specified by using the column name as defined in the table. A

table and/or schema qualifier or alias should be added to the column name with

dot notation if it is needed to distinguish the correct column from other like-named

columns from other tables in the query. Expressions are valid computations resulting

in a single value. Expressions can be single row or summary level if the corresponding

GROUP BY clause is included and can include functions, but not procedures. An

expression can even be an entire SELECT statement as long as it returns only one

value.

C h a p t e r 3 : O r a c l e S Q L 6 1

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The asterisk can be used as a shorthand symbol that means all columns. For

example, if you have a command like the following, all columns from the Employee

table will be selected.

SELECT * FROM Employee

The asterisk can be prefixed with a table name or table alias to indicate all columns

from a particular table.

SELECT Product.*, d.Order_ID

FROM Product JOIN Orders_Detail d

ON (Product.Product_Id=d.Product_Id)

FROM Clause
The tables listed in the FROM clause can be database tables or views or entire

SELECT statements. If a SELECT statement is used it is called an in-line view.

Join Types
One of the most basic and valuable features of a relational database is the ability to

join two tables together. Crystal Reports uses the Links tab of the Database Expert

to enable the user to establish links via a GUI interface. In a simple linking example

such as that shown in Figure 3-1, Crystal will generate an equal inner join.

The join that Crystal generates can be seen by selecting the Database menu item,

then the Show SQL Query option. The SQL is shown here:

It is the ("EMPLOYEE"."EMPLOYEE_ID" = "EMPLOYEE_ADDRESSES"
."EMPLOYEE_ID") part that implements the join.

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

6 2 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Joins have several possible types. A join might be an inner join, a left outer join, a

right outer join, or a full outer join. The link type might be equal, greater than, greater

than or equal, less than, less than or equal, or not equal. The most common joins are

equal inner joins and equal left outer joins. In an equal inner join, records from each table

are returned if the values in the join columns are equal. Any records from either table that

do not have exact matches in the other table are ignored. In an equal left outer join, all

records from the left-hand table are returned and any records from the right-hand table

whose join columns match are merged into the matching row. For left-hand rows with no

match, null column values are appended to the row. Equal right outer joins are identical

to equal left outer joins except that all rows from the right-hand table are returned and

matching left-hand table rows are merged. In equal full outer joins, rows with identical

values in the join columns from each table are merged, rows from either table that did not

have matches are also returned, and the missing columns are populated with null values.

It is common to assume an equal join and omit the word equal when describing joins.

Nonequal joins are similar to equal joins except that more than one row from the left-

hand table may be joined to more than one row from the right-hand table. For example,

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

C h a p t e r 3 : O r a c l e S Q L 6 3

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

Figure 3-1 Database Expert simple join

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

say that you want to know, for Product_ID 4103 for the month of May for each

ship_date the quantity to ship on that date and the total quantity shipped up to and

including that date. You need to display the sum of the quantity shipped on that date,

which is straightforward, but you also need to sum the quantities shipped before that date.

Breaking down the process, first you need the quantities by date for the product for May:

SQL> SELECT ship_date, SUM(quantity) quantity

2 FROM Orders JOIN Orders_Detail USING (Order_Id)

3 WHERE product_id=4103

4 AND ship_date BETWEEN TO_DATE('01-MAY-02','DD-MON-YY')

5 AND TO_DATE('31-MAY-02','DD-MON-YY')

6 GROUP BY ship_date;

SHIP_DATE QUANTITY

--------- ----------

02-MAY-02 2

04-MAY-02 5

09-MAY-02 3

Then you need to join each record to every record that shipped earlier or on the

same date:

SQL> SELECT a.ship_date, a.quantity, b.ship_date, b.quantity

2 FROM (SELECT ship_date, SUM(quantity) quantity

3 FROM Orders JOIN Orders_Detail USING (Order_Id)

4 WHERE product_id=4103

5 AND ship_date BETWEEN TO_DATE('01-MAY-02','DD-MON-YY')

6 AND TO_DATE('31-MAY-02','DD-MON-YY')

7 GROUP BY ship_date) a,

8 (SELECT ship_date, SUM(quantity) quantity

9 FROM Orders JOIN Orders_Detail USING (Order_Id)

10 WHERE product_id=4103

11 AND ship_date BETWEEN TO_DATE('01-MAY-02','DD-MON-YY')

12 AND TO_DATE('31-MAY-02','DD-MON-YY')

13 GROUP BY ship_date) b

14 WHERE a.ship_date >= b.ship_date;

SHIP_DATE QUANTITY SHIP_DATE QUANTITY

--------- ---------- --------- ----------

09-MAY-02 3 09-MAY-02 3

09-MAY-02 3 04-MAY-02 5

09-MAY-02 3 02-MAY-02 2

04-MAY-02 5 04-MAY-02 5

6 4 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:24 PM

Color profile: Generic CMYK printer profile
Composite Default screen

04-MAY-02 5 02-MAY-02 2

02-MAY-02 2 02-MAY-02 2

This result shows the May 9 record joined to the May 2, May 4, and May 9 records,

