
ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:141

CHAPTER
5

Using SQL*Plus

P:\010Comp\Oracle8\981-0\ch05.vp
Thursday, January 29, 2004 11:58:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In this chapter, you will

■ View the structure of a table

■ Edit a SQL statement

■ Save and run scripts containing SQL statements and SQL*Plus commands

■ Format column output

■ Define and use variables

■ Create simple reports

In the last section of this chapter, you’ll also learn how to write SQL statements that generate
other SQL statements. Let’s plunge in and examine how you view the structure of a table.

Viewing the Structure of a Table
You use the DESCRIBE command to view the structure of a table. You can save some typing by
shortening the DESCRIBE command to DESC (DESC[RIBE]). Knowing the structure of a table is
useful because you can use the information to formulate a SQL statement. For example, you can
figure out the columns you want to query in a SELECT statement.

NOTE
You typically omit the semicolon character (;) when issuing SQL*Plus
commands.

The following example uses the DESCRIBE command to view the structure of the customers
table; notice that the semicolon character (;) is omitted from the end of the command:

SQL> DESCRIBE customers
Name Null? Type
--------------------- -------- --------------
CUSTOMER_ID NOT NULL NUMBER(38)
FIRST_NAME NOT NULL VARCHAR2(10)
LAST_NAME NOT NULL VARCHAR2(10)
DOB DATE
PHONE VARCHAR2(12)

As you can see from this example, the output from the DESCRIBE command has three
columns that show the structure of the database table:

■ Name Lists the names of the columns contained in the table. In the example, you can
see the customers table has five columns: customer_id, first_name, last_name,
dob, and phone.

142 Oracle Database 10g SQL

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:142

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:20:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Using SQL*Plus 143

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:143

■ Null? Indicates whether the column can store null values. If NOT NULL, the column
cannot store nulls. If blank, the column can store null values. In the example, you can
see the customer_id, first_name, and last_name columns cannot store null
values, but the dob and phone columns can store null values.

■ Type Indicates the type of the column. In the example, you can see the type of
the customer_id column is NUMBER(38) and the type of the first_name is
VARCHAR2(10).

The next example uses the shortened DESC command to view the structure of the
products table:

SQL> DESC products
Name Null? Type
--------------------- -------- --------------
PRODUCT_ID NOT NULL NUMBER(38)
PRODUCT_TYPE_ID NUMBER(38)
NAME NOT NULL VARCHAR2(30)
DESCRIPTION VARCHAR2(50)
PRICE NUMBER(5,2)

Editing SQL Statements
As you may have noticed, it becomes tedious to have to repeatedly type similar SQL statements
into SQL*Plus. You will be pleased to know SQL*Plus stores your previous SQL statement in a
buffer. You can then edit the lines that make up your SQL statement stored in the buffer. Some of
the editing commands are listed in the following table. Notice the optional part of each command
indicated using square brackets; for example, you can abbreviate the APPEND command to A.

Command Description

A[PPEND] text Appends text to the current line.

C[HANGE] /old/new Changes the text specified by old to new in the current line.

CL[EAR] BUFF[ER] Clears all lines from the buffer.

DEL Deletes the current line.

DEL x Deletes the line specified by the line number x (line numbers
start with 1).

L[IST] Lists all the lines in the buffer.

L[IST] x Lists line number x.

R[UN]
or
/

Runs the statement stored in the buffer. You can also use / to run
the statement.

x Makes the line specified by the line number x the current line.

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:20:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

144 Oracle Database 10g SQL

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:144

Let’s take a look at some examples of using the SQL*Plus editing commands. First, enter the
following SELECT statement into SQL*Plus:

SQL> SELECT customer_id, first_name, last_name
2 FROM customers
3 WHERE customer_id = 1;

SQL*Plus automatically increments and displays the line number when your SQL statement
spans more than one line. Make line 1 the current line by entering 1 at the prompt:

SQL> 1
1* SELECT customer_id, first_name, last_name

Notice that SQL*Plus displays the current line. Add the dob column to the list of columns to
retrieve using the APPEND command:

SQL> APPEND , dob
1* SELECT customer_id, first_name, last_name, dob

Next, list all the lines in the buffer using the LIST command:

SQL> LIST
1 SELECT customer_id, first_name, last_name, dob
2 FROM customers
3* WHERE customer_id = 1

Notice that the current line has been changed to the last line, as indicated by the asterisk
character (*). Change the final line to select the customer where the customer_id column is 2
using the CHANGE command. Notice that the line that has been changed is displayed after the
command is run:

