
Oracle RAC Performance Tuning

Oracle’s Real Application Clusters is the most robust and complex of all Oracle
environments and the inter-instance communications makes RAC tuning especially
challenging. This book excerpt (http://www.rampant-
books.com/book_2004_1_10g_grid.htm) show expert tips and techniques used by
real-world RAC professionals for tuning and optimizing even the most complex
RAC system.

This is an excerpt from the bestselling Oracle 10g RAC book Oracle 10g Grid &
Real Application Clusters (http://www.rampant-
books.com/book_2004_1_10g_grid.htm), by Mike Ault and Madhu Tumma.

The focus of this chapter is on RAC tuning issues. Tuning a RAC database is very
similar to tuning a non-RAC database; however, there are some major differences
that will be covered.

This chapter will also cover the views used to monitor the RAC environment.
Finally, the Oracle Enterprise Manager features that automate some of the DBA’s
RAC monitoring tasks will be introduced.

Analysis of Performance Issues

The analysis of performance issues in RAC involves several key areas:

n Normal database tuning and monitoring.

n Monitoring RAC cluster interconnect performance.

n Monitoring workloads.

n Monitoring RAC-specific contention.

Normal database monitoring is covered thoroughly in any number of other texts.
Thus, aspects of database tuning such as SQL tuning or standard SGA and
internals tuning are not covered in this text other than the required extensions to
normal database monitoring.

Monitoring RAC Cluster Interconnect Performance

The most important aspects of RAC tuning are the monitoring and tuning of the
global services directory processes. The processes in the Global Service Daemon
(GSD) communicate through the cluster interconnects. If the cluster interconnects
do not perform properly, the entire RAC structure will suffer no matter how well
everything else is tuned. The major processes of concern are the Global Enqueue
Services (GES) and Global Cache Services (GCS) processes.

The level of cluster interconnect performance can be determined by monitoring
GCS waits that show how well data is being transferred. The waits that need to be
monitored are shown in v$session_wait, v$obj_stats, and v$enqueues_stats. The major
waits to be concerned with for RAC are:

n global cache busy

n buffer busy global cache

n buffer busy global cr

In later versions of Oracle, the global cache is shortened to just gc. To find the
values for these waits, the gv$session_wait view is used to identify objects that have
performance issues. The gv$session_wait view contents are shown in the following
results:

Description of GV$SESSION_WAIT
 Name Null? Type
 --- -------- -------------
 INST_ID NUMBER
 SID NUMBER
 SEQ# NUMBER
 EVENT VARCHAR2(64)
 P1TEXT VARCHAR2(64)
 P1 NUMBER
 P1RAW RAW(4)
 P2TEXT VARCHAR2(64)
 P2 NUMBER
 P2RAW RAW(4)
 P3TEXT VARCHAR2(64)
 P3 NUMBER
 P3RAW RAW(4)
 WAIT_CLASS# NUMBER
 WAIT_CLASS VARCHAR2(64)
 WAIT_TIME NUMBER
 SECONDS_IN_WAIT NUMBER
 STATE VARCHAR2(19)

New in 10g is the wait_class column which is used to restrict returned values based
on 12 basic wait classes, one of which is the cluster wait class.

The following wait events indicate that the remotely cached blocks were shipped
to the local instance without having been busy, pinned or requiring a log flush and
can safely be ignored:

n gc current block 2-way

n gc current block 3-way

n gc cr block 2-way

n gc cr block 3-way

However, the object level statistics for gc current blocks received and gc cr blocks received
enable the rapid identification of the indexes and tables which are shared by the
active instances.

The columns p1 and p2 identify the file and block number of any object
experiencing the above waits for the events, as shown in the following queries:

SELECT
 INST_ID,
 EVENT,
 P1 FILE_NUMBER,
 P2 BLOCK_NUMBER,
 WAIT_TIME
FROM
 GV$SESSION_WAIT
WHERE
 EVENT IN ('buffer busy global cr', 'global cache busy',
 'buffer busy global cache');

The output from this query should resemble the following:

INST_ID EVENT FILE_NUMBER BLOCK_NUMBER WAIT_TIME
------- ----------------------- ----------- ------------ ----------
 1 global cache busy 9 150 0
 2 global cache busy 9 150 0

In order to find the object that corresponds to a particular file and block, the
following query can be issued for the first combination on the above list:

SELECT
 OWNER,
 SEGMENT_NAME,
 SEGMENT_TYPE
FROM
 DBA_EXTENTS
WHERE
 FILE_ID = 9
 AND 150 BETWEEN BLOCK_ID AND BLOCK_ID+BLOCKS-1;

SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.dba-
oracle.com/bp/bp_elec_adv_mon_tuning.htm)

In this example, there is no need to worry about the instance as this SELECT is
issued from within the cluster because they all see the same tables, indexes and
objects.

The output will be similar to:

OWNER SEGMENT_NAME SEGMENT_TYPE
---------- ---------------------------- ---------------
SYSTEM MOD_TEST_IND INDEX

Once the objects causing the contention are determined, they should be modified
by:

n Reducing the rows per block.

n Adjusting the block size.

n Modifying initrans and freelists.

All of these object modifications reduce the chances of application contention for
the blocks in the object. Index leaf blocks are usually the most contended objects in
the RAC environment; therefore, using a smaller block size for index objects can
decrease intra-instance contention for index leaf blocks.

Contention in blocks can be measured by using the block transfer time. To determine
block transfer time, examine the statistics global cache cr block receive time and global cache
cr blocks received. The time is determined by calculating the ratio of global cache cr block
receive time to global cache cr blocks received. The values for these statistics are taken
from the gv$sysstat view shown below:

Description of GV$SYSSTAT
 Name Null? Type
 --- -------- -------------
 INST_ID NUMBER
 STATISTIC# NUMBER
 NAME VARCHAR2(64)
 CLASS NUMBER
 VALUE NUMBER
 HASH NUMBER

The following script shows this calculation.

column "AVG RECEIVE TIME (ms)" format 9999999.9
col inst_id for 9999
prompt GCS CR BLOCKS
select b1.inst_id, b2.value "RECEIVED",
b1.value "RECEIVE TIME",
((b1.value / b2.value) * 10) "AVG RECEIVE TIME (ms)"
from gv$sysstat b1, gv$sysstat b2
where

SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.dba-
oracle.com/bp/bp_elec_adv_mon_tuning.htm)

INST_ID RECEIVED RECEIVE TIME AVG RECEIVE TIME (ms)
------- ---------- ------------ ---------------------
 1 2791 3287 14.8
 2 3760 7482 19.9

If the transfer time is too high, or if one of the nodes in the cluster shows
excessive transfer times, the cluster interconnects should be checked using system
level commands to verify that they are functioning correctly. In the above
SELECT result, instance two exhibits an average receive time that is 69% higher
than instance one.

Another useful SELECT for determining latency measures the overall latency,
including that for queue, build, flush and send time. These statistics are also found
in the gv$sysstat view. The SELECT is shown below:

SELECT
 a.inst_id "Instance",
 (a.value+b.value+c.value)/d.value "LMS Service Time"
FROM
 GV$SYSSTAT A,

 GV$SYSSTAT B,
 GV$SYSSTAT C,
 GV$SYSSTAT D
WHERE
 A.name = 'global cache cr block build time' AND
 B.name = 'global cache cr block flush time' AND
 C.name = 'global cache cr block send time' AND
 D.name = 'global cache cr blocks served' AND
 SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.dba-
oracle.com/bp/bp_elec_adv_mon_tuning.htm)

 Instance LMS Service Time
--------- ----------------
 1 1.07933923
 2 .636687318

Why does instance two show a lower service time than instance one? The node
containing instance two is the slower node, while the node containing instance one
serves blocks faster. The reason is that the slower node two serves blocks to node
one, so node one shows a slower service time even though it is a faster node! Be
aware of this in a two node cluster. Where there are multiple nodes, the service
times should average out. If not, the aberrant node is probably troubled.

The following code can be used to examine the individual components of the
service time to determine the source of the problem:

SELECT
 A.inst_id "Instance",
 (A.value/D.value) "Consistent Read Build",
 (B.value/D.value) "Log Flush Wait",
 (C.value/D.value) "Send Time"
FROM
 GV$SYSSTAT A,
 GV$SYSSTAT B,
 GV$SYSSTAT C,
 GV$SYSSTAT D
WHERE
 A.name = 'global cache cr block build time' AND
 B.name = 'global cache cr block flush time' AND
 C.name = 'global cache cr block send time' AND
 D.name = 'global cache cr blocks served' AND
 SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.dba-
oracle.com/bp/bp_elec_adv_mon_tuning.htm)

 Instance Consistent Read Build Log Flush Wait Send Time
--------- --------------------- -------------- ----------
 1 .00737234 1.05059755 .02203942
 2 .04645529 .51214820 .07844674

If problems are detected, operating system specific commands should be used to
pinpoint the node having difficulties. For example, in the SUN Solaris
environment, commands such as the following can be used:

netstat -l
netstat -s
sar -c
sar -q
vmstat

These commands are used to monitor the cluster interconnects for:

n A large number of processes in the run queue waiting for CPU or scheduling
delays.

n Platform specific operating system parameter settings that affect IPC buffering
or process scheduling.

n Slow, busy or faulty interconnects. In these cases, look for dropped packets,
retransmits, or cyclic redundancy check (CRC) errors. Ensure that the network
is private and that inter-instance traffic is not routed through a public network.

The DBA will be interested in the waits and statistics for tuning shown in Table
14.1.

Statistic or Wait Description Source
buffer busy
global cache

A wait event that is signaled when a
process waits for a block to be
available because another process is
already obtaining a resource for this
block.

gv$system_event,
gv$session_wait

buffer busy
waits

A wait event that is signaled when a
process cannot get a buffer due to
another process using the buffer at
that point in time.

gv$system_event,
gv$session_wait

cache convert
waits

A statistic showing the total number of
waits for all up-convert operations,
these are: global cache null to S,
global cache null to X, and global
cache S to X.

gv$sysstat

cache open
waits

A statistic that shows the total number
of waits for global cache open S and
global cache open X.

gv$sysstat

consistent gets The consistent gets statistic shows the
number of buffers obtained in
consistent read (CR) mode.

gv$sysstat

cr request retry A statistic that quantifies when Oracle
resubmits a consistent read request
due to detecting that the holding
instance is no longer available.

gv$sysstat

db block
changes

The number of current buffers that
where obtained in exclusive mode for
DML.

gv$sysstat

db block gets The number of current buffers that
were obtained for a read.

gv$sysstat

Statistic or Wait Description Source
DBWR cross-
instance writes

These are also forced writes and show
the number of writes that an instance
had to perform to disk in order to make
a previously exclusively held block
available for another instance.
Generally, DBWR cross-instance
writes are eliminated due to Cache
Fusion unless a value greater than 0
(zero) is set for the gc_files_to_locks
parameter.

gv$sysstat

global cache bg
acks

This wait event can only occur during
the startup or shutdown of an instance
as the LMS process completes its
operations.

gv$system_event,
gv$session_wait

global cache
busy

This is a wait event that accumulates
when a session has waits for an
ongoing operation on the resource to
complete.

gv$system_event,
gv$session_wait

global cache cr
cancel wait

This is a wait event that accumulates
when a session waits for the
completion of an AST for a canceled
block access request. The canceling of
the request is part of the Cache Fusion
Write Protocol.