the May 4 record joined to the May 2 and May 4 records, and the May 2 record joined

to itself.

Finally, you need to sum the “b” values to get the month to date quantities:

SQL> SELECT a.ship_date, MIN(a.quantity) "Shipped on Ship Date",

2 SUM(b.quantity) "Shipped up to Ship Date"

3 FROM (SELECT ship_date, SUM(quantity) quantity

4 FROM Orders JOIN Orders_Detail USING (Order_Id)

5 WHERE product_id=4103

6 AND ship_date BETWEEN TO_DATE('01-MAY-02','DD-MON-YY')

7 AND TO_DATE('31-MAY-02','DD-MON-YY')

8 GROUP BY ship_date) a,

9 (SELECT ship_date, SUM(quantity) quantity

10 FROM Orders JOIN Orders_Detail USING (Order_Id)

11 WHERE product_id=4103

12 AND ship_date BETWEEN TO_DATE('01-MAY-02','DD-MON-YY')

13 AND TO_DATE('31-MAY-02','DD-MON-YY')

14 GROUP BY ship_date) b

15 WHERE a.ship_date>=b.ship_date

16 GROUP BY a.ship_date

17 ORDER BY a.ship_date;

SHIP_DATE Shipped on Ship Date Shipped up to Ship Date

--------- -------------------- -----------------------

02-MAY-02 2 2

04-MAY-02 5 7

09-MAY-02 3 10

Note that this result can be obtained in a simpler manner by using the Oracle SQL

for Analysis functions. See the “Analysis” section in Chapter 4 for more details.

Pre-Oracle 9i Joining
Prior to Oracle version 9i, all linking was done in the WHERE clause. A clause would be

written in the form Table1.LinkField [operator] Table2.LinkField,

where the operator could be =, <=, <, >, >=, <>, !=, and so on. To accomplish a left outer

or right outer join, the (+) symbol was added to the appropriate side of the condition.

A full outer join could not be done without using a UNION operation.

C h a p t e r 3 : O r a c l e S Q L 6 5

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

6 6 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

In Crystal Reports, to change the link type, go to the Database Expert, Links tab,

select the link and click Link Options, or right-click the link and select Link Options.

The Link Options dialog will be displayed, as shown here:

The next illustration shows the SQL for a left outer join using pre-9i syntax as it is

generated in Crystal Reports.

The next illustration shows a right outer join using pre-9i syntax as it is generated in

Crystal Reports.

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

Choosing Full Outer Join with an Oracle 9i database results in the error shown here:

The Full Outer Join radio button is available when using the native driver even

though choosing it causes an error. It is not available with the ODBC drivers or the

OLE DB drivers.

Link types can be changed from the Link Options dialog as well. The less than,

greater than, not equal, and so on, types work as expected. Join types other than equal

are rarely used, but they can be the proper answer for some problems, as shown in the

preceding example. Note that nonequal joins are not the same as one-to-many joins, as

a one-to-many join only joins if the condition field is equal in both tables. The

following illustration shows a not equal join.

In this case, each Employee record would be joined to each Employee_Addresses

record where Employee.Employee_ID is not equal to Employee_Addresses

.Employee_ID. This is not a sensible join.

9i Joining
Oracle 9i implements SQL 1999 compliant join operations. You can use this new

join terminology in Crystal Reports SQL Commands, Oracle views, and Oracle

Stored Procedures, but the Crystal Report designer still uses Oracle 8 syntax.

C h a p t e r 3 : O r a c l e S Q L 6 7

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The execution plan that is generated using the new join syntax may differ from the

plan that would be created using the old syntax. In general, full outer joins appear to

be optimized with the new syntax, right and left outer joins seem to be equivalent,

and inner joins may sometimes be less efficient. If large tables are being joined, a

comparison of both methods is recommended to determine the optimal execution

plan. Since Oracle recommends using the new syntax, it is expected that any

deficiencies in the plans generated will be corrected over time. For now, it may be

possible to use optimizer hints to cause the plan created by the new syntax to match

the plan created by the old syntax.