SQL> CHANGE /customer_id = 1/customer_id = 2
3* WHERE customer_id = 2

Finally, execute the query using the RUN command. Notice that the text of the query is
repeated before the returned row:

SQL> RUN
1 SELECT customer_id, first_name, last_name, dob
2 FROM customers
3* WHERE customer_id = 2

CUSTOMER_ID FIRST_NAME LAST_NAME DOB
----------- ---------- ---------- ---------

2 Cynthia Green 05-FEB-68

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:20:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Using SQL*Plus 145

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:145

You can also use a forward slash character (/) to run the SQL statement stored in the buffer.
For example:

SQL> /

CUSTOMER_ID FIRST_NAME LAST_NAME DOB
----------- ---------- ---------- ---------

2 Cynthia Green 05-FEB-68

Saving, Retrieving, and Running Files
SQL*Plus allows you save, retrieve, and run text files containing SQL*Plus commands and SQL
statements. You’ve already seen one example of running a SQL*Plus script: you saw how to run
the store_schema.sql script file in Chapter 1, which created the store schema.

Some of the file commands are listed in the following table.

Command Description

SAV[E] filename
[{ REPLACE | APPEND }]

Saves the contents of the SQL*Plus buffer to a file specified
by filename. You can append the content of the buffer
to an existing file using the APPEND option. You can also
overwrite an existing file using the REPLACE option.

GET filename Retrieves the contents of the file specified by filename
into the SQL*Plus buffer.

STA[RT] filename Retrieves the contents of the file specified by filename
into the SQL*Plus buffer, and then attempts to run the
contents of the buffer.

@ filename Same as the START command.

ED[IT] Copies the contents of the SQL*Plus buffer to a file named
afiedt.buf and then starts the default editor for the
operating system. When you exit the editor, the contents
of your edited file are copied to the SQL*Plus buffer.

ED[IT] filename Same as the EDIT command, but you can specify a file
to start editing. You specify the file to edit using the
filename parameter.

SPO[OL] filename Copies the output from SQL*Plus to the file specified by
filename.

SPO[OL] OFF Stops the copying of output from SQL*Plus to the file, and
closes that file.

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:20:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

146 Oracle Database 10g SQL

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:146

Let’s take a look at some examples of using these SQL*Plus commands. First, enter the
following SQL statement into SQL*Plus:

SQL> SELECT customer_id, first_name, last_name
2 FROM customers
3 WHERE customer_id = 1;

Save the contents of the SQL*Plus buffer to a file named cust_query.sql using the SAVE
command:

SQL> SAVE cust_query.sql
Created file cust_query.sql

NOTE
By default the cust_query.sql file is stored in the bin
subdirectory where you installed the Oracle software.

Retrieve the contents of the cust_query.sql file using the GET command:

SQL> GET cust_query.sql
1 SELECT customer_id, first_name, last_name
2 FROM customers
3* WHERE customer_id = 1

Run the contents of the cust_query.sql file using the START command:

SQL> START cust_query.sql

CUSTOMER_ID FIRST_NAME LAST_NAME
----------- ---------- ----------

1 John Brown

Edit the contents of the SQL*Plus buffer using the EDIT command:

SQL> EDIT

The EDIT command starts the default editor for your operating system. On Windows the
default editor is Notepad, and on Unix or Linux the default editor is vi or emacs. You can set
the default editor using the DEFINE command:

DEFINE _EDITOR = 'editor'

where editor is the name of your preferred editor.
For example, the following command sets the default editor to vi:

DEFINE _EDITOR = 'vi'

Figure 5-1 shows the contents of the SQL*Plus buffer in Notepad. Notice that the SQL
statement is terminated using a slash character (/) rather than a semicolon.