gv$system_event,
gv$session_wait

global cache
converts

This is a statistic that shows the
resource converts for buffer cache
blocks. Whenever GCS resources are
converted from NULL to SHARED,
NULL to EXCLUSIVE or SHARED to
EXCLUSIVE this statistic is
incremented.

gv$sysstat

global cache
convert time

This statistics shows the accumulated
time for global conversions on GCS
resources for all sessions.

gv$sysstat

global cache
convert timeouts

Whenever a resource operation times
out this statistic is incremented.

gv$sysstat

global cache cr
block flush time

This statistic shows the time waited for
a log flush whenever a CR request is
served. This is part of the serve time.

gv$sysstat

global cache cr
blocks received

If a process requests a consistent read
for a data block that is not in its local
cache it has to send a request to
another instance, this statistic is
incremented once the buffer has been
received.

gv$sysstat

global cache cr
block receive
time

This statistic records the accumulated
round trip time for all requests for
consistent read blocks.

gv$sysstat

Statistic or Wait Description Source
global cache cr
blocks served

This statistic shows the number of
requests for a consistent read block
served by LMS. This statistic is
incremented by Oracle when the block
is sent.

gv$sysstat

global cache cr
block build time

This statistic shows the accumulated
time that the LMS process needs to
create a consistent read block on the
holding instance

gv$sysstat

global cache cr
block send time

This statistic shows the time needed
by LMS to begin a send of a consistent
read block. For send time, timing does
not stop until send has completed.
Only the time it takes to initiate the
send is measured; the time elapsed
before the block arrives at the
requesting instance is not included.

gv$sysstat

global cache cr
cancel wait

This is a wait event that happens when
a session waits for a canceled CR
request to complete its acquisition
interrupt. The process of canceling the
CR request is part of the Cache Fusion
Write Protocol.

gv$system_event,
gv$session_wait

global cache cr
request

This is a wait event that happens
because a process is made to wait for
a pending CR request to complete.
The process must wait for either
shared access to a block to be granted
before it can read the block from disk,
or it waits for the LMS of the holding
instance to send the block.

gv$system_event,
gv$session_wait

global cache
current block
flush time

This is a statistic that shows the time it
takes to flush the changes from a block
to disk before the block can be shipped
to the requesting instance.

gv$sysstat

global cache
current block pin
time

This is a statistic that shows the time it
takes to pin a current block before
shipping it to a requesting instance.
The pinning of a block prevents further
changes to the block while it is
prepared to be shipped.

gv$sysstat

global cache
current blocks
received

This is a statistic that shows the
number of current blocks received over
the interconnect from the holding
instance.

gv$sysstat

global cache
current block
receive time

This is a statistic that shows the
current blocks accumulated round trip
time for all requests.

gv$sysstat

Statistic or Wait Description Source
global cache
current block
send time

This is a statistic that shows the time it
takes to send the current block over
the interconnect to the requesting
instance.

gv$sysstat

global cache
current blocks
served

This is a statistic that shows the
number of current blocks shipped over
the interconnect to the requesting
instance.

gv$sysstat

global cache
freelist wait

This is a statistic that shows Oracle
must wait after it detects that the local
element free list is empty.

gv$sysstat

global cache
freelist waits

This is a statistic that shows the
number of times that the resource
element free list was found empty by
Oracle.

gv$sysstat

global cache
gets

This is a statistic that shows the
number of buffer gets that caused the
opening of a new GCS resource.

gv$sysstat

global cache get
time

This is a statistic that shows the
accumulated time for all sessions that
was needed to open a GCS resource
for a local buffer.

gv$sysstat

global cache
null to S

A wait event that occurs whenever a
session has to wait for a resource
conversion to complete.

gv$system_event,
gv$session_wait

global cache
null to X

This is a wait event that occurs
whenever a session has to wait for this
type of resource conversion to
complete.

gv$system_event,
gv$session_wait

global cache
open S

This is a wait event that occurs when a
session has to wait for receiving
permission for shared access to the
requested resource.

gv$system_event,
gv$session_wait

global cache
open X

This is a wait event that occurs when a
session has to wait for receiving
exclusive access to the requested
resource.

gv$system_event,
gv$session_wait

global cache S
to X

This is a wait event that occurs
whenever a session has to wait for this
type of resource conversion to
complete.

gv$system_event,
gv$session_wait

global cache
pending ast

This is a wait event that can occur
when a process waits for an
acquisition interrupt before Oracle
closes a resource element.

gv$system_event,
gv$session_wait

Statistic or Wait Description Source
global cache
pred cancel wait

This is a wait event that occurs when a
session must wait for the acquisition
interrupt to complete for a canceled
predecessor read request. The
canceling of a predecessor read
request is a part of the Cache Fusion
Write Protocol.

gv$system_event,
gv$session_wait

global cache
retry prepare

This is a wait event that occurs
whenever Oracle cannot ignore or skip
a failure to prepare a buffer for a
consistent read or Cache Fusion
request.

gv$system_event,
gv$session_wait

global lock
async converts

This is a statistic showing the number
of resource converts from an
incompatible mode.

gv$sysstat

global lock sync
gets

This is a statistic showing the number
of synchronous GCS resources that
Oracle must open. These sync gets
are usually for GES resources. Library
cache resources are one example.

gv$sysstat

global lock
async gets

This is a statistic showing the number
of Ansynchronous GES resources that
Oracle must open. Normally, async
gets include the number of global
cache gets and are only used for GES
resources.

gv$sysstat

global lock get
time

This is a statistic that shows the
accumulated open time for all GES
resources.

gv$sysstat

global lock sync
converts

This statistic shows the number of
GES resources that Oracle converted
from an incompatible mode. Usually
sync converts occur for GES resources
only.

gv$sysstat

global lock
convert time

This is a statistic that shows the
accumulated global lock sync converts
and global lock async converts time.

gv$sysstat

lock buffers for
read

This is a statistic that shows the
number of NULL to SHARED up
converts.

gv$sysstat

lock gets per
transaction

This is a statistic that shows the
number of global lock sync gets and
global lock async gets per transaction.

gv$sysstat

lock converts
per transaction

This is a statistic that shows the
number of global local sync converts
and global lock async converts per
transaction.

gv$sysstat

Statistic or Wait Description Source
messages flow
controlled

This shows the number of messages
that are intended to be sent directly but
that were instead queued and
delivered later by LMD/LMS.

gv$dml_misc

messages
received

This statistics shows the number of
messages received by the LMD
process.

gv$dml_misc

messages sent
directly

This statistic shows the number of
messages sent directly by Oracle
processes.

gv$dml_misc

messages sent
indirectly

This statistics shows the number of
explicitly queued messages.

gv$dml_misc

physical reads This is a statistic that shows the total
number of disk reads performed
because a request for a data block
could not be satisfied from a local
cache.

gv$sysstat

physical writes This statistics shows the number of
write I/Os performed by the DBWNn
processes. This number includes the
number of DBWR cross instance
writes (forced writes) in Oracle
Database 10g when gc_files_to_locks
is set. Setting gc_files_to_locks for a
particular datafile will enable the use of
the old ping protocol and will not
leverage the Cache Fusion
architecture.

gv$sysstat

remote instance
undo block
writes

This is a statistic that shows the
number of undo blocks written to disk
by DBWn due to a forced write.

gv$sysstat

remote instance
undo header
writes

This is a statistic that shows the
number of rollback segment header
blocks written to disk by DBWn due to
a forced write.

gv$sysstat

Table 14.1: Waits and Statistics for RAC Monitoring from Oracle RAC Manual Glossary

Oracle has provided the racdiag.sql script that can help troubleshoot RAC
slowdowns; however, it has limited applicability to RAC system tuning. It is
suggested that STATSPACK be used, combined with the selects provided in this
chapter for RAC tuning.

racdiag.sql is available at metalink.oracle.com.

The class column in the gv$sysstat view indicates the type of statistic. Oracle RAC
related statistics are in classes eight, 32, and 40.

Undesirable Global Cache Statistics

The following are undesirable statistics or statistics for which the values should
always be as near to zero as possible:

n global cache blocks lost: This statistic shows block losses during transfers. High
values indicate network problems. The use of an unreliable IPC protocol such
as UDP may result in the value for global cache blocks lost being non-zero. When
this occurs, take the ratio of global cache blocks lost divided by global cache current
blocks served plus global cache cr blocks served. This ratio should be as small as
possible. Many times, a non-zero value for global cache blocks lost does not
indicate a problem because Oracle will retry the block transfer operation until
it is successful.

n global cache blocks corrupt: This statistic shows if any blocks were corrupted during
transfers. If high values are returned for this statistic, there is probably an IPC,
network, or hardware problem.

An example SELECT to determine if further examination is needed would be:

SELECT
 A.VALUE "GC BLOCKS LOST 1",
 B.VALUE "GC BLOCKS CORRUPT 1",
 C.VALUE "GC BLOCKS LOST 2",
 D.VALUE "GC BLOCKS CORRUPT 2"
FROM GV$SYSSTAT A, GV$SYSSTAT B, GV$SYSSTAT C, GV$SYSSTAT D
WHERE A.INST_ID=1 AND A.NAME='gc blocks lost'
 AND B.INST_ID=1 AND B.NAME='gc blocks corrupt'
 AND C.INST_ID=2 AND C.NAME='gc blocks lost'
 AND D.INST_ID=2 AND D.NAME='gc blocks corrupt';

A sample result from the above select should look like the following:

GC BLOCKS LOST 1 GC BLOCKS CORRUPT 1 GC BLOCKS LOST 2 GC BLOCKS CORRUPT 2
---------------- ------------------- ---------------- -------------------
 0 0 652 0

In this result, instance 2 is showing some problems with lost blocks, so it might be
useful to look at the ratio described above:

SELECT A.INST_ID "INSTANCE", A.VALUE "GC BLOCKS LOST",
B.VALUE "GC CUR BLOCKS SERVED",
C.VALUE "GC CR BLOCKS SERVED",
A.VALUE/(B.VALUE+C.VALUE) RATIO
FROM GV$SYSSTAT A, GV$SYSSTAT B, GV$SYSSTAT C
WHERE A.NAME='gc blocks lost' AND
 B.NAME='gc current blocks served' AND
 C.NAME='gc cr blocks served' and
 SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.dba-
oracle.com/bp/bp_elec_adv_mon_tuning.htm)

 Instance gc blocks lost gc cur blocks served gc cr blocks served RATIO
---------- -------------- -------------------- ------------------- ----------
 1 0 3923 2734 0
 2 652 3008 4380 .088251218

The question now becomes, how small is "as small as possible"? In this example,
database instance one takes 22 seconds to perform a series of tests and instance
two takes 25 minutes.

Investigation showed that the TCP receive and send buffers on instance two were
set at 64K. Since this is an 8k-block size instance with a db_file_multiblock_read_count
of 16, this was causing excessive network traffic because the system was using full
table scans resulting in a read of 128K. In addition, the actual TCP buffer area was
set to a small number. Setting these values for the TCP receive and send buffers is
an operating specific operation. DBA’s should talk this over with the system
operator or check out:

http://www.psc.edu/networking/perf_tune.html

The following section covers example commands for various operating systems.

DEC Alpha (Digital UNIX)
$ dbx -k /vmunix
(dbx) assign sb_max = (u_long) 524288
(dbx) patch sb_max = (u_long) 524288

The first command changes the value for the operating system and the second
patches the value into the kernel so it will not be lost at the next reboot. mbclusters
can be modified to at least 832, and the kernel variables tcp_sendspace and
tcp_recvspace cam also be modified in this manner. Under version 4.0, use the
sysconfig -r inet <variable> <value> command to do this type of modification.