Cross Join
A cross join produces a Cartesian product of the tables if no conditions are added to

the WHERE clause:

SELECT "EMPLOYEE"."EMPLOYEE_ID", "EMPLOYEE"."FIRST_NAME",

"EMPLOYEE"."LAST_NAME", "EMPLOYEE_ADDRESSES"."CITY",

"EMPLOYEE_ADDRESSES"."COUNTRY"

FROM "XTREME"."EMPLOYEE" "EMPLOYEE"

CROSS JOIN

"XTREME"."EMPLOYEE_ADDRESSES" "EMPLOYEE_ADDRESSES"

This statement results in every row from Employees being joined to every row in

Employee_Addresses. Cross joins are rarely useful and are usually the result of

forgetting to add the join criteria to the statement.

Natural Join
A natural join automatically joins the two tables on all fields with the same name

and type:

SELECT "EMPLOYEE_ID", "EMPLOYEE"."FIRST_NAME",

"EMPLOYEE"."LAST_NAME", "EMPLOYEE_ADDRESSES"."CITY",

"EMPLOYEE_ADDRESSES"."COUNTRY"

FROM "XTREME"."EMPLOYEE" "EMPLOYEE"

NATURAL JOIN

"XTREME"."EMPLOYEE_ADDRESSES" "EMPLOYEE_ADDRESSES"

This statement will join Employee to Employee_Addresses on the Employee_ID

field from each table using an equal inner join, since that is the only column in both

tables of the same name.

6 8 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Note that for a natural join or a JOIN USING, you cannot use a schema name in

the SELECT list for the join field. Here you can use just "EMPLOYEE_ID" with no

schema qualifier.

JOIN USING
The JOIN USING syntax lets you pick which columns to use to implement the join.

The columns must have the same name, as in a natural join, but you can list only

those fields that you want to join on and exclude any other fields that might be

named the same. A JOIN USING clause results in an equal inner join:

SELECT "EMPLOYEE_ID", "EMPLOYEE"."FIRST_NAME",

"EMPLOYEE"."LAST_NAME", "EMPLOYEE_ADDRESSES"."CITY",

"EMPLOYEE_ADDRESSES"."COUNTRY"

FROM "XTREME"."EMPLOYEE" "EMPLOYEE"

JOIN

"XTREME"."EMPLOYEE_ADDRESSES" "EMPLOYEE_ADDRESSES"

USING ("EMPLOYEE_ID")

JOIN ON
The JOIN ON syntax allows you to specify join fields from the two tables where the

column names may not match:

SELECT "EMPLOYEE"."EMPLOYEE_ID", "EMPLOYEE"."FIRST_NAME",

"EMPLOYEE"."LAST_NAME", "EMPLOYEE_ADDRESSES"."CITY",

"EMPLOYEE_ADDRESSES"."COUNTRY"

FROM "XTREME"."EMPLOYEE" "EMPLOYEE"

JOIN

"XTREME"."EMPLOYEE_ADDRESSES" "EMPLOYEE_ADDRESSES"

ON ("EMPLOYEE"."EMPLOYEE_ID"=

"EMPLOYEE_ADDRESSES"."EMPLOYEE_ID")

In this case, you must qualify the joined field name with a table name or alias when

using it in the SELECT list. You can include anything in the ON clause that you would

have previously used in a WHERE clause. However, it is beneficial to keep filtering

clauses in the WHERE clause and joining clauses in the ON clause for clarity.

OUTER
OUTER JOINS can be specified in Oracle 9i using the OUTER keyword. You no

longer need to use the (+) operator:

C h a p t e r 3 : O r a c l e S Q L 6 9

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SELECT "EMPLOYEE"."EMPLOYEE_ID", "EMPLOYEE"."FIRST_NAME",

"EMPLOYEE"."LAST_NAME", "EMPLOYEE_ADDRESSES"."CITY",

"EMPLOYEE_ADDRESSES"."COUNTRY"

FROM "XTREME"."EMPLOYEE" "EMPLOYEE"

LEFT OUTER JOIN

"XTREME"."EMPLOYEE_ADDRESSES" "EMPLOYEE_ADDRESSES"

ON ("EMPLOYEE"."EMPLOYEE_ID"=

"EMPLOYEE_ADDRESSES"."EMPLOYEE_ID")

The preceding statement results in a left outer join. The OUTER keyword can be

omitted if desired.