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Using SQL*Plus 147

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:147

In your editor, change the WHERE clause to WHERE customer_id = 2 and save and quit
from your editor. For example, in Notepad you select File | Exit to quit Notepad; click Yes to save
your query when prompted by Notepad. SQL*Plus displays the following output containing your
modified query. Notice that the WHERE clause has been changed:

Wrote file afiedt.buf

1 SELECT customer_id, first_name, last_name
2 FROM customers
3* WHERE customer_id = 2

Run your modified query using the slash character (/):

SQL> /

CUSTOMER_ID FIRST_NAME LAST_NAME
----------- ---------- ----------

2 Cynthia Green

Next, use the SPOOL command to copy the output from SQL*Plus to a file named cust_
results.txt, run your query again, and then turn spooling off by executing SPOOL OFF:

SQL> SPOOL cust_results.txt
SQL> /

CUSTOMER_ID FIRST_NAME LAST_NAME
----------- ---------- ----------

2 Cynthia Green

SQL> SPOOL OFF

FIGURE 5-1. Editing the SQL*Plus buffer contents using Notepad

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Feel free to examine the cust_results.txt file; it will contain the previous output
between the slash (/) and SPOOL OFF. By default, this file is stored in the directory where the
Oracle software is installed under the bin subdirectory. You can specify the full directory path
where you want the file to be written using the SPOOL command by adding a directory path to
your filename. For example:

SPOOL C:\my_files\spools\cust_results.txt

Formatting Columns
You use the COLUMN command to format the display of column headings and column data. The
simplified syntax for the COLUMN command is as follows:

COL[UMN] {column | alias} [options]

where

■ column specifies the column name.

■ alias specifies the column alias to be formatted. In Chapter 2 you saw that you can
“rename” a column using a column alias; you can then reference your alias in the
COLUMN command.

■ options specifies one or more options to be used to format the column or alias.

There are a number of options you can use with the COLUMN command. The following table
shows some of these options.

Option Description

FOR[MAT] format Sets the format for the display of the column or alias to
that specified in the format string.

HEA[DING] heading Sets the text for the heading of the column or alias to
that specified in the heading string.

JUS[TIFY]
[{ left | center | right }]

Aligns the column output to the left, center, or right.

WRA[PPED] Wraps the end of a string onto the next line of output.
This option may cause individual words to be split
across multiple lines.

WOR[D_WRAPPED] Similar to the WRAPPED option except that individual
words aren’t split across two lines.

CLE[AR] Clears any formatting of columns (sets the formatting
back to the default).

The format string in the previous table may take a number of formatting parameters. The
parameters you specify depend on the data stored in your column:

148 Oracle Database 10g SQL

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:148

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:149

■ If your column contains characters, you can use Ax to format the characters, where x
specifies the width for the characters. For example, A12 sets the width to 12 characters.

■ If your column contains numbers, you can use any of the number formats shown in
Table 3-4 of Chapter 3. For example, $99.99 sets the format to a dollar sign, followed
by two digits, the decimal point, and another two digits.

■ If your column contains a date, you can use any of the date formats shown in Table 4-2
of Chapter 4. For example, MM-DD-YYYY sets the format to a two-digit month (MM), a
two-digit day (DD), and a four-digit year (YYYY).

Let’s consider an example. You’re going to format the output of a query that retrieves the
product_id, name, description, and price columns from the products table. The display
requirements, the format strings, and the COLUMN commands are shown in the following table.

Column Display Requirement Format COLUMN Command

product_id Two digits 99 COLUMN product_id
FORMAT 99

name Thirteen-character
word-wrapped strings
and change heading to
PRODUCT_NAME

A13 COLUMN name
HEADING PRODUCT_NAME
FORMAT A13

WORD_WRAPPED

description Thirteen-character
word-wrapped strings

A13 COLUMN description
FORMAT A13

WORD_WRAPPED

price Dollar symbol, with two
digits to the right of the
decimal point and two
digits to the left of the
decimal point

$99.99 COLUMN price FORMAT
$99.99

Enter the following COLUMN commands into SQL*Plus in preparation for executing a query
against the products table:

SQL> COLUMN product_id FORMAT 99
SQL> COLUMN name HEADING PRODUCT_NAME FORMAT A13 WORD_WRAPPED
SQL> COLUMN description FORMAT A13 WORD_WRAPPED
SQL> COLUMN price FORMAT $99.99

Next, run the following query to retrieve some rows from the products table. Notice the
formatting of the columns in the output due to the previous COLUMN commands:

SQL> SELECT product_id, name, description, price
2 FROM products
3 WHERE product_id < 6;

Chapter 5: Using SQL*Plus 149

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

150 Oracle Database 10g SQL

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:150

PRODUCT_ID PRODUCT_NAME DESCRIPTION PRICE
---------- ------------- ------------- --------

1 Modern A description $19.95
Science of modern

science

2 Chemistry Introduction $30.00
to Chemistry

3 Supernova A star $25.99
explodes

4 Tank War Action movie $13.95

PRODUCT_ID PRODUCT_NAME DESCRIPTION PRICE
---------- ------------- ------------- --------

about a
future war

5 Z Files Series on $49.99
mysterious
activities

This output is readable, but wouldn’t it be nice if you could just display the headings once at
the top? You can do that by setting the page size.