HPUX (11)

Use the ndd command to view and modify the various TCP variables. Use the ndd -
h <parm_name> to get the method for changing the values.

AIX

Use the "no" command.

Linux

To check the values you CAT the contents of the various /proc/sys/net files:

$cat /proc/sys/net/core/rmem_default

The values of interest are:

rmem_default
rmem_max

wmem_default
wmem_max
tcp_rmem
tcp_wmem

The value under Linux can be set by echoing the proper values into the files in
/proc/sys/net. Some example values that have been found to be beneficial are:

echo '100 5000 640 2560 150 30000 5000 1884 2'>/proc/sys/vm/bdflush
hdparm -m16 -c1 -d1 -a8 /dev/hda
hdparm -m16 -c1 -d1 -a8 /dev/hdb
echo '131071'>/proc/sys/net/core/rmem_default
echo '262143'>/proc/sys/net/core/rmem_max
echo '131071'>/proc/sys/net/core/wmem_default
echo '262143'>/proc/sys/net/core/wmem_max
echo '4096 65536 4194304'>/proc/sys/net/ipv4/tcp_wmem
echo '4096 87380 4194304'>/proc/sys/net/ipv4/tcp_rmem

The call to /proc/sys/vm/bdflush actually improves memory handling. The two
hdparm commands improve IDE disk performances. The most interesting ones
here are the ones echoing values into /proc/sys/net/core and /proc/sys/net/ipv4
subdirectory files.

SUN (2.x)

SUN uses the ndd command:

$ndd -set /dev/tcp tcp_max_buff xxx
$ndd -set /dev/tcp tcp_xmit_hiwat xxx
$ndd -set /dev/tcp tcp_recv_hiwat xxx

Windows NT/2000

Use the various settings in the registry under the key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Additional detailed notes are available at:

http://rdweb.cns.vt.edu/public/notes/win2k-tcpip.htm

After increasing both the buffer size and buffer space for the TCP area, the
following results were obtained with the query above after the same series of tests
were repeated:

 INSTANCE GC BLOCKS LOST GC CUR BLOCKS SERVED GC CR BLOCKS SERVED RATIO
---------- -------------- -------------------- ------------------- ----------
 1 0 3892 3642 0
 2 0 3048 2627 0

By correcting the TCP issue, performance increased such that the tests now
required only three minutes 20 seconds to complete on the poor performing node.

This provides an 800% improvement at a minimum recalling that the poor node is
a single CPU using an old technology motherboard and bus structures.

Monitoring current Blocks

In addition to cr blocks, RAC performance is also a concern when processing current
mode blocks. Current mode blocks suffer from latency as well as build and wait time
concerns similar to cr blocks. The average latency for a current mode block is calculated
with the SELECT:

column "AVG RECEIVE TIME (ms)" format 9999999.9
col inst_id for 9999
prompt GCS CURRENT BLOCKS
select b1.inst_id, b2.value "RECEIVED",
b1.value "RECEIVE TIME",
((b1.value / b2.value) * 10) "AVG RECEIVE TIME (ms)"
from gv$sysstat b1, gv$sysstat b2
where b1.name = 'gc current block receive time' and
b2.name = 'gc current blocks received' and b1.inst_id = b2.inst_id;

INST_ID RECEIVED RECEIVE TIME AVG RECEIVE TIME (ms)
------ ---------- ------------ ---------------------
 1 22694 68999 30.4
 2 23931 42090 17.6

The service time for receiving a current block is calculated in a similar fashion to
the value for a cr block, except there is a pin time instead of a build time:

SELECT
 a.inst_id "Instance",
 (a.value+b.value+c.value)/d.value "Current Blk Service Time"
FROM
 GV$SYSSTAT A,
 GV$SYSSTAT B,
 GV$SYSSTAT C,
 GV$SYSSTAT D
WHERE
 A.name = 'gc current block pin time' AND
 B.name = 'gc current block flush time' AND
 C.name = 'gc current block send time' AND
 D.name = 'gc current blocks served' AND
SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.dba-
oracle.com/bp/bp_elec_adv_mon_tuning.htm)

 Instance Current Blk Service Time
--------- ------------------------
 1 1.18461603
 2 1.63126376

Instance two is requiring more time to service current blocks. How is the source
of the problem determined? The overall service time can be decomposed to
determine where the area of concern lies:

SELECT
 A.inst_id "Instance",
 (A.value/D.value) "Current Block Pin",
 (B.value/D.value) "Log Flush Wait",
 (C.value/D.value) "Send Time"
FROM

 GV$SYSSTAT A,
 GV$SYSSTAT B,
 GV$SYSSTAT C,
 GV$SYSSTAT D
WHERE
 A.name = 'gc current block build time' AND
 B.name = 'gc current block flush time' AND
 C.name = 'gc current block send time' AND
 D.name = 'gc current blocks served' AND
SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.dba-
oracle.com/bp/bp_elec_adv_mon_tuning.htm)

 Instance Current Block Pin Log Flush Wait Send Time
--------- ----------------- -------------- ----------
 1 .69366887 .472058762 .018196236
 2 1.07740715 .480549199 .072346418

In this case, most of the time difference comes from the pin time for the current
block in instance two. High pin times could indicate problems at the I/O interface
level.

A final set of statistics deals with the average global cache convert time and the average
global cache get times. The following SELECT can be used to get this information
from the RAC database:

select
 a.inst_id "Instance",
 a.value/b.value "Avg Cache Conv. Time",
 c.value/d.value "Avg Cache Get Time",
 e.value "GC Convert Timeouts"
from
 GV$SYSSTAT A,
 GV$SYSSTAT B,
 GV$SYSSTAT C,
 GV$SYSSTAT D,
 GV$SYSSTAT E
where
 a.name='gc convert time' and
 b.name='gc converts' and
 c.name='gc get time' and
 d.name='gc gets' and
 e.name='gc convert timeouts' and
 b.inst_id=a.inst_id and
 c.inst_id=a.inst_id and
 d.inst_id=a.inst_id and
 e.inst_id=a.inst_id
order by
 a.inst_id;

SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.dba-
oracle.com/bp/bp_elec_adv_mon_tuning.htm)

 Instance Avg Cache Conv. Time Avg Cache Get Time GC Convert Timeouts
--------- -------------------- ------------------ -------------------
 1 1.85812072 .981296356 0
 2 1.65947528 .627444273 0

For this database, instance one has the highest convert and get times, as expected,
since it is converting and getting from instance two, which is the slow instance.
None of the times are excessive, >10-20 ms.

Some things to consider about these values are:

n High convert times indicate excessive global concurrency requirements. In
other words, the instances are swapping a lot of blocks over the interconnect.

n Large values or rapid increases in the gets, converts, or average times indicate
GCS contention.

n Latencies for resource operations may be high due to excessive system loads.

n The gv$system_event view can be used to review the time_waited statistics for
various GCS events if the get or convert times become significant.
STATSPACK is good for this.

n Values other than zero for the GC converts timeouts indicate system
contention or congestion. Timeouts should not occur and indicate a serious
performance problem.

Additional Wait Events of Concern

Most of the events reported in the dynamic performance views or in a
STATSPACK report that show a high total time are actually normal. However, if
monitored response times increase and the STATSPACK report shows a high
proportion of wait time for cluster accesses, the cause of the se waits needs to be
determined. STATSPACK reports provide a breakdown of the wait events, with
the five highest values sorted by percentages. The following specific RAC-related
events should be monitored:

n global cache open s: A block was selected.

n global cache open x: A block was selected for IUD.

n global cache null to s: A block was transferred for SELECT.

n global cache null to x: A block was transferred for IUD.

n global cache cr request: A block was requested transferred for consistent read
purposes.

n Global Cache Service Utilization for Logical Reads.

The following sections will provide more information on these events to help
show why they are important to monitor.

The global cache open s and global cache open x Events

The initial access of a particular data block by an instance generates these events.
The duration of the wait should be short, and the completion of the wait is most
likely followed by a read from disk. This wait is a result of the blocks that are being
requested and not being cached in any instance in the cluster database. This
necessitates a disk read.

When these events are associated with high totals or high per-transaction wait
times, it is likely that data blocks are not cached in the local instance and that the
blocks cannot be obtained from another instance, which results in a disk read. At
the same time, suboptimal buffer cache hit ratios may also be observed. Unfortunately,
other than preloading heavily used tables into the buffer caches, there is little that
can be done about this type of wait event.

The global cache null to s and global cache null to x Events

These events are generated by inter-instance block ping across the network. Inter-
instance block ping is when two instances exchange the same block back and
forth. Processes waiting for global cache null to s events are waiting for a block to be
transferred from the instance that last changed it. When one instance repeatedly
requests cached data blocks from the other RAC instances, these events consume
a greater proportion of the total wait time. The only method for reducing these
events is to reduce the number of rows per block to eliminate the need for block
swapping between two instances in the RAC cluster.

The global cache cr request Event

This event is generated when an instance has requested a consistent read data
block and the block to be transferred had not arrived at the requesting instance.
Other than examining the cluster interconnects for possible problems, there is
nothing that can be done about this event other than to modify objects to reduce
the possibility of contention.

Global Cache Service Times

When global cache waits constitute a large proportion of the wait time, as listed on
the first page of the STATSPACK or AWRRPT report, and if response time or
throughput does not conform to service level requirements, the Global Cache
Service workload characteristics on the cluster statistics page of the STATSPACK
or AWRRPT reports should be examined. The STATSPACK or AWRRPT
reports should be taken during heavy RAC workloads.

If the STATSPACK report shows that the average GCS time per request is high, it
is the result of one of the following:

n Contention for blocks.

n System loads.

n Network issues.

The operating system logs and operating system statistics are used to indicate
whether a network link is congested. A network link can be congested if:

n Packets are being routed through the public network instead of the private
interconnect.

n The sizes of the run queues are increasing.

If CPU usage is maxed out and processes are queuing for the CPU, the priority of
the GCS processes (LMSn) can be raised over other processes to lower GCS
times. The load on the server can also be alleviated by reducing the number of
processes on the database server, increasing capacity by adding CPUs to the server,
or adding nodes to the cluster database.

New 10g RAC Waits

This section covers the most important Oracle Database 10g wait events to be
aware of when analyzing performance reports. When user response times increase
and a high proportion of time waited is due to the global cache (gc), the cause must
be determined and corrected.

It is best to start with an ADDM report if that option has been purchased. This
will analyze the routinely collected performance statistics with respect to their
impact pinpoint the objects and SQL contributing most to the time waited. After
that, the analysis can move on to the more detailed reports produced by the AWR
and STATSPACK utilities.

The most important wait events for RAC fall into four main categories, arranged
alphabetically these are:

n Block-oriented waits:

n gc current block 2-way

n gc current block 3-way

n gc cr block 2-way

n gc cr block 3-way

n Contention-oriented waits:

n gc current block busy

n gc cr block busy

n gc current buffer busy

n Load-oriented waits:

n gc current block congested

n gc cr block congested

n Message-oriented waits:

n gc current grant 2-way

n gc cr grant 2-way

Block Oriented Wait Events

As their names imply, these block related wait events are the result of some
combination of message and transfer event. Whether the wait occurred between a
resource master and a requesting node as a single message and block transfer or
was the result of a message passed from a node several times removed from the
resource master causing two messages and a block transfer, the result is the same.
A wait event of some duration occurred.