SELECT "EMPLOYEE"."EMPLOYEE_ID", "EMPLOYEE"."FIRST_NAME",

"EMPLOYEE"."LAST_NAME", "EMPLOYEE_ADDRESSES"."CITY",

"EMPLOYEE_ADDRESSES"."COUNTRY"

FROM "XTREME"."EMPLOYEE" "EMPLOYEE"

RIGHT OUTER JOIN

"XTREME"."EMPLOYEE_ADDRESSES" "EMPLOYEE_ADDRESSES"

ON ("EMPLOYEE"."EMPLOYEE_ID"=

"EMPLOYEE_ADDRESSES"."EMPLOYEE_ID")

The preceding statement results in a right outer join.

SELECT "EMPLOYEE"."EMPLOYEE_ID", "EMPLOYEE"."FIRST_NAME",

"EMPLOYEE"."LAST_NAME", "EMPLOYEE_ADDRESSES"."CITY",

"EMPLOYEE_ADDRESSES"."COUNTRY"

FROM "XTREME"."EMPLOYEE" "EMPLOYEE"

FULL OUTER JOIN

"XTREME"."EMPLOYEE_ADDRESSES" "EMPLOYEE_ADDRESSES"

ON ("EMPLOYEE"."EMPLOYEE_ID"=

"EMPLOYEE_ADDRESSES"."EMPLOYEE_ID")

The preceding statement results in a full outer join. Full outer joins were not possible

prior to Oracle 9i without using a UNION operation.

Filtering
Restricting the records returned based on some selection criteria is done in the

WHERE clause. The Crystal Reports Select Expert translates the user’s choices into

expressions in the WHERE clause. For complex filtering, the selection formula can

be modified manually.

7 0 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Ordering
Ordering the records returned is implemented using the ORDER BY clause. Each

field is sorted in the order specified (by default, the sort order is ascending, but a

descending sort order can be specified).

Crystal Reports will generate the ORDER BY clause depending on any existing

group’s Insert Group Options and the Record Sort Order options, as shown in

Figure 3-2 and Figure 3-3. However, choosing the group option to sort in original

order will have no impact because Oracle will sort the GROUP BY fields in

ascending order by default. If the Sort In Specified Order is selected, then the sort

cannot be done on the server and will be done locally.

Grouping
Grouping is accomplished using the GROUP BY clause, which also performs a sort

on the grouped fields. You must use a GROUP BY clause if you wish to use any

aggregation functions such as SUM. Adding a group in Crystal Reports will not

necessarily add a GROUP BY clause to the SQL query. An Oracle SELECT

statement containing a GROUP BY clause will return data only at the grouped level;

it will not return any detail rows. If a Crystal Report has a group and the detail rows

are suppressed, Crystal will add a GROUP BY clause to the SQL query. If multiple

C h a p t e r 3 : O r a c l e S Q L 7 1

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

Figure 3-2 Insert Group Common Options

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:25 PM

Color profile: Generic CMYK printer profile
Composite Default screen

groups exist and detail rows are suppressed, Crystal will add a GROUP BY clause

for the innermost not suppressed group.

Group Filtering
Oracle SQL supports using the HAVING clause to specify filtering at the group

level. The HAVING clause is discussed in more detail in Chapter 4. Crystal Reports

allows group selection formulas, but these are not translated into the SQL query and

passed to the server. Group filtering that is done with Crystal options will be done

locally.

Operators
Oracle SQL operators are used to create complex expressions. The available

arithmetic operators are + (addition), – (subtraction), * (multiplication), and /

(division). The concatenation operator is ||. Crystal Reports shows the Oracle

operators in the SQL Expression Editor in the Operators box, as shown here:

7 2 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

Figure 3-3 Record Sort Order

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 3 : O r a c l e S Q L 7 3

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

There are some errors in the Crystal listing. The % operator is shown, but it is

not a valid Oracle operator and any SQL Command containing it will fail. Also,

the + is shown as the concatenation operator, but it will only work for numeric

addition, not for string concatenation; you must use the double pipes (||) for

concatenation. The * is listed as the multiplication operator. This is not correct,

but Crystal converts it to × in the SQL query, so it is not a problem.

Oracle Comparison Conditions
Comparison conditions are used in the WHERE clause or HAVING clause to compare

one expression to another. In addition to the usual =, <>, <, >, <=, >=, you can also use

IS NULL, IS NOT NULL, LIKE, BETWEEN, NOT BETWEEN, IN, NOT IN, and

EXISTS. Comparison conditions can be joined with AND or OR and negated with NOT.