Setting the Page Size
You set the number of lines in a page using the SET PAGESIZE command. This command sets
the number of lines that SQL*Plus considers one “page” of output, after which SQL*Plus will
display the headings again.

Set the page size to 100 lines using the following SET PAGESIZE command and run your
query again using /:

SQL> SET PAGESIZE 100
SQL> /

PRODUCT_ID PRODUCT_NAME DESCRIPTION PRICE
---------- ------------- ------------- --------

1 Modern A description $19.95
Science of modern

science

2 Chemistry Introduction $30.00
to Chemistry

3 Supernova A star $25.99
explodes

4 Tank War Action movie $13.95
about a

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:151

future war

5 Z Files Series on $49.99
mysterious
activities

Notice the headings are only shown once at the top, and the resulting output looks better.

NOTE
The maximum number for the page size is 50,000.

Setting the Line Size
You set the number of characters in a line using the SET LINESIZE command. Set the line size
to 50 lines using the following SET LINESIZE command and run the new query shown in the
following example:

SQL> SET LINESIZE 50
SQL> SELECT * FROM customers;

CUSTOMER_ID FIRST_NAME LAST_NAME DOB
----------- ---------- ---------- ---------
PHONE

1 John Brown 01-JAN-65
800-555-1211

2 Cynthia Green 05-FEB-68
800-555-1212

3 Steve White 16-MAR-71
800-555-1213

4 Gail Black
800-555-1214

5 Doreen Blue 20-MAY-70

The lines don’t span more than 50 characters.

NOTE
The maximum number for the line size is 32,767.

Clearing Column Formatting
You clear the formatting for a column using the CLEAR option of the COLUMN command. For
example, the following COLUMN command clears the formatting for the product_id column:

SQL> COLUMN product_id CLEAR

Chapter 5: Using SQL*Plus 151

P:\010Comp\Oracle8\981-0\ch05.vp
Thursday, January 29, 2004 12:02:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

You can clear the formatting for all columns using CLEAR COLUMNS. For example:

SQL> CLEAR COLUMNS
columns cleared

Once you’ve cleared your columns, the output from queries will use the default format for
the columns.

Using Variables
In this section, you’ll see how to create variables that may be used in place of actual values in
SQL statements. These variables are known as substitution variables because they are used as
substitutes for values. When you run your SQL statement, you enter values for your variables and
those values are then substituted into your SQL statement.

There are two basic types of variables you can use in SQL*Plus:

■ Temporary variables A temporary variable is only valid for the SQL statement in which
it is used and doesn’t persist.

■ Defined variables A defined variable persists until you explicitly remove it, redefine it,
or exit SQL*Plus.

You’ll learn how to use these types of variables in this section.

152 Oracle Database 10g SQL

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:152

Why Are Variables Useful?
Variables are useful because you can create scripts that a user who doesn’t know SQL can
run. Your script would prompt the user to enter the value for a variable and use that value
in a SQL statement. Let’s take a look at an example.

Suppose you wanted to create a script for a user who doesn’t know SQL, but who wants
to see the details of a single specified product in the store. To do this, you could hard code the
product_id value in the WHERE clause of a SELECT statement and place that SELECT statement
in a SQL*Plus script. For example, the following SELECT statement retrieves product #1:

SELECT product_id, name, price
FROM products
WHERE product_id = 1;

This query works, but it only retrieves that one product. What if you wanted to change
the product_id value to retrieve a different row? You could modify the script, but this
would be tedious. Wouldn’t it be great if you could supply a variable for the product_id
column in the WHERE clause when the query is actually run? A variable would enable you
to write a general SQL statement that would work for any product, and the user would
simply enter the value for that variable.

P:\010Comp\Oracle8\981-0\ch05.vp
Thursday, January 29, 2004 12:04:26 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Using SQL*Plus 153

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:153

Temporary Variables
You define a temporary variable using the ampersand character (&) in a SQL statement, followed
by the name you want to call your variable. For example, &product_id_var defines a variable
named product_id_var.

When you run the following SELECT statement, SQL*Plus prompts you to enter a value
for product_id_var and then uses that variable’s value in the WHERE clause of the SELECT
statement. If you enter the value 2 for product_id_var, the details for product #2 will be
displayed.