These wait events consist of several components:

n Physical network latency

n Request processing time

n Requesting process sleep time

By looking at the total and average wait times associated with these events, the
DBA can be alerted when performance is being affected in a negative manner,
such as when average times increase beyond statistical norms, something is wrong
and needs investigation. Usually, the impact of interconnect malfunctions or load
issues or the interactions of nodes against hot blocks are the culprit when these
waits become significant.

Message Related Wait Events

The wait events dealing with messages usually indicate that the block requested
was not present in any of the caches for the various nodes. This results in the
need to issue a global grant and allow the requesting instance to read the block
from disk in order to modify it. When messaging events result in high waits, it is
usually due to frequently accessed SQL causing disk IO, due to cache areas being
too small, in the event of cr grants, or the instances are inserting a lot of new
records requiring format of disk blocks, if current grants are the cause.

Contention-Oriented Wait Events

Contention-oriented wait events are caused by:

n Waits for blocks pinned by other nodes

n Waits for changes to be flushed to disk

n Waits due to high concurrency for block access

n Intra-node cache-fusion contention

If high service times are experienced in the global cache, this type of wait can get
worse. In general, this type of wait results from multiple nodes requiring read or
write of the same block of data or index entries.

Load-Oriented Wait Events

These types of waits indicate that delays have occurred within the global cache
services (GCS). Load-oriented events are usually caused by high loads on the
nodes and their CPUs. This type of event is solved by:

n Increasing the available CPUs

n Load balancing

n Offloading processing until a lower load is available

n Adding a new node

For load-oriented events, the time is the total time for the round-trip, beginning
when the request is made and ending when the block is received.

The following section will cover the STATSPACK report sections that are useful
when dealing with RAC. The report is only in relation to the node/instance on
which it was run. To compare other instances, the statspack.snap procedure and
spreport.sql report script can be run on each node/instance that is to be monitored.

RAC and STATSPACK

The following is a STATSPACK report for the troubled instance. The sections
covered will be those that involve RAC statistics. The first section deals with the
top five timed events:

Top 5 Timed Events
~~~~~~~~~~~~~~~~~~                                                     % Total 
Event                                               Waits    Time (s) Ela Time 
-------------------------------------------- ------------ ----------- -------- 
global cache cr request                               820         154    72.50 
CPU time                                                           54    25.34 
global cache null to x                                478           1      .52 
control file sequential read                          600           1      .52 
control file parallel write                           141           1      .28 
          ------------------------------------------------------------- 

 
Observe the events in the report that are taking a majority of the % total elapsed time 
column that are greater than or near the %total ela time value for cpu time. The cpu 
time statistic should be the predominant event as it denotes processing time. If cpu 
time is not the predominant event, the events that exceed cpu time’s share of the 
total elapsed time need to be investigated. In the above report section, global cache cr 
request events are dominating the report. This indicates that transfer times are 
excessive from the other instances in the cluster to this instance. The excessive 
transfer times could be due to network problems or buffer cache sizing issues. 



After making the network changes and adding an index, the STATSPACK wait 
report for instance one looks like: 
 
Top 5 Timed Events 
~~~~~~~~~~~~~~~~~~                                                     % Total 
Event Waits Time (s) Ela Time
-- ------------ ----------- --------
CPU time 99 64.87
global cache null to x 1,655 28 18.43
enqueue 46 8 5.12
global cache busy 104 7 4.73
DFS lock handle 38 2 1.64

The number one wait is now cpu time, followed by global cache null to x, which
indicates the major wait has been shifted from intra-cache to I/O-based as global
cache null to x indicates a read from disk.

The next report in the STATSPACK listing shows the workload characteristics for
the instance for which the report was generated:

Cluster Statistics for DB: MIKE Instance: mike2 Snaps: 25 -26

Global Cache Service - Workload Characteristics

Ave global cache get time (ms): 3.1
Ave global cache convert time (ms): 3.2

Ave build time for CR block (ms): 0.2
Ave flush time for CR block (ms): 0.0
Ave send time for CR block (ms): 1.0
Ave time to process CR block request (ms): 1.3
Ave receive time for CR block (ms): 17.2

Ave pin time for current block (ms): 0.2
Ave flush time for current block (ms): 0.0
Ave send time for current block (ms): 0.9
Ave time to process current block request (ms): 1.1
Ave receive time for current block (ms): 3.1

Global cache hit ratio: 1.7
Ratio of current block defers: 0.0
% of messages sent for buffer gets: 1.4
% of remote buffer gets: 1.1
Ratio of I/O for coherence: 8.7
Ratio of local vs remote work: 0.6
Ratio of fusion vs physical writes: 1.0

In the above report, the statistics in relation to the other instances in the cluster
should be examined. The possible causes of any statistics that are not in line with
the other cluster instances should be investigated. By making the network changes
and index changes stated before, the workload was increased by a factor of greater
than three, and the response time was still less than in the original STATSPACK.
The following is the same section from the STATSPACK report taken after the
network changes. Almost all statistics show an increase:

Cluster Statistics for DB: MIKE Instance: mike2 Snaps: 105 -106

Global Cache Service - Workload Characteristics

Ave global cache get time (ms): 8.2

Ave global cache convert time (ms): 16.5

Ave build time for CR block (ms): 1.5
Ave flush time for CR block (ms): 6.0
Ave send time for CR block (ms): 0.9
Ave time to process CR block request (ms): 8.5
Ave receive time for CR block (ms): 18.3

Ave pin time for current block (ms): 13.7
Ave flush time for current block (ms): 3.9
Ave send time for current block (ms): 0.8
Ave time to process current block request (ms): 18.4
Ave receive time for current block (ms): 17.4

Global cache hit ratio: 2.5
Ratio of current block defers: 0.2
% of messages sent for buffer gets: 2.2
% of remote buffer gets: 1.6
Ratio of I/O for coherence: 2.8
Ratio of local vs remote work: 0.5
Ratio of fusion vs physical writes: 0.0

The next report shows the global enqueue service statistics. The global enqueue
services (GES) control the inter-instance locks in Oracle Database 10g RAC.
These times should all be in the less than 15 millisecond range and the ratio should
be near one. If they are not, it shows possible network or memory problems.
Application locking issues can also cause this and the enqueue report, which is
shown later in the STATSPACK listing, should be consulted to further diagnose
the possible problems:

Global Enqueue Service Statistics

Ave global lock get time (ms): 0.9
Ave global lock convert time (ms): 1.3
Ratio of global lock gets vs global lock releases: 1.1

The next STATSPACK report deals with GCS and GES messaging. Queue times
greater than 20-30 ms should be considered excessive and should be watched:

GCS and GES Messaging statistics

Ave message sent queue time (ms): 1.8
Ave message sent queue time on ksxp (ms): 2.6
Ave message received queue time (ms): 1.2
Ave GCS message process time (ms): 1.2
Ave GES message process time (ms): 0.2
% of direct sent messages: 58.4
% of indirect sent messages: 4.9
% of flow controlled messages: 36.7

The next section of the STATSPACK report also deals with the global enqueue
services statistics. Blocked converts are one thing to look for. There are several in
this report example. Blocked converts means the instance requested a block from
another instance and for one reason or another was unable to obtain the
conversion of the block. This can indicate that users are going after the same
records, and it may be desirable to prevent that from occurring.

Blocked converts can also indicate insufficient freelists. This should not be the
issue if Oracle Database 10g bitmap freelists are used. Block contention can be
reduced through freelists, ini_trans, and limiting rows per block to avoid conversions
being blocked.

If there are excessive message processing times, thought should be given to tuning
the network to increase bandwidth, or perhaps upgrading the NIC's to faster, high
bandwidth versions.

GES Statistics for DB: MIKE Instance: mike2 Snaps: 25 -26

Statistic Total per Second per Trans
--------------------------------- ---------------- ------------ ------------
dynamically allocated gcs resourc 0 0.0 0.0
dynamically allocated gcs shadows 0 0.0 0.0
flow control messages received 0 0.0 0.0
flow control messages sent 0 0.0 0.0
gcs ast xid 0 0.0 0.0
gcs blocked converts 904 2.1 150.7
gcs blocked cr converts 1,284 2.9 214.0
gcs compatible basts 0 0.0 0.0
gcs compatible cr basts (global) 0 0.0 0.0
gcs compatible cr basts (local) 75 0.2 12.5
gcs cr basts to PIs 0 0.0 0.0
gcs cr serve without current lock 0 0.0 0.0
gcs error msgs 0 0.0 0.0
gcs flush pi msgs 21 0.0 3.5
gcs forward cr to pinged instance 0 0.0 0.0
gcs immediate (compatible) conver 4 0.0 0.7
gcs immediate (null) converts 79 0.2 13.2
gcs immediate cr (compatible) con 4 0.0 0.7
gcs immediate cr (null) converts 3 0.0 0.5
gcs msgs process time(ms) 3,193 7.3 532.2
gcs msgs received 2,586 5.9 431.0
gcs out-of-order msgs 0 0.0 0.0
gcs pings refused 0 0.0 0.0
gcs queued converts 0 0.0 0.0
gcs recovery claim msgs 0 0.0 0.0
gcs refuse xid 0 0.0 0.0
gcs retry convert request 0 0.0 0.0
gcs side channel msgs actual 65 0.1 10.8
gcs side channel msgs logical 1,383 3.2 230.5
gcs write notification msgs 0 0.0 0.0
gcs write request msgs 0 0.0 0.0
gcs writes refused 0 0.0 0.0
ges msgs process time(ms) 136 0.3 22.7
ges msgs received 578 1.3 96.3
implicit batch messages received 90 0.2 15.0
implicit batch messages sent 12 0.0 2.0
lmd msg send time(ms) 55 0.1 9.2
lms(s) msg send time(ms) 8 0.0 1.3
messages flow controlled 806 1.8 134.3
messages received actual 1,980 4.5 330.0
messages received logical 3,164 7.3 527.3
messages sent directly 1,281 2.9 213.5
messages sent indirectly 108 0.2 18.0
msgs causing lmd to send msgs 231 0.5 38.5
msgs causing lms(s) to send msgs 97 0.2 16.2
msgs received queue time (ms) 3,842 8.8 640.3
msgs received queued 3,164 7.3 527.3
msgs sent queue time (ms) 202 0.5 33.7
msgs sent queue time on ksxp (ms) 4,337 9.9 722.8
msgs sent queued 111 0.3 18.5
msgs sent queued on ksxp 1,658 3.8 276.3
process batch messages received 269 0.6 44.8
process batch messages sent 191 0.4 31.8

The next section of the report deals with waits. Waits are a key tuning indicator.
The predominant wait is for global cache cr request, which was caused by the network
not being tuned properly, as already mentioned. The second highest wait is the
global cache null to x , which, if severe, indicates problems with the I/O subsystem. In
this case, the total time waited was one second or less, hardly a concern when
compared with the 154 second wait on global cache cr request. The waits with the
highest total time should be tuned first. Waits such as SQL*Net waits and any

having to do with smon, pmon, or wakeup timers can be safely ignored in most
situations.