Table 3-1 shows how the Crystal condition is translated into an Oracle WHERE

clause when using the Crystal Reports Select Expert to create selection formulas.

The strings used in the LIKE and NOT LIKE conditions can contain the Crystal

wildcard characters ? and *, which are translated to the corresponding Oracle

wildcard characters _ and %.

To use Oracle’s IN, BETWEEN, or EXISTS comparison conditions in the

WHERE clause, you must use a SQL Command, view, or stored procedure.

Aggregation
If a GROUP BY clause is specified in the query, then aggregation functions can be

used. Table 3-2 shows Crystal’s summary functions and how they are translated into

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7 4 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

the database query. It also shows an alternative Oracle aggregation function that can

be used in pass-through SQL.

The Crystal SQL column assumes that lower-level detail is suppressed or hidden

and that grouping on the server is turned on. Otherwise, Crystal will not do any

aggregation in the SQL query. If this column contains “Local”, it means that the

aggregation is done locally and not pushed to the server. The Oracle Aggregation

column displays an Oracle function that could be used in a SQL Command, view, or

stored procedure, which is equivalent to the Crystal summary function. See Chapter

6 for detailed examples of Oracle substitutes for the Crystal summary functions.

NOTE

The percentile functions are new to Oracle 9i.

In cases where the Crystal summary would be evaluated locally, performance

gains can be made by substituting an Oracle function.

Select Expert Wording Select Formula Crystal Generated WHERE Clause
Is equal to = =

Is not equal to <> <>

Is one of In [] Series of (field=value1 or field=value2 or …)

Is not one of Not (field in []) Series of Not (field=value1 or field=value2 or …)

Is less than < <

Is less than or equal to <= <=

Is greater than > >

Is greater than or equal to >= >=

Is between Field in value1 to value2 (field>=value1 and field<=value2)

Is not between Not (field in value1 to value2) NOT (field>=value1 and field<=value2)

Starts with Field starts with string Field like string%

Does not start with NOT (Field starts with string) Field not like string%

Is like Field like string Field like string

Is not like NOT (field like string) Field not like string

Is null IsNull() Field IS NULL

Is not null Not IsNull() Field IS NOT NULL

Table 3-1 Comparison Conditions

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

Other available Oracle 8i functions include CUME_DIST, DENSE_RANK,

FIRST_VALUE, LAG, LAST_VALUE, LEAD, NTILE, RANK, RATIO_

TO_REPORT, and linear regression functions. FIRST and LAST are additional

functions available in Oracle 9i.

Working with Dates
As discussed in Chapter 2, Oracle has one datatype called DATE, which includes the

date and the time down to the second. Oracle SQL accepts date literals in expressions

C h a p t e r 3 : O r a c l e S Q L 7 5

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

Crystal Summary
Available for Field Type

Crystal SQL Oracle AggregationCharacter Numeric Date
Sum No Yes No SUM SUM

Average No Yes No Local AVG

Sample Variance No Yes No Local VAR_SAMP

Sample Standard Deviation No Yes No Local STDDEV_SAMP

Maximum Yes Yes Yes MAX MAX

Minimum Yes Yes Yes MIN MIN

Count Yes Yes Yes COUNT COUNT

Distinct Count Yes Yes Yes Local COUNT(DISTINCT())

Correlation with No Yes No Local CORR

Covariance with No Yes No Local COVAR_SAMP

Median No Yes No Local PERCENTILE_CONT(0.5)
PERCENTILE_DISC (0.5)

Mode Yes Yes Yes Local See Chapter 6

Nth largest Yes Yes Yes Local See Chapter 6

Nth smallest Yes Yes Yes Local See Chapter 6

Nth most frequent Yes Yes Yes Local See Chapter 6

Pth percentile No Yes No Local PERCENT_RANK

Population Variance No Yes No Local VAR_POP

Population Standard
Deviation

No Yes No Local STDDEV_POP

Weighted Average With No Yes No Local See Chapter 6

Table 3-2 Summary Functions

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

as well as numerous date functions. A date literal is a string representation of a date,

such as ‘12-FEB-2002’. In Oracle tools, the format of the date literal must match the

instance or session setting for the NLS_DATE_FORMAT parameter.