SQL> SELECT product_id, name, price
2 FROM products
3 WHERE product_id = &product_id_var;

Enter value for product_id_var: 2
old 3: WHERE product_id = &product_id_var
new 3: WHERE product_id = 2

PRODUCT_ID NAME PRICE
---------- ------------------------------ ----------

2 Chemistry 30

Notice SQL*Plus does the following:

1. Prompts you to enter a value for product_id_var.

2. Substitutes the value you entered for product_id_var in the WHERE clause.

SQL*Plus shows you the substitution in the old and new lines in the output, along with the
line number in the query where the substitution was performed. In the previous example, you
can see that the old and new lines indicate that product_id_var is set to 2 in the WHERE
clause of the SELECT statement.

If you rerun the query using the slash character (/), SQL*Plus will ask you to enter a new
value for product_id_var. For example:

SQL> /
Enter value for product_id_var: 3
old 3: WHERE product_id = &product_id_var
new 3: WHERE product_id = 3

PRODUCT_ID NAME PRICE
---------- ------------------------------ ----------

3 Supernova 25.99

Once again, SQL*Plus echoes the old line of the SQL statement (old 3: WHERE product_
id = &product_id_var) followed by the new line containing the variable value you entered
(new 3: WHERE product_id = 3).

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Controlling Output Lines
You may control the output of the old and new lines using the SET VERIFY command. If you
enter SET VERIFY OFF, the old and new lines are suppressed. For example:

SQL> SET VERIFY OFF
SQL> /
Enter value for product_id_var: 4

PRODUCT_ID NAME PRICE
---------- ------------------------------ ----------

4 Tank War 13.95

To turn the echoing of the lines back on, you enter SET VERIFY ON. For example:

SQL> SET VERIFY ON

Changing the Variable Definition Character
You can use the SET DEFINE command to specify a character other than ampersand (&) for defining
a variable. The following example shows how to set the variable character to the pound character
(#) using SET DEFINE and shows a new SELECT statement:

SQL> SET DEFINE '#'
SQL> SELECT product_id, name, price
2 FROM products
3 WHERE product_id = #product_id_var;

Enter value for product_id_var: 5
old 3: WHERE product_id = #product_id_var
new 3: WHERE product_id = 5

PRODUCT_ID NAME PRICE
---------- ------------------------------ ----------

5 Z Files 49.99

The next example uses SET DEFINE to change the character back to an ampersand:

SQL> SET DEFINE '&'

Substituting Table and Column Names Using Variables
You’re not limited to using variables to substitute column values: you can also use variables to
substitute the names of tables and columns. For example, the following query defines variables
for you to enter a column name (col_var) or table name (table_var), as well as a column
value (col_val_var):

SQL> SELECT name, &col_var
2 FROM &table_var
3 WHERE &col_var = &col_val;

Enter value for col_var: product_type_id
old 1: SELECT name, &col_var
new 1: SELECT name, product_type_id

154 Oracle Database 10g SQL

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:154

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Enter value for table_var: products
old 2: FROM &table_var
new 2: FROM products
Enter value for col_var: product_type_id
Enter value for col_val: 1
old 3: WHERE &col_var = &col_val
new 3: WHERE product_type_id = 1

NAME PRODUCT_TYPE_ID
------------------------------ ---------------
Modern Science 1
Chemistry 1

You can avoid having to repeatedly enter a variable by using &&. For example:

SELECT name, &&col_var
FROM &table_name
WHERE &&col_var = &col_val;

Being able to supply column and table names, as well as variable values, gives you a lot of
flexibility in writing interactive queries that another user may run. That user doesn’t need to write
the SQL: you can simply give them a script and have them enter the variable values for the query.

Defined Variables
You can define a variable prior to using that variable in a SQL statement. You may use these
variables multiple times within a SQL statement. A defined variable persists until you explicitly
remove it, redefine it, or exit SQL*Plus.

You define a variable using the DEFINE command. When you’re finished with your variable,
you remove it using UNDEFINE. You’ll learn about each of these commands in this section.
You’ll also learn about the ACCEPT command, which allows you to define a variable and specify
a data type for that variable.

You can also define variables in a SQL*Plus script and pass in values to those variables when
you run the script. This enables you to write generic reports that any user can run—even if
they’re unfamiliar with SQL. You’ll learn how to create simple reports in the section “Creating
Simple Reports.”