Wait Events for DB: MIKE Instance: mike2 Snaps: 25 -26
-> s - second
-> cs - centisecond - 100th of a second
-> ms - millisecond - 1000th of a second
-> us - microsecond - 1000000th of a second
-> ordered by wait time desc, waits desc (idle events last)

Avg
 Total Wait wait Waits
Event Waits Timeouts Time (s) (ms) /txn
---------------------------- ------------ ---------- ---------- ------ --------
global cache cr request 820 113 154 188 136.7
global cache null to x 478 1 1 2 79.7
control file sequential read 600 0 1 2 100.0
control file parallel write 141 0 1 4 23.5
enqueue 29 0 1 18 4.8
library cache lock 215 0 0 2 35.8
db file sequential read 28 0 0 7 4.7
LGWR wait for redo copy 31 16 0 4 5.2
ksxr poll remote instances 697 465 0 0 116.2
global cache open x 48 0 0 2 8.0
CGS wait for IPC msg 899 899 0 0 149.8
log file parallel write 698 697 0 0 116.3
latch free 24 0 0 2 4.0
global cache s to x 41 0 0 1 6.8
log file sync 3 0 0 13 0.5
DFS lock handle 30 0 0 1 5.0
global cache open s 16 0 0 1 2.7
global cache null to s 9 0 0 1 1.5
library cache pin 133 0 0 0 22.2
KJC: Wait for msg sends to c 17 0 0 0 2.8
db file parallel write 19 0 0 0 3.2
cr request retry 27 27 0 0 4.5
gcs remote message 10,765 9,354 840 78 1,794.2
virtual circuit status 15 15 440 29307 2.5
ges remote message 9,262 8,501 421 45 1,543.7
wakeup time manager 14 14 408 29135 2.3
SQL*Net message from client 4,040 0 216 53 673.3
SQL*Net message to client 4,040 0 0 0 673.3

The next report deals with enqueues. These are the normal system enqueues. The
non-RAC related ones have been removed from this listing. Enqueues are high
level locks used to protect memory areas. When the report is reviewed, the
enqueues with the highest totals should be of the most interest. In the following
report, all of the enqueues of concern are again dealing with message times and
cache block transfers. These types of enqueues again point to network tuning.

Enqueue activity for DB: MIKE Instance: mike2 Snaps: 25 -26
-> Enqueue stats gathered prior to 10g should not be compared with 10g data
-> ordered by Wait Time desc, Waits desc

Instance Activity Stats for DB: MIKE Instance: mike2 Snaps: 25 -26

Statistic Total per Second per Trans
--------------------------------- ------------------ -------------- ------------
gcs messages sent 1,570 3.6 261.7
ges messages sent 805 1.9 134.2
global cache blocks lost 88 0.2 14.7
global cache convert time 171 0.4 28.5
global cache converts 528 1.2 88.0
global cache cr block build time 28 0.1 4.7
global cache cr block flush time 2 0.0 0.3
global cache cr block receive tim 1,158 2.7 193.0
global cache cr block send time 117 0.3 19.5
global cache cr blocks received 674 1.6 112.3
global cache cr blocks served 1,147 2.6 191.2
global cache current block pin ti 12 0.0 2.0
global cache current block receiv 170 0.4 28.3
global cache current block send t 57 0.1 9.5
global cache current blocks recei 541 1.2 90.2
global cache current blocks serve 653 1.5 108.8
global cache defers 0 0.0 0.0
global cache get time 57 0.1 9.5
global cache gets 183 0.4 30.5
global cache skip prepare failure 37 0.1 6.2
global lock async converts 0 0.0 0.0
global lock async gets 197 0.5 32.8
global lock convert time 4 0.0 0.7

global lock get time 290 0.7 48.3
global lock releases 3,064 7.0 510.7
global lock sync converts 30 0.1 5.0
global lock sync gets 3,120 7.2 520.0

The next three reports deal with latches. Latches are low level lock structures that
protect memory areas. There is usually no concern with latches unless high sleeps
or misses are observed. Generally, adjusting internal parameters or tuning SQL
code tunes latches. An example would be adjusting the _kgl* parameters to tune
the library related or shared pool locks. Sometimes, increasing the shared pool size
can also help to relieve latch issues. For some latches, the number of latches
available are derived from the size of the shared pool and the settings for related
initialization parameters.

Latch Activity for DB: MIKE Instance: mike2 Snaps: 25 -26
->"Get Requests", "Pct Get Miss" and "Avg Slps/Miss" are statistics for
 willing-to-wait latch get requests
->"NoWait Requests", "Pct NoWait Miss" are for no-wait latch get requests
->"Pct Misses" for both should be very close to 0.0

 Pct Avg Wait Pct
 Get Get Slps Time NoWait NoWait
Latch Requests Miss /Miss (s) Requests Miss
------------------------ -------------- ------ ------ ------ ------------ ------
KCL bast context freelis 1,150 0.0 0 0
KCL freelist parent latc 713 0.0 0 0
KCL gc element parent la 8,399 0.0 0 166 0.0
KCL name table parent la 1,780 0.0 0 144 0.0
KJC message pool free li 655 0.0 0 194 0.0
KJCT flow control latch 2,238 0.0 1.0 0 91 0.0
gcs opaque info freelist 1,922 0.0 0 0
gcs resource freelist 77 0.0 0 0
gcs resource hash 5,719 0.0 1.0 0 0
gcs shadows freelist 681 0.0 0 0
ges caches resource list 3,518 0.0 0 2,130 0.0
ges deadlock list 411 0.0 0 0
ges domain table 4,206 0.0 0 0
ges enqueue table freeli 6,271 0.0 0 0
ges group parent 4,238 0.0 0 0
ges group table 6,409 0.0 0 0
ges process hash list 207 0.0 0 0
ges process parent latch 18,354 0.0 1.0 0 0
ges process table freeli 4 0.0 0 0
ges resource hash list 10,294 0.1 1.0 0 1,248 0.0
ges resource table freel 5,703 0.0 0 0
ges timeout list 72 0.0 0 0

Latch Sleep breakdown for DB: MIKE Instance: mike2 Snaps: 25 -26
-> ordered by misses desc

 Get Spin &
Latch Name Requests Misses Sleeps Sleeps 1->4
-------------------------- -------------- ----------- ----------- ------------
ges resource hash list 10,294 13 13 0/13/0/0/0
redo allocation 41,394 4 4 0/4/0/0/0
KJCT flow control latch 2,238 1 1 0/1/0/0/0
cache buffers lru chain 3,055 1 1 0/1/0/0/0
gcs resource hash 5,719 1 1 0/1/0/0/0
ges process parent latch 18,354 1 1 0/1/0/0/0

Latch Miss Sources for DB: MIKE Instance: mike2 Snaps: 25 -26
-> only latches with sleeps are shown
-> ordered by name, sleeps desc

 NoWait Waiter
Latch Name Where Misses Sleeps Sleeps
------------------------ -------------------------- ------- ---------- --------
KJCT flow control latch kjcts_sedeqv: dequeue a ve 0 1 0
cache buffers lru chain kcbzgb: wait 0 1 1
gcs resource hash kjbmpconvert 0 1 1
ges resource hash list kjrmas1: lookup master nod 0 13 0
redo allocation kcrfwr 0 4 2

The next report deals with the data dictionary cache area of the shared pool. If
there are no conflicts or releases, the dc caches are sized correctly. The dictionary
cache area is sized by properly sizing the shared pool.

Dictionary Cache Stats for DB: MIKE Instance: mike2 Snaps: 25 -26
 GES GES GES

Cache Requests Conflicts Releases
------------------------- ------------ ------------ ------------
dc_global_oids 0 0 0
dc_object_ids 22 0 0
dc_objects 97 0 0
dc_profiles 0 0 0
dc_rollback_segments 0 0 0
dc_segments 3 0 0
dc_tablespace_quotas 2 0 0
dc_tablespaces 0 0 0
dc_user_grants 0 0 0
dc_usernames 0 0 0
dc_users 0 0 0

The next report gives a breakdown of enqueues by type of enqueue. This enqueue
type report will help isolate the cause of enqueue problems. The types of enqueue
are shown in Table 14.2

Type Description
BL Buffer Cache Management
CF Controlfile Transaction
CI Cross-instance Call Invocation
CU Bind Enqueue
DF Datafile
DL Direct Loader Index Creation
DM Database Mount
DR Distributed Recovery
DX Distributed TX
FS File Set
IN Instance Number
IR Instance Recovery
IS Instance State
IV Library Cache Invalidation
JQ Job Queue
KK Redo Log "Kick"
L[A-P] Library Cache Lock
MR Media Recovery
N[A-Z] Library Cache Pin
PF Password File
PI Parallel Slaves
PR Process Startup
PS Parallel Slave Synchronization
Q[A-Z] Row Cache
RT Redo Thread
SC System Commit Number
SM SMON
SQ Sequence Number Enqueue
SR Synchronized Replication
SS Sort Segment
ST Space Management Transaction
SV Sequence Number Value

Type Description
TA Transaction Recovery
TM DML Enqueue
TS Temporary Segment (also TableSpace)
TT Temporary Table
TX Transaction
UL User-defined Locks
UN User Name
US Undo Segment: Serialization
WL Being Written Redo Log
XA Instance Attribute Lock
XI Instance Registration Lock

Table 14.2: List of Enqueues

In the report, the majority enqueue is the TM or DML related enqueue. However,
its average wait time is only 2.43 milliseconds. The transaction recovery (TA)
enqueue has a whopping 497 millisecond wait time. This high value was driven by
several rollbacks in the test procedure. Once the enqueue causing the problems are
determined, standard tuning techniques can be used to resolve them.

Enqueue activity for DB: MIKE Instance: mike2 Snaps: 25 -26
-> Enqueue stats gathered prior to 10g should not be compared with 10g data
-> ordered by Wait Time desc, Waits desc

 Avg Wt Wait
Eq Requests Succ Gets Failed Gets Waits Time (ms) Time (s)
-- ------------ ------------ ----------- ----------- ------------- ------------
TA 1 1 0 1 497.00 0
TM 1,582 1,582 0 14 2.43 0
HW 13 13 0 5 2.60 0
FB 4 4 0 4 3.00 0
TT 3 3 0 3 2.33 0

The final report section to be reviewed is the library cache report dealing with the
GES. GES invalid requests and GES invalidations could indicate insufficient
sizing of the shared pool, resulting in GES contention.

Library Cache Activity for DB: MIKE Instance: mike2 Snaps: 25 -26
->"Pct Misses" should be very low

 GES Lock GES Pin GES Pin GES Inval GES Invali-
Namespace Requests Requests Releases Requests dations
--------------- ------------ ------------ ------------ ----------- -----------
BODY 1 0 0 0 0
CLUSTER 4 0 0 0 0
INDEX 84 0 0 0 0
SQL AREA 0 0 0 0 0
TABLE/PROCEDURE 617 192 0 77 0
TRIGGER 0 0 0 0 0

This section on the STATSPACK reports has only covered the reports that dealt
with the RAC environment. This does not mean that the rest of the report can be
ignored. The sections on SQL use are critical in light of the need to find the code
that may actually be causing the problems. The other waits, latches, enqueues, and

statistics that deal with the mundane parts of the Oracle environment are also
important to review, monitor, and tune.