Dates in the Selection Formula
Any selection criteria containing dates that is built using the Crystal Reports Select

Expert will automatically create a selection formula that wraps the Crystal DateTime

function around the date. This in turn will be translated into the SQL Query using

the Oracle To_Date function, as in the following example:

WHERE "EMPLOYEE"."BIRTH_DATE" <

TO_DATE ('08-12-1972 00:00:00', 'DD-MM-YYYY HH24:MI:SS')

If you create the selection formula yourself, you should also use the Crystal

DateTime function or the Crystal Date function. Using date literals will not be

accepted in selection formulas.

Date Literals in SQL Expressions
Date literals are allowed in Crystal Reports SQL Expressions. The Crystal Reports help

states that when logging on to Oracle, the date format is changed to match the default

Crystal Reports date format. This would seem to mean that Crystal is setting the session’s

NLS_DATE_FORMAT to match its own default DateTime format. However, testing

shows that, no matter what the default Crystal DateTime format is set to, date literals of

only a specific format are accepted. The accepted format is Year/Month/Day, where the

year must be 4-digit; the month can be 2-digit, the 3-character abbreviation, or the whole

month name; and the delimiter can be “/” or “–”. This may be a bug. It is always safer to

use the TO_DATE Oracle function with a specific format string instead of date literals.

DateTime Functions
Crystal Reports contains many date functions that can be used in formulas, but none

of the Crystal Report date functions is translated to equivalent Oracle date functions

in the SQL Query. If numerous or complex date manipulations are required, this

could cause a slowdown in processing. To move this processing to the server, use

SQL Expressions containing Oracle date functions.

The Oracle function TO_DATE is used to convert a string to a date. This function

is normally used with two parameters, the string that needs to be converted, and the

string that contains the date format:

7 6 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TO_DATE ('08-12-1972', 'DD-MM-YYYY')

If the format string is omitted, the date string must be in the same format as the

NLS_DATE_FORMAT Oracle initialization parameter. A third parameter can be

used to support globalization. See Oracle documentation for valid format strings.

Oracle has many DateTime functions:

TO_CHAR NUMTOYMINTERVAL

ADD_MONTHS ROUND

CURRENT_DATE SESSIONTIMEZONE

CURRENT_TIMESTAMP SYS_EXTRACT_UTC

DBTIMEZONE SYSDATE

EXTRACT SYSTIMESTAMP

FROM_TZ TO_DSINTERVAL

LAST_DAY TO_TIMESTAMP

LOCALTIMESTAMP TO_TIMESTAMP_TZ

MONTHS_BETWEEN TO_YMINTERVAL

NEW_TIME TRUNC

NEXT_DAY TZ_OFFSET

NUMTODSINTERVAL

Some of these functions use, or return, datatypes of timestamp or interval. Note that

timestamp and interval types cannot be used directly by Crystal Reports. You can use

any of the Oracle DateTime functions in Crystal SQL Expressions even though some

of them do not appear in the SQL Expression Editor lists.

NOTE

The functions listed in the preceding paragraph that use timestamp or interval datatypes are not
available in Oracle 8i or previous versions.

Working with Strings
Crystal Reports contains many string functions that can be used in formulas, but

none of the Crystal Report string functions is translated to equivalent Oracle

character functions in the SQL Query. As with date and time data, if numerous

or complex string manipulations are required, this could cause a slowdown in

processing. To move this processing to the server, use SQL Expressions containing

Oracle string functions.

C h a p t e r 3 : O r a c l e S Q L 7 7

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

7 8 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

Oracle character functions include the following:

TO_NUMBER RPAD

CHR RTRIM

CONCAT SOUNDEX

INITCAP SUBSTR

LOWER TRANSLATE

LPAD TRIM

LTRIM UPPER

NLS_INITCAP ASCII

NLS_LOWER INSTR

NLSSORT TRANSLATE

NLS_UPPER LENGTH

REPLACE

Most of these functions can be used with all Oracle character types, including CLOBs

and LONGs. You can use any of the Oracle character functions in Crystal SQL

Expressions even though some of them do not appear in the SQL Expression Editor.

Working with Numbers
Crystal Reports contains many mathematical functions that can be used in formulas,

but none of the Crystal Report math functions is translated to equivalent Oracle

numeric functions in the SQL Query. Again, numerous or complex arithmetic

manipulations could cause a slowdown in processing. Use SQL Expressions

containing Oracle numeric functions to move this processing to the server.