Defining and Listing Variables Using the DEFINE Command
You use the DEFINE command to both define a new variable and list the currently defined
variables. The following example defines a variable named product_id_var and sets its
value to 7:

SQL> DEFINE product_id_var = 7

You can view the definition of a variable using the DEFINE command followed by the name
of the variable. The following example displays the definition of product_id_var:

SQL> DEFINE product_id_var
DEFINE PRODUCT_ID_VAR = "7" (CHAR)

Chapter 5: Using SQL*Plus 155

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:155

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice that product_id_var is defined as a CHAR variable.
You can see all your session variables by entering DEFINE on its own line. For example:

SQL> DEFINE
...
DEFINE PRODUCT_ID_VAR = "7" (CHAR)

You can use a defined variable to specify an element such as a column value in a SQL
statement. For example, the following query uses the variable product_id_var defined
earlier and references its value in the WHERE clause:

SQL> SELECT product_id, name, price
2 FROM products
3 WHERE product_id = &product_id_var;

old 3: WHERE product_id = &product_id_var
new 3: WHERE product_id = 7

PRODUCT_ID NAME PRICE
---------- ------------------------------ ----------

7 Space Force 9 13.49

Notice that you’re not prompted to the value of product_id_var; that’s because
product_id_var was set to 7 when the variable was defined earlier.

Defining and Setting Variables Using the ACCEPT Command
The ACCEPT command waits for a user to enter a value for a variable. You can use the ACCEPT
command to set an existing variable to a new value, or to define a new variable and initialize it
with a value. The ACCEPT command also allows you to specify the data type for your variable.
The simplified syntax for the ACCEPT command is as follows:

ACCEPT variable_name [type] [FORMAT format] [PROMPT prompt] [HIDE]

where

■ variable_name specifies the name assigned to your variable.

■ type specifies the data type for your variable. You can use the CHAR, NUMBER, and
DATE types. By default, variables are defined using the CHAR type. DATE variables are
actually stored as CHAR variables.

■ format specifies the format used for your variable. Some examples include A15 (15
characters), 9999 (a four-digit number), and DD-MON-YYYY (a date). You can view the
number formats in Table 3-4 of Chapter 3; you can view the date formats in Table 4-2
of Chapter 4.

■ prompt specifies the text displayed by SQL*Plus as a prompt to the user to enter the
variable’s value.

156 Oracle Database 10g SQL

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:156

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Using SQL*Plus 157

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:157

■ HIDE indicates the value entered for the variable is to be hidden. For example, you
might want to hide passwords or other sensitive information. Hidden values are
displayed using asterisks (*) as you enter the characters.

Let’s take a look at some examples of the ACCEPT command. The first example defines a
variable named customer_id_var as a two-digit number:

SQL> ACCEPT customer_id_var NUMBER FORMAT 99 PROMPT 'Customer id: '
Customer id: 5

The next example defines a DATE variable named date_var; the format for this DATE is
DD-MON-YYYY:

SQL> ACCEPT date_var DATE FORMAT 'DD-MON-YYYY' PROMPT 'Date: '
Date: 12-DEC-2006

The next example defines a CHAR variable named password_var; the value entered is
hidden using the HIDE option:

SQL> ACCEPT password_var CHAR PROMPT 'Password: ' HIDE
Password: *******

In Oracle9i and below, the value entered appears as a string of asterisk characters (*) to hide
the value as you enter it. In Oracle10i, nothing is displayed as you type the value.

You can view your variables using the DEFINE command. For example:

SQL> DEFINE
...
DEFINE CUSTOMER_ID_VAR = 5 (NUMBER)
DEFINE DATE_VAR = "12-DEC-2006" (CHAR)
DEFINE PASSWORD_VAR = "1234567" (CHAR)

Notice that date_var is stored as a CHAR.

Removing Variables Using the UNDEFINE Command
You remove variables using the UNDEFINE command. The following example uses UNDEFINE
to remove customer_id_var, date_var, and password_var:

SQL> UNDEFINE customer_id_var
SQL> UNDEFINE date_var
SQL> UNDEFINE password_var

NOTE
All your variables are removed when you exit SQL*Plus, even if you
don’t explicitly remove them using the UNDEFINE command.

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

158 Oracle Database 10g SQL

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:158

Creating Simple Reports
You can use temporary and defined variables in a SQL*Plus script. This allows you to create
scripts that prompt the user for entry of variables that can then be used to generate reports. You’ll
find the SQL*Plus scripts referenced in this section in the Zip file you can download from this
book’s web site.