Global Cache Services (GCS) Monitoring

The use of the GCS relative to the number of buffer cache reads, or logical reads
can be estimated by dividing the sum of GCS requests (global cache gets + global cache
converts + global cache cr blocks received + global cache current blocks received) by the number
of logical reads (consistent gets + db block gets) for a given statistics collection interval.
A global cache service request is made in Oracle when a user attempts to access a
buffer cache to read or modify a data block and the block is not in the local cache.
A remote cache read, disk read or change access privileges is the inevitable result.
These are logical read related. Logical reads form a superset of the global cache
service operations. The calculation for global cache hit ratio since instance startup is:

SELECT
 a.inst_id "Instance",
 (A.VALUE+B.VALUE+C.VALUE+D.VALUE)/(E.VALUE+F.VALUE) "GLOBAL CACHE HIT RATIO"
FROM
 GV$SYSSTAT A,
 GV$SYSSTAT B,
 GV$SYSSTAT C,
 GV$SYSSTAT D,
 GV$SYSSTAT E,
 GV$SYSSTAT F
WHERE
 A.NAME='gc gets'
 AND B.NAME='gc converts'
 AND C.NAME='gc cr blocks received'
 AND D.NAME='gc current blocks received'
 AND E.NAME='consistent gets'
 AND F.NAME='db block gets'
SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.oracle-script.com/)

 Instance GLOBAL CACHE HIT RATIO
---------- ----------------------
 1 .02403656
 2 .014798887

The instance with the best access to the drives, or the faster I/O path, will likely
have the best cache hit ratio. This is due to the way Oracle's RAC caching algorithm
works as it may decide that the cost of doing a local read is higher than reading
into the other cache and siphoning it across the cluster interconnect. In formula
form:

(gc gets + gc converts + gc cr blocks received +
gc current blocks received) / (consistent gets + db block gets)

Blocks frequently requested by local and remote users will be very hot. If a block is
hot, its transfer is delayed for a few milliseconds to allow the local users to
complete their work. The following ratio provides a rough estimate of how
prevalent this is:

SELECT

 A.INST_ID "Instance",
 A.VALUE/B.VALUE "BLOCK TRANSFER RATIO"
FROM
 GV$SYSSTAT A, GV$SYSSTAT B
WHERE
 A.NAME='gc defers'
 AND B.NAME='gc current blocks served'
 SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.oracle-script.com/)

 Instance BLOCK TRANSFER RATIO
---------- --------------------
 1 .052600105
 2 .078004479

If the above SELECT generates a ratio of more than 0.3, a fairly hot data set is
indicated. If this is the case, blocks involved in busy waits should be analyzed. The
following columns should be queried to find the blocks involved in busy waits:

n name

n kind

n forced_reads

n forced_writes

For example:

col instance format 99999999
col name format a20
col kind format a10
set lines 80 pages 55
Select
INST_ID "Instance",
NAME,
KIND,
sum(FORCED_READS) "Forced Reads",
sum(FORCED_WRITES) "Forced Writes"
FROM GV$CACHE_TRANSFER
SEE GRID CODE DEPOT FOR DOWNLOAD (http://www.rampant-
books.com/book_2004_1_10g_grid.htm)

Instance NAME KIND Forced Reads Forced Writes
--------- -------------------- ---------- ------------ -------------
 1 MOD_TEST_IND INDEX 308 0
 1 TEST2 TABLE 64 0
 1 AQ$_QUEUE_TABLES TABLE 5 0
 2 TEST2 TABLE 473 0
 2 MOD_TEST_IND INDEX 221 0
 2 AQ$_QUEUE_TABLES TABLE 2 0

These values come from the gv$cache_transfer view. Alternatively, the cr_requests and
current_requests columns in gv$cr_block_server can be examined. Also, the values
shown for the global cache busy, buffer busy global cache, and buffer busy global cr statistics
from the gv$sysstat view should be examined.

SELECT
 INST_ID,
 sum(CR_REQUESTS) "CR Requests",
 sum(CURRENT_REQUESTS) "Current Requests"
FROM

 GV$CR_BLOCK_SERVER
GROUP BY
 INST_ID;

 INST_ID CR Requests Current Requests
---------- ----------- ----------------
 1 28940 2244
 2 31699 837

SELECT
 inst_id "Instance",
 event "Wait Event",
 total_waits,
 time_waited
FROM
 GV$SYSTEM_EVENT
WHERE
 event in (
 'global cache busy',
 'buffer busy global cache',
 'buffer busy global CR')
SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.oracle-script.com/)

 Instance Wait Event TOTAL_WAITS TIME_WAITED
--------- ------------------------ ----------- -----------
 1 buffer busy global CR 1 0
 1 global cache busy 1073 7171
 2 global cache busy 973 7524

If a problem is discovered, the object causing the problem should be identified
along with the instance that is accessing the object, and how the object is being
accessed. If necessary, the contention can be alleviated by:

n Reducing hot spots by spreading the accesses to index blocks or data blocks.

n Using Oracle hash or range partitions wherever applicable, just as it would be
done in single instance Oracle databases.

n Reducing concurrency on the object by implementing load balancing or
resource management. For example, decrease the rate of modifications to that
object by using fewer database processes.

In RAC, as in a single instance Oracle database, blocks are only written to disk for
aging, cache replacement, or checkpoints. When a data block is replaced from the
cache due to aging or when a checkpoint occurs and the block was previously
changed in another instance but not written to disk, Oracle sends a message to
notify the other instance that Oracle will perform a fusion write to move the data
block to disk.

These fusion writes are monitored with the following ratio. It reveals the
proportion of writes that Oracle manages.

SELECT
 a.inst_id "Instance",
 A.VALUE/B.VALUE "Cache Fusion Writes Ratio"
FROM
 GV$SYSSTAT A,
 GV$SYSSTAT B
WHERE

 a.name='DBWR fusion writes'
 AND b.name='physical writes'
 AND b.inst_id=a.inst_id
ORDER BY
 A.INST_ID;

Instance Cache Fusion Writes Ratio
--------- -------------------------
 1 .216290958
 2 .131862042

The larger this ratio is, the higher the number of written blocks that have been
copied with their previous changes between the RAC instances. A large ratio is the
result of:

n Insufficiently sized caches.

n Insufficient checkpoints.

n Large numbers of buffers written due to cache replacement or checkpointing.

For example, 0.21 means that 21% of the buffers written to disk were globally
dirty. A fusion write does not involve an additional write to disk. A fusion write
does require messaging to arrange the transfer with the other instances. This
indicates that fusion writes are in fact a subset of all the instance’s physical writes.

Use of the v$cache_transfer Views

The v$cache_transfer and v$file_cache_transfer views are used to examine RAC
statistics. The types of blocks that use the cluster interconnects in a RAC
environment are monitored with the v$ cache transfer series of views:

n v$cache_transfer: This view shows the types and classes of blocks that Oracle
transfers over the cluster interconnect on a per-object basis. The forced_reads
and forced_writes columns can be used to determine the types of objects the
RAC instances are sharing. Values in the forced_writes column show how often a
certain block type is transferred out of a local buffer cache due to the current
version being requested by another instance. The following columns are the
same for all of the views.

n v$class_cache_transfer: -- This view can be used to identify the class of blocks that
experience cache transfers. v$class_cache_transfer has a class column showing the
class of a block; therefore, this view can be used to assess block transfers per
class of object.

n v$file_cache_transfer: This view can be used to monitor the blocks transferred per
file. The file_number column identifies the datafile that contained the blocks
transferred.

n v$temp_cache_transfer: -- This view can be used to monitor the transfer of
temporary tablespace blocks. The view contains a file_number column that is

used to track, by the tempfile file number, the number of blocks transferred.
This view has the same structure as the v$temp_cache_transfer view.

The contents of the v$cache_transfer view are shown below.

 Description of the V$CACHE_TRANSFER view

 Name Type
 ----------------------- --------------
 FILE# NUMBER
 BLOCK# NUMBER
 CLASS# NUMBER
 STATUS VARCHAR2(5)
 XNC NUMBER
 FORCED_READS NUMBER
 FORCED_WRITES NUMBER
 NAME VARCHAR2(30)
 PARTITION_NAME VARCHAR2(30)
 KIND VARCHAR2(15)
 OWNER# NUMBER
 GC_ELEMENT_ADDR RAW(4)
 GC_ELEMENT_NAME NUMBER

The v$cache_transfer view shows the types and classes of blocks that Oracle transfers
over the cluster interconnect on a per-object basis. The forced_reads and forced_writes
columns are used to determine which types of objects the RAC instances are
sharing.

The v$file_cache_transfer view is used to identify files that have experienced cache
transfers. For example, while v$cache_transfer has a name column showing the name
of an object, the v$file_cache_transfer view has the file_number column to show the file
numbers of the datafiles that are the source of blocks transferred; therefore, this
view can be used to assess block transfers per file. The v$file_cache_transfer view
contents are shown below:

Description of the V$FILE_CACHE_TRANSFER View
 Name Type
 -------------------------------- ----------
 FILE_NUMBER NUMBER
 X_2_NULL NUMBER
 X_2_NULL_FORCED_WRITE NUMBER
 X_2_NULL_FORCED_STALE NUMBER
 X_2_S NUMBER
 X_2_S_FORCED_WRITE NUMBER
 S_2_NULL NUMBER
 S_2_NULL_FORCED_STALE NUMBER
 RBR NUMBER
 RBR_FORCED_WRITE NUMBER
 RBR_FORCED_STALE NUMBER
 NULL_2_X NUMBER
 S_2_X NUMBER
 NULL_2_S NUMBER
 CR_TRANSFERS NUMBER
 CUR_TRANSFERS NUMBER

Even though the shared disk architecture virtually eliminates forced disk writes,
the v$cache_transfer and v$file_cache_transfer views may still show the number of block
mode conversions per block class or object. Values in the forced_writes column,
however, will be zero.

Monitoring the GES Processes

The monitoring of the global enqueue services (GES) process is performed using
the gv$enqueue_stat view. The contents of the gv$enqueue_stat view are shown below:

 Description of the view GV$ENQUEUE_STAT

 Name Type
 -------------------------------- ----------
 INST_ID NUMBER
 EQ_TYPE VARCHAR2(2)
 TOTAL_REQ# NUMBER
 TOTAL_WAIT# NUMBER
 SUCC_REQ# NUMBER
 FAILED_REQ# NUMBER
 CUM_WAIT_TIME NUMBER

An example SELECT to retrieve all of the enqueues with total_wait number greater
than zero would be:

select
 *
from
 gv$enqueue_stat
where
 total_wait#>0
order by
 inst_id,
cum_wait_time desc;

SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.oracle-script.com/)

 INST_ID EQ TOTAL_REQ# TOTAL_WAIT# SUCC_REQ# FAILED_REQ# CUM_WAIT_TIME
---------- -- ---------- ----------- ---------- ----------- -------------
 1 TX 31928 26 31928 0 293303
 1 PS 995 571 994 1 55658
 1 TA 1067 874 1067 0 10466
 1 TD 974 974 974 0 2980
 1 DR 176 176 176 0 406
 1 US 190 189 190 0 404
 1 PI 47 27 47 0 104
 1 CF 499314 23 499314 0 47
 1 TM 41928 8 41928 0 35
 1 MR 93 13 93 0 21
 1 HW 637 6 637 0 8
 1 XR 4 2 4 0 5
 1 DM 4 2 4 0 4
 1 SR 1 1 1 0 3
 1 SW 3 1 3 0 3
 1 TS 2 1 2 0 3
 2 TA 1064 1015 1064 0 437648
 2 PS 2208 325 1597 611 104273
 2 TX 440843 18 440843 0 62787
 2 US 197 41 197 0 8551
 2 IR 193 29 193 0 4593
 2 TT 4393 131 4393 0 3363
 2 CF 507497 540 507497 0 1726
 2 TM 1104694 101 1104694 0 766
 2 DM 5 2 5 0 483
 2 HW 444 41 444 0 108
 2 PI 90 18 90 0 81

 2 DL 32 18 32 0 55
 2 DR 176 23 176 0 52
 2 RT 4 4 3 1 12
 2 FB 10 2 10 0 6
 2 IA 1 1 1 0 4
 2 PG 1 1 1 0 3
 2 TS 4 1 4 0 3

According to Oracle, the enqueues of interest, as shown in the eq_type column of
the gv$enqueue_stat view in the RAC environment are:

n SQ Enqueue: This indicates that there is contention for sequences. In almost
all cases, executing an ALTER SEQUENCE command can increase the cache
size of sequences used by the application. When creating sequences for a RAC
environment, DBAs should use the NOORDER keyword to avoid an
additional cause of SQ enqueue contention that is forced ordering of queued
sequence values.

n TX Enqueue: This is usually an application related issue pertaining to row
locking. Real Application Clusters processing can magnify the effect of TX
enqueue waits. Performance bottlenecks can also appear on leaf blocks of right
growing indexes as TX enqueue waits while the index block splits are occuring.
TX enqueue performance issues can be resolved by setting the value of the
initrans parameter for a TABLE or INDEX to be equal to the number of CPUs
per node multiplied by the number of nodes in the cluster multiplied by 0.75.
Another technique is to determine the number of simultaneous accesses for
DML for the objects experiencing TX enqueues, and setting initrans to that
value. Oracle Corporation recommends avoiding setting this parameter greater
than 100. Another parameter that can reduce TX enqueues is maxtrans.
maxtrans determines the maximum number of transactions that can access a
block. maxtrans will default to 255 and it is a good practice to reset this to less
than 100.