Oracle numeric functions include the following:

TO_CHAR LN

ABS LOG

ACOS MOD

ASIN POWER

ATAN ROUND

ATAN2 SIGN

BITAND SIN

CEIL SINH

COS SQRT

COSH TAN

EXP TANH

FLOOR TRUNC

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:27 PM

Color profile: Generic CMYK printer profile
Composite Default screen

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

You can use any of the Oracle numeric functions in Crystal SQL Expressions even

though some of them do not appear in the SQL Expression Editor.

Other Common Functions
Several Oracle built-in functions are commonly used in queries. Probably the two

that are used most often are NVL and DECODE. You can use any of these functions

in Crystal SQL Expressions even though some of them do not appear in the SQL

Expression Editor.

NVL
NVL is an extremely useful function that allows you to replace a null value with

an appropriate substitute when needed. The following example will return ‘Not

Shipped’ if the Ship_Via field is null. NVL can also be used for numbers where a

common replacement for null would be zero.

NVL("ORDERS"."SHIP_VIA", 'Not Shipped')

NVL2
NVL2 is a variation of NVL that allows you to return one value if the test value is

null and a different value if the test value is not null:

NVL2("ORDERS"."SHIP_VIA", 'Ship Via is not null',

'Ship Via is null')

COALESCE
COALESCE is another variant of NVL. It takes a list of expressions and returns

the first one that evaluates to a non-null value. The following example returns the

Ship_Date if it is not null. If the Ship_Date is null and the Required_Date is not null,

it returns the Required_Date. If both the Ship_Date and Required_Date are null, it

returns the Order_Date. If all three are null, it returns null.

COALESCE("ORDERS"."SHIP_DATE","ORDERS"."REQUIRED_DATE",

"ORDERS"."ORDER_DATE")

NOTE

The COALESCE function is new to Oracle 9i.

C h a p t e r 3 : O r a c l e S Q L 7 9

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:28 PM

Color profile: Generic CMYK printer profile
Composite Default screen

DECODE
The DECODE function takes a test value and a list of pairs of values. It returns

the second value in the pair where the test value matches the first value in the pair.

In the example that follows, if Employee_ID=1, then ‘Joe’ will be returned; if

Employee_ID=2, then ‘Jane’ will be returned; if Employee_ID is not 1 or 2, then

‘Everyone else’ will be returned:

DECODE("ORDERS"."EMPLOYEE_ID", 1, 'Joe', 2, 'Jane',

'Everyone else')

CASE
The Oracle CASE keyword is not really a function but an expression that can be

used in a SQL query. In its simple format, it is similar to the DECODE function:

CASE "ORDERS"."EMPLOYEE_ID"

WHEN 1 THEN 'Joe'

WHEN 2 THEN 'Jane'

ELSE 'Everybody else'

END

It can also be used in a more complex manner where each condition is not relative to

the same field, but completely independent. This called a searched case statement.

CASE

WHEN "ORDERS"."ORDER_AMOUNT">10000 THEN 'Big Order'

WHEN "ORDERS"."CUSTOMER_ID"=5 THEN 'Big Customer'

ELSE 'Normal Order'

END

NOTE

Simple case expressions were available in Oracle 8i, but searched case expressions are new to
Oracle 9i.

GREATEST
The GREATEST function returns the largest value from a list of values. If items in

the list are not of the same type, they are converted to the type of the first value. In

the following example, whichever date is the latest will be returned. GREATEST is

not the same as MAX. MAX is an aggregation function that returns the greatest

8 0 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

value in a column over the entire group, whereas GREATEST is a single row

function.

GREATEST("ORDERS"."ORDER_DATE","ORDERS"."REQUIRED_DATE",

"ORDERS"."SHIP_DATE")

LEAST
The LEAST function returns the smallest value from a list of values. As with

GREATEST, if items in the list are not of the same type, they are converted to the

type of the first value. In the example that follows, whichever date is the earliest will

be returned. LEAST is not equivalent to MIN:

LEAST("ORDERS"."ORDER_DATE","ORDERS"."REQUIRED_DATE",

"ORDERS"."SHIP_DATE")

Pseudo Columns
Pseudo columns are values that Oracle maintains. You can select them as if they

were regular columns.

ROWNUM
The rownum pseudo column is a number showing in what order Oracle selected the

rows in the result set. The rownum value can vary depending on ORDER BY clauses

and other conditions. It does not represent a constant value for each row in a table.

The rownum pseudo column is often used to limit the result set for sampling

purposes or to create Top-N type queries.