TIP
Bear in mind that SQL*Plus was not specifically designed as a
reporting tool. If you have complex reporting requirements, you
should use software like Oracle Reports.

Using Temporary Variables in a Script
The following script report1.sql uses a temporary variable named product_id_var in the
WHERE clause of a SELECT statement:

-- suppress display of the statements and verification messages
SET ECHO OFF
SET VERIFY OFF

SELECT product_id, name, price
FROM products
WHERE product_id = &product_id_var;

The SET ECHO OFF command stops SQL*Plus from displaying the SQL statements and
commands in the script. SET VERIFY OFF suppresses display of the verification messages. I put
these two commands in to minimize the number of extra lines displayed by SQL*Plus when you
run the script.

You can run report1.sql in SQL*Plus using the @ command. For example:

SQL> @ C:\SQL\report1.sql
Enter value for product_id_var: 2

PRODUCT_ID NAME PRICE
---------- ------------------------------ ----------

2 Chemistry 30

You can give this script to another user and they can run it without them having to know SQL.

Using Defined Variables in a Script
The following script (named report2.sql) uses the ACCEPT command to define a variable
named product_id_var:

SET ECHO OFF
SET VERIFY OFF

ACCEPT product_id_var NUMBER FORMAT 99 PROMPT 'Enter product id: '

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:10 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Using SQL*Plus 159

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:159

SELECT product_id, name, price
FROM products
WHERE product_id = &product_id_var;

-- clean up
UNDEFINE product_id_var

Notice that a user-friendly prompt is specified for the entry of product_id_var, and that
product_id_var is removed at the end of the script—this makes the script cleaner.

You can run the report2.sql script using SQL*Plus:

SQL> @ C:\SQL\report2.sql
Enter product id: 4

PRODUCT_ID NAME PRICE
---------- ------------------------------ ----------

4 Tank War 13.95

Passing a Value to a Variable in a Script
You can pass a value to a variable when you run your script. When you do this, you reference
the variable in your script using a number. The following script report3.sql shows an example
of this; notice the variable is identified using &1:

SET ECHO OFF
SET VERIFY OFF

SELECT product_id, name, price
FROM products
WHERE product_id = &1;

When you run report3.sql, you supply the variable’s value after the script name. The
following example passes the value 3 to report3.sql:

SQL> @ C:\SQL\report3.sql 3
PRODUCT_ID NAME PRICE
---------- ------------------------------ ----------

3 Supernova 25.99

You can add any number of parameters, with each value specified on the command line
corresponding to the matching number in the file. The first parameter corresponds to &1, the
second to &2, and so on. The following script report4.sql shows an example of this:

SET ECHO OFF
SET VERIFY OFF

SELECT product_id, product_type_id, name, price
FROM products

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

160 Oracle Database 10g SQL

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:160

WHERE product_type_id = &1
AND price > &2;

The following example run of report4.sql shows the addition of two values for &1 and
&2, which are set to 1 and 9.99, respectively:

SQL> @ C:\SQL\report4.sql 1 9.99

PRODUCT_ID PRODUCT_TYPE_ID NAME PRICE
---------- --------------- ------------------------------ ----------

1 1 Modern Science 19.95
2 1 Chemistry 30

Because &1 is set to 1, the product_type_id column in the WHERE clause is set to 1. Also,
&2 is set to 9.99, so the price column in the WHERE clause is set to 9.99. Therefore, rows with a
product_type_id of 1 and a price greater than 9.99 are displayed.

Adding a Header and Footer
You add a header and footer to your report using the TTITLE and BTITLE commands. The
following script report5.sql shows this:

TTITLE 'Product Report'
BTITLE 'Thanks for running the report'

SET ECHO OFF
SET VERIFY OFF
SET PAGESIZE 30
SET LINESIZE 70
CLEAR COLUMNS
COLUMN product_id HEADING ID FORMAT 99
COLUMN name HEADING 'Product Name' FORMAT A20 WORD_WRAPPED
COLUMN description HEADING Description FORMAT A30 WORD_WRAPPED
COLUMN price HEADING Price FORMAT $99.99

SELECT product_id, name, description, price
FROM products;

CLEAR COLUMNS

The following example shows a run of report5.sql:

SQL> @ C:\SQL\report5.sql

Fri May 16 page 1
Product Report

ID Product Name Description Price
--- -------------------- ------------------------------ -------