PS (Parallel Slave Synchronization) and TA (Transaction Recovery) enqueues also
seem to have some importance in the environment. Therefore, start with a wide
sweep and then focus on the waits that are causing performance issues in the
environment.

There are other interesting views that provide information on tuning that the DBA
in a RAC environment should be aware of, for example:

n gv$segment_statistics: Provides statistics such as buffer busy waits on a per segment
basis. This allows tracking of exactly which segments, indexes or tables, are
causing the buffer busy waits or other statistics to increment. To select against the
gv$segment_statistics view, the user will want to SELECT for a specific statistic
name where the value is greater than a predetermined limit. The contents of
gv$segment_statistics are shown below:
Description of gv$segment_statistics
 Name Null? Type
 --- -------- ------------

 INST_ID NUMBER
 OWNER VARCHAR2(30)
 OBJECT_NAME VARCHAR2(30)
 SUBOBJECT_NAME VARCHAR2(30)
 TABLESPACE_NAME VARCHAR2(30)
 TS# NUMBER
 OBJ# NUMBER
 DATAOBJ# NUMBER
 OBJECT_TYPE VARCHAR2(18)
 STATISTIC_NAME VARCHAR2(64)
 STATISTIC# NUMBER
 VALUE NUMBER

Another useful view shows which file IDs which have been remastered, which
happens when they are transferred from one instance to another, this view is called
gv$gcspfmaster_info and its contents are shown below:

Description of gv$gcspfmaster_info
 Name Null? Type
 --- -------- -------
 INST_ID NUMBER
 FILE_ID NUMBER
 CURRENT_MASTER NUMBER
 PREVIOUS_MASTER NUMBER
 REMASTER_CNT NUMBER

The file_id column corresponds to the data file ID. The current and previous
masters refer to the instances that are either the current or previous master of the
specified file. A view related to the gv$gcspfmaster_info view is the gv$gchvmaster_info
view which shows the same information but for the PCM hash value IDs for
specific resources that have been remastered. This views contents are shown
below:

 Description of gv$gcshvmaster_info
 Name Null? Type
 --- -------- -------
 INST_ID NUMBER
 HV_ID NUMBER
 CURRENT_MASTER NUMBER
 PREVIOUS_MASTER NUMBER
 REMASTER_CNT NUMBER

To select against these views, it may be desirable to restrict on the remaster_cnt
value being greater than a predetermined limit.

The gv$sqlarea view has also been enhanced in Oracle Database 10g RAC. The
column cluster_wait_time in gv$sqlarea represents the wait time incurred by individual
SQL statements for global cache events and will identify the SQL which may need
to be tuned based on its contribution to RAC contention.

Monitoring and Tuning using OEM

The first part of this chapter covered the manual aspects of RAC tuning, showing
techniques and providing scripts to obtain the needed information from the
various underlying Oracle views. This section will cover the tools provided by

Oracle in the Oracle Enterprise manager (OEM) Performance Monitor. In order
to use OEM to monitor a RAC environment, the following must be in place:

n OEM installed.

n OEM repository.

n Oracle Intelligent Agents running.

Normally, if the standard installation is used, OEM will be installed as a matter of
course. If possible, the OEM and its repository should be set up on a separate
system, such as a small Windows-based server. At the least, a small repository
database should be created on one of the RAC servers. This can be used for the
RMAN repository as well. The OEM client software can be installed on any
desktop as long as that desktop has SQL*Net connectivity to the OEM repository.

The most difficult part of the setup for OEM is probably getting the intelligent
agents to work properly with the RAC environment.

Configuring the Oracle Intelligent Agent with RAC

In order to be sure that the agent is installed properly in Oracle Database 10g, the
following Metalink documents should be reviewed:

n EM 10g Database Control Release Notes 10.1.0.2.0 Note: 266770.1

n EM 10g GRID Control Release Notes 10.1.0.2.0 Note: 266769.1

n How to Log and Trace the EM 10g Management Agents Note: 229624.1

n How To Install The Downloadable Central Management Agent in EM 10g
Grid Control Note: 235287.1

The nodes and databases must be properly discovered and viewable from the
OEM webpage before they can be monitored.

Using EM in Oracle Database 10g

In 10g, Oracle is moving to the web based interface for EM and will soon
deprecate the Java based version. Monitoring and management functions should
be migrated into the HTML Web based version of EM as soon as possible. The
following sections will provide a quick look at the screens in the new HTML
version that the DBA should be using for RAC monitoring and management.

The Cluster Performance Page

In the HTML based web version of the EM, the Cluster Performance Page is used
to display the usage statistics for all RAC hosts or for individual RAC hosts. This

information allows you to add, suspend, or redistribute resources as the need
arises. Figure 14.1 shows this page.

Figure 14.1: Example Cluster Performance Page

The Cluster Database Performance Page

The Oracle Database 10g EM Cluster Database Performance Page displays
statistics via charts that show run queue length, paging rate, service time, and the
database throughput for each RAC host or RAC instance. The page is also used to
access the detailed information for the Wait Class Page for Service Time and the
Top Sessions Page for Database Throughput. Figure 14.2 shows an example of
this page.

Figure 14.2: Example Cluster Database Performance Page

The Cluster Cache Coherency Instances Page

The Cluster Cache Coherency Instances Page is used to provide real-time
monitoring of global cache statistics. The Cluster Cache Coherency Instances Page
will display tables of metrics from the following groups for all cluster instances:

n Block Access Statistics

n Global Cache Convert, Global Cache Current Block Request, Global Cache
CR

n Block Request

n Top 5 Library Cache Lock and Top 5 Row Cache Lock

Figure 14.3 shows the Cluster Cache Coherency Page:

Figure 14.3: Example Cluster Cache Coherency Page

While the Enterprise Manager monitors events at the database and instance levels
and any available node can monitor database events, only one node at a time
monitors the entire database while each node monitors events for its local
instances.

By using the various screens and reports in OEM Performance Manager for RAC,
the status of virtually any section of the RAC environment can be seen. The
screens and reports provide suggestions to correct problems as they occur.

Other Items to Monitor for RAC

In RAC, it is important to remember that multiple nodes are accessing the same
database files. If the DBA only monitors from a single instance using the v$ views,
the effects from the other nodes will not be visible. The gv$ views must be used to
examine data from all nodes in order to get a complete picture of the RAC
environment’s performance.

An excellent example of this is the monitoring of file IO rates and file IO timing:

rem NAME: fileio.sql
rem
rem FUNCTION: Reports on the file io status of all of the
rem FUNCTION: datafiles in the database.

rem HISTORY:
rem WHO WHAT WHEN
rem Mike Ault Created 1/5/2003

rem
column sum_io1 new_value st1 noprint
column sum_io2 new_value st2 noprint
column sum_io new_value divide_by noprint
column Percent format 999.999 heading 'Percent|Of IO'
column brratio format 999.99 heading 'Block|Read|Ratio'
column bwratio format 999.99 heading 'Block|Write|Ratio'
column phyrds heading 'Physical | Reads'
column phywrts heading 'Physical | Writes'
column phyblkrd heading 'Physical|Block|Reads'
column phyblkwrt heading 'Physical|Block|Writes'
column name format a45 heading 'File|Name'
column file# format 9999 heading 'File'
column dt new_value today noprint
select to_char(sysdate,'ddmonyyyyhh24miss') dt from dual;
set feedback off verify off lines 132 pages 60 sqlbl on trims on
rem
select
 nvl(sum(a.phyrds+a.phywrts),0) sum_io1
from
 sys.gv_$filestat a;
select nvl(sum(b.phyrds+b.phywrts),0) sum_io2
from
 sys.gv_$tempstat b;
select &st1+&st2 sum_io from dual;
rem
@title132 'File IO Statistics Report'
spool rep_out\&db\rac_fileio&&today
select
 a.inst_id, a.file#,b.name, a.phyrds, a.phywrts,
 (100*(a.phyrds+a.phywrts)/÷_by) Percent,
 a.phyblkrd, a.phyblkwrt, (a.phyblkrd/greatest(a.phyrds,1)) brratio,
 (a.phyblkwrt/greatest(a.phywrts,1)) bwratio
from
 sys.gv_$filestat a, sys.gv_$dbfile b
where
 a.inst_id=b.inst_id and
 a.file#=b.file#
union
select
 c.inst_id,c.file#,d.name, c.phyrds, c.phywrts,
 (100*(c.phyrds+c.phywrts)/÷_by) Percent,
 c.phyblkrd, c.phyblkwrt,(c.phyblkrd/greatest(c.phyrds,1)) brratio,
 (c.phyblkwrt/greatest(c.phywrts,1)) bwratio
from
 sys.gv_$tempstat c, sys.gv_$tempfile d
where
 c.inst_id=d.inst_id and
 c.file#=d.file#
order by
 1,2
/
spool off
pause Press enter to continue
set feedback on verify on lines 80 pages 22
clear columns
ttitle off

The output from the above script looks like the following:

Date: 01/22/04
Page: 1
Time: 01:38 PM File IO Statistics Report
TSTDBMRA
 tstdb database