To limit the number of rows returned, create a SQL Expression whose value is

rownum and then use that SQL Expression in the select formula. Be aware that the

rownum determination is happening before the sort so this will not return the top 15

Employee_IDs, just the first 14 rows retrieved from Orders sorted by Employee_ID.

The sort happens after the retrieval:

SELECT "ORDERS"."EMPLOYEE_ID", "ORDERS"."ORDER_AMOUNT",

"ORDERS"."ORDER_ID", (rownum)

FROM "XTREME"."ORDERS" "ORDERS"

WHERE (ROWNUM)<15

ORDER BY "ORDERS"."EMPLOYEE_ID"

C h a p t e r 3 : O r a c l e S Q L 8 1

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To create a Top-N query using rownum, you must use a SQL Command. For

instance, if your SQL Command contained the following statement, you would get

the smallest 14 orders by Order_amount:

SELECT * FROM

(SELECT "ORDERS"."EMPLOYEE_ID",

"ORDERS"."ORDER_AMOUNT", "ORDERS"."ORDER_ID"

FROM "XTREME"."ORDERS" "ORDERS"

ORDER BY "ORDERS"."ORDER_AMOUNT")

WHERE ROWNUM<15

ROWID
The ROWID pseudo column is the physical row address. Even this value should not

be considered constant for a row. It can change in cases of row migration or table

restructuring.

Subqueries
Subqueries are queries that are nested inside another query. Subqueries can appear in

two places in SELECT statements. A subquery in the FROM clause is also called an

inline view. This example shows an inline view:

SELECT "EMPLOYEE_ID",

"ORDERS"."ORDER_AMOUNT",

"ORDERS"."ORDER_ID",

"ORDERS3"."AVG_ORDER"

FROM "XTREME"."ORDERS" "ORDERS"

JOIN

(SELECT "ORDERS2"."EMPLOYEE_ID",

AVG("ORDERS2"."ORDER_AMOUNT") AVG_ORDER

FROM "XTREME"."ORDERS" "ORDERS2"

GROUP BY "ORDERS2"."EMPLOYEE_ID") "ORDERS3"

USING ("EMPLOYEE_ID")

ORDER BY "ORDERS"."ORDER_AMOUNT"

A subquery in the WHERE clause is called a nested subquery. Subqueries can be

nested inside other subqueries. This example shows an uncorrelated nested subquery:

SELECT "ORDERS"."EMPLOYEE_ID",

"ORDERS"."ORDER_AMOUNT", "ORDERS"."ORDER_ID"

8 2 C r y s t a l R e p o r t s 9 o n O r a c l e

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

FROM "XTREME"."ORDERS" "ORDERS"

WHERE "ORDERS"."ORDER_AMOUNT">

(SELECT AVG("ORDERS2"."ORDER_AMOUNT")

FROM "XTREME"."ORDERS" "ORDERS2")

ORDER BY "ORDERS"."ORDER_AMOUNT"

If a nested subquery contains a reference to a field in the main query in its

WHERE clause, it is called a correlated nested subquery. This example shows a

correlated nested subquery:

SELECT "ORDERS"."EMPLOYEE_ID", "ORDERS"."ORDER_AMOUNT",

"ORDERS"."ORDER_ID"

FROM "XTREME"."ORDERS" "ORDERS"

WHERE "ORDERS"."ORDER_AMOUNT">

(SELECT AVG("ORDERS2"."ORDER_AMOUNT")

FROM "XTREME"."ORDERS" "ORDERS2"

WHERE "ORDERS2"."EMPLOYEE_ID"="ORDERS"."EMPLOYEE_ID")

ORDER BY "ORDERS"."ORDER_AMOUNT"

This chapter covered basic Oracle SELECT statement construction. How Crystal

Reports constructs SQL statements to send to Oracle was demonstrated, as were

statement options beyond the simple syntax used by Crystal. The next chapter will

describe more complex SELECT statement options.

C h a p t e r 3 : O r a c l e S Q L 8 3

D_Base / Crystal Reports 9 on Oracle / Harper / 223079-7 / Chapter 3

P:\010Comp\D_Base\079-7\ch03.vp
Thursday, September 11, 2003 2:21:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

	In This Chapter:
	Basic SELECT Statement
	SELECT List
	FROM Clause
	Join Types
	Filtering
	Ordering
	Grouping
	Group Filtering
	Operators
	Oracle Comparison Conditions
	Aggregation
	Working with Dates
	Working with Strings
	Working with Numbers
	Other Common Functions
	Pseudo Columns
	Subqueries