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Using SQL*Plus 161

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:161

1 Modern Science A description of modern $19.95
science

2 Chemistry Introduction to Chemistry $30.00
3 Supernova A star explodes $25.99
4 Tank War Action movie about a future $13.95

war

5 Z Files Series on mysterious $49.99
activities

6 2412: The Return Aliens return $14.95
7 Space Force 9 Adventures of heroes $13.49
8 From Another Planet Alien from another planet $12.99

lands on Earth

9 Classical Music The best classical music $10.99
10 Pop 3 The best popular music $15.99
11 Creative Yell Debut album $14.99
12 My Front Line Their greatest hits $13.49

Thanks for running the report

Computing Subtotals
You can add a subtotal for a column using a combination of the BREAK ON and COMPUTE
commands. BREAK ON causes SQL*Plus to break up output based on a change in a column
value, and COMPUTE causes SQL*Plus to compute a value for a column.

The following script report6.sql shows how to compute a subtotal for products of the
same type:

BREAK ON product_type_id
COMPUTE SUM OF price ON product_type_id

SET ECHO OFF
SET VERIFY OFF
SET PAGESIZE 50
SET LINESIZE 70

CLEAR COLUMNS
COLUMN price HEADING Price FORMAT $999.99

SELECT product_type_id, name, price
FROM products
ORDER BY product_type_id;

CLEAR COLUMNS

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

162 Oracle Database 10g SQL

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:162

The following example shows a run of report6.sql:

SQL> @ C:\SQL\report6.sql

PRODUCT_TYPE_ID NAME Price
--------------- ------------------------------ --------

1 Modern Science $19.95
Chemistry $30.00

*************** --------
sum $49.95

2 Supernova $25.99
Tank War $13.95
Z Files $49.99
2412: The Return $14.95

*************** --------
sum $104.88

3 Space Force 9 $13.49
From Another Planet $12.99

*************** --------
sum $26.48

4 Classical Music $10.99
Pop 3 $15.99
Creative Yell $14.99

*************** --------
sum $41.97

My Front Line $13.49
*************** --------
sum $13.49

Notice that whenever a new value for product_type_id is encountered, SQL*Plus
breaks up the output and computes a sum for the price columns for the rows with the same
product_type_id. The product_type_id value is only shown once for rows with the
same product_type_id. For example, Modern Science and Chemistry are both books and
have a product_type_id of 1, and 1 is shown once for Modern Science. The sum of the prices
for these two books is $49.95. The other sections of the report contain the sum of the prices for
products with different product_type_id values.

Automatically Generating SQL Statements
In this last section, I’ll briefly show you a technique of writing SQL statements that produce other
SQL statements. This is very useful and can save you a lot of typing when writing SQL statements
that are similar. One simple example is a SQL statement that produces DROP TABLE statements that
remove tables from a database. The following query produces a series of DROP TABLE statements
that drop the tables in the store schema:

SELECT 'DROP TABLE ' || table_name || ';'
FROM user_tables;

'DROPTABLE'||TABLE_NAME||';'
--

P:\010Comp\Oracle8\981-0\ch05.vp
Thursday, January 29, 2004 12:11:16 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Using SQL*Plus 163

ORACLE Series TIGHT / Oracle Database 10g SQL / Price / 222981-0 / Chapter 5
Blind Folio 5:163

DROP TABLE COUPONS;
DROP TABLE CUSTOMERS;
DROP TABLE EMPLOYEES;
DROP TABLE PRODUCTS;
DROP TABLE PRODUCT_TYPES;
DROP TABLE PROMOTIONS;
DROP TABLE PURCHASES;
DROP TABLE PURCHASES_TIMESTAMP_WITH_TZ;
DROP TABLE PURCHASES_WITH_LOCAL_TZ;
DROP TABLE PURCHASES_WITH_TIMESTAMP;
DROP TABLE SALARY_GRADES;

NOTE
user_tables contains the details of the tables in the user’s schema.
The table_name column contains names of the tables.

You can spool the generated SQL statements to a file and use them later.

Summary
In this chapter, you learned how to

■ View the structure of a table

■ Edit a SQL statement

■ Save, retrieve, and run files containing SQL and SQL*Plus commands

■ Format column output and set the page and line sizes

■ Use variables in SQL*Plus

■ Create simple reports

■ Write SQL statements that generate other SQL statements

In the next chapter, you’ll learn how to nest one query within another. The nested query is
known as a subquery.

P:\010Comp\Oracle8\981-0\ch05.vp
Monday, January 26, 2004 12:21:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