Physical Physical Block Block
 File Physical Physical Percent Block Block
Read Write
 INST_ID File Name Reads Writes Of IO Reads Writes
Ratio Ratio
---------- ----- --- ---------- ---------- -------- ---------- ----------
------- -------
 2 1 /od04_01/oradata/tstdb/system01.dbf 1731 2540 .009 2717
2540 1.57 1.00
 2 1 /od04_01/oradata/tstdb/temp01.dbf 195386 135805 .723 1688145
1724988 8.64 12.70
 2 2 /od04_01/oradata/tstdb/undotbs01.dbf 524 523 .002 524
523 1.00 1.00
 2 3 /od04_01/oradata/tstdb/drsys01.dbf 524 523 .002 524
523 1.00 1.00
 2 4 /od04_01/oradata/tstdb/indx01.dbf 524 523 .002 524
523 1.00 1.00
 2 5 /od04_01/oradata/tstdb/tools01.dbf 524 523 .002 524
523 1.00 1.00
 2 6 /od04_01/oradata/tstdb/undotbs02.dbf 545 23867 .053 545
23867 1.00 1.00
 2 7 /od04_01/oradata/tstdb/undotbs03.dbf 524 523 .002 524
523 1.00 1.00
 2 8 /od04_01/oradata/tstdb/users01.dbf 524 523 .002 524
523 1.00 1.00
 2 9 /od04_01/oradata/tstdb/xdb01.dbf 530 523 .002 545
523 1.03 1.00
 2 10 /od04_01/oradata/tstdb/tstdb_globald01.dbf 525 523 .002 525
523 1.00 1.00
 2 11 /od04_01/oradata/tstdb/tstdb_globalx01.dbf 525 523 .002 525
523 1.00 1.00
 2 12 /od04_01/oradata/tstdb/tstdb_reportd01.dbf 524 523 .002 524
523 1.00 1.00
 2 13 /od04_01/oradata/tstdb/tstdb_reportx01.dbf 524 523 .002 524
523 1.00 1.00
 2 14 /od04_01/oradata/tstdb/nomadd01.dbf 524 523 .002 524
523 1.00 1.00
 2 15 /od04_01/oradata/tstdb/TA1d01.dbf 524 523 .002 524
523 1.00 1.00
 2 16 /od04_01/oradata/tstdb/TA1x01.dbf 524 523 .002 524
523 1.00 1.00
 2 17 /od04_01/oradata/tstdb/SRCd01.dbf 131430 523 .288 3762539
523 28.63 1.00
 2 18 /od04_01/oradata/tstdb/SRCx01.dbf 5410 523 .013 5410
523 1.00 1.00
 2 19 /od04_01/oradata/tstdb/REEd01.dbf 524 523 .002 524
523 1.00 1.00
 2 20 /od04_01/oradata/tstdb/REEx01.dbf 524 523 .002 524
523 1.00 1.00
 2 21 /od04_01/oradata/tstdb/CRWd01.dbf 524 523 .002 524
523 1.00 1.00
 2 22 /od04_01/oradata/tstdb/CRWx01.dbf 524 523 .002 524
523 1.00 1.00
 2 23 /od04_02/oradata/tstdb/LWEd01.dbf 519 519 .002 519
519 1.00 1.00
 2 24 /od04_02/oradata/tstdb/LWEx01.dbf 519 519 .002 519
519 1.00 1.00
 2 25 /od04_01/oradata/tstdb/perfstat01.dbf 110 110 .000 110
110 1.00 1.00
 3 1 /od04_01/oradata/tstdb/system01.dbf 5870952 43328 12.920 5879481
43328 1.00 1.00
 3 1 /od04_01/oradata/tstdb/temp01.dbf 2459053 1219824 8.036 22005243
15402399 8.95 12.63
 3 2 /od04_01/oradata/tstdb/undotbs01.dbf 62411 601 .138 62411
601 1.00 1.00
 3 3 /od04_01/oradata/tstdb/drsys01.dbf 475816 601 1.041 475816
601 1.00 1.00
 3 4 /od04_01/oradata/tstdb/indx01.dbf 604 601 .003 604
601 1.00 1.00
 3 5 /od04_01/oradata/tstdb/tools01.dbf 835 643 .003 1553
643 1.86 1.00
 3 6 /od04_01/oradata/tstdb/undotbs02.dbf 608 707 .003 608
707 1.00 1.00
 3 7 /od04_01/oradata/tstdb/undotbs03.dbf 88095 547959 1.389 88095
547959 1.00 1.00
 3 8 /od04_01/oradata/tstdb/users01.dbf 3907 4289 .018 6098
5497 1.56 1.28
 3 9 /od04_01/oradata/tstdb/xdb01.dbf 4370138 601 9.548 4370317
601 1.00 1.00
 3 10 /od04_01/oradata/tstdb/tstdb_globald01.dbf 1547848 29866 3.446 1941544
29866 1.25 1.00
 3 11 /od04_01/oradata/tstdb/tstdb_globalx01.dbf 4353943 6356 9.525 4354433
6357 1.00 1.00
 3 12 /od04_01/oradata/tstdb/tstdb_reportd01.dbf 604 601 .003 604
601 1.00 1.00
 3 13 /od04_01/oradata/tstdb/tstdb_reportx01.dbf 604 601 .003 604
601 1.00 1.00
 3 14 /od04_01/oradata/tstdb/nomadd01.dbf 288384 601 .631 288384
601 1.00 1.00
 3 15 /od04_01/oradata/tstdb/TA1d01.dbf 338417 601 .741 338417
601 1.00 1.00
 3 16 /od04_01/oradata/tstdb/TA1x01.dbf 963876 601 2.107 963876
601 1.00 1.00
 3 17 /od04_01/oradata/tstdb/SRCd01.dbf 3075710 936826 8.765 9782425
971945 3.18 1.04

 3 18 /od04_01/oradata/tstdb/SRCx01.dbf 1315213 94012 3.078 1550400
275893 1.18 2.93
 3 19 /od04_01/oradata/tstdb/REEd01.dbf 1191132 601 2.603 1191132
601 1.00 1.00
 3 20 /od04_01/oradata/tstdb/REEx01.dbf 3109339 601 6.794 3109339
601 1.00 1.00
 3 21 /od04_01/oradata/tstdb/CRWd01.dbf 604 601 .003 604
601 1.00 1.00
 3 22 /od04_01/oradata/tstdb/CRWx01.dbf 604 601 .003 604
601 1.00 1.00
 3 23 /od04_02/oradata/tstdb/LWEd01.dbf 7042322 3913365 23.933 88147193
4346731 12.52 1.11
 3 24 /od04_02/oradata/tstdb/LWEx01.dbf 1381676 508355 4.129 2064523
1265528 1.49 2.49
 3 25 /od04_01/oradata/tstdb/perfstat01.dbf 647 1845 .005 672
1845 1.04 1.00

The I/O balance is off between the two instances, two and three. If only instance
two or only instance three were researched, the possible I/O problem would not
have been evident.

Another I/O related statistic is the I/O timing. I/O timing would show if there
are latency problems between the nodes. The following code shows an example
file I/O timing report for RAC:

rem Purpose: Calculate IO timing values for datafiles
col inst_id format 9999999 heading 'Instance'
col name format a50 heading 'File Name'
set lines 132 pages 45
start title132 'IO Timing Analysis'
spool rep_out\&db\rac_io_time
select f.inst_id,f.FILE# ,d.name,PHYRDS,PHYWRTS,READTIM/PHYRDS,WRITETIM/PHYWRTS
from gv$filestat f, gv$datafile d
where f.inst_id=d.inst_id and
SEE CODE DEPOT FOR COMPLETE SCRIPT (http://www.oracle-script.com/)

An example output from the report above is shown below.

Date: 02/02/04 Page: 1
Time: 08:59 AM IO Timing Analysis PERFSTAT
 tstdb database

Instance FILE# File Name PHYRDS PHYWRTS READTIM/PHYRDS WRITETIM/PHYWRTS
-------- ----- -- ------- ------- -------------- --
 2 10 /od04_01/oradata/tstdb/tstdb_globald01.dbf 592 11 21.8 0
 1 10 /od04_01/oradata/tstdb/tstdb_globald01.dbf 632 21 20.4 0
 2 23 /od04_02/oradata/tstdb/LWEd01.dbf 100027 4023 5.94 .177479493
 1 17 /od04_01/oradata/tstdb/SRCd01.dbf 77626 6 3.61 0
 2 24 /od04_02/oradata/tstdb/LWEx01.dbf 1801 341 1.61 .263929619
 3 10 /od04_01/oradata/tstdb/tstdb_globald01.dbf 299320 6370 1.58 .195918367
 3 23 /od04_02/oradata/tstdb/LWEd01.dbf 294166 31246 1.44 1.53120399
 1 18 /od04_01/oradata/tstdb/SRCx01.dbf 1879 6 1.43 0
 3 24 /od04_02/oradata/tstdb/LWEx01.dbf 196574 35080 1.30 1.57374572
 2 17 /od04_01/oradata/tstdb/SRCd01.dbf 58099 61 1.16 0
 3 1 /od04_01/oradata/tstdb/system01.dbf 688550 2071 1.10 .125060357
 3 18 /od04_01/oradata/tstdb/SRCx01.dbf 186020 4 1.09 0
 3 17 /od04_01/oradata/tstdb/SRCd01.dbf 504230 36 1.06 1.02777778
 1 24 /od04_02/oradata/tstdb/LWEx01.dbf 8 6 .875 .333333333
 1 11 /od04_01/oradata/tstdb/tstdb_globalx01.dbf 45 10 .755555556 0
 1 23 /od04_02/oradata/tstdb/LWEd01.dbf 79 17 .683544304 .529411765
 3 7 /od04_01/oradata/tstdb/undotbs03.dbf 60 15243 .583333333 .460145641
 1 2 /od04_01/oradata/tstdb/undotbs01.dbf 29 2453 .551724138 .043212393
 2 6 /od04_01/oradata/tstdb/undotbs02.dbf 33 2501 .515151515 .019992003
 2 11 /od04_01/oradata/tstdb/tstdb_globalx01.dbf 65 12 .461538462 0
 1 7 /od04_01/oradata/tstdb/undotbs03.dbf 7 6 .428571429 0
 1 16 /od04_01/oradata/tstdb/TA1x01.dbf 7 6 .428571429 0
 1 1 /od04_01/oradata/tstdb/system01.dbf 1416 248 .399717514 .008064516
 2 1 /od04_01/oradata/tstdb/system01.dbf 2357 366 .391599491 .013661202
 2 25 /od04_01/oradata/tstdb/perfstat01.dbf 198 6 .328282828 0
 3 5 /od04_01/oradata/tstdb/tools01.dbf 174 8 .293103448 0
 1 6 /od04_01/oradata/tstdb/undotbs02.dbf 7 6 .285714286 0
 1 15 /od04_01/oradata/tstdb/TA1d01.dbf 7 6 .285714286 0
 1 13 /od04_01/oradata/tstdb/tstdb_reportx01.dbf 7 6 .285714286 0
 3 4 /od04_01/oradata/tstdb/indx01.dbf 7 4 .285714286 0
 2 5 /od04_01/oradata/tstdb/tools01.dbf 7 6 .285714286 0
 2 3 /od04_01/oradata/tstdb/drsys01.dbf 7 6 .285714286 0

 1 20 /od04_01/oradata/tstdb/REEx01.dbf 7 6 .285714286 0
 3 6 /od04_01/oradata/tstdb/undotbs02.dbf 5 18 .2 0
 3 8 /od04_01/oradata/tstdb/users01.dbf 6731 4 .199227455 0
 3 14 /od04_01/oradata/tstdb/nomadd01.dbf 24614 192 .188835622 .588541667
 3 25 /od04_01/oradata/tstdb/perfstat01.dbf 56010 4 .185841814 0
 3 3 /od04_01/oradata/tstdb/drsys01.dbf 51063 4 .181422948 0
 2 18 /od04_01/oradata/tstdb/SRCx01.dbf 3562 6 .179955081 0
 3 11 /od04_01/oradata/tstdb/tstdb_globalx01.dbf 468503 81 .179932679 .074074074
 3 2 /od04_01/oradata/tstdb/undotbs01.dbf 6 10 .166666667 0
 3 9 /od04_01/oradata/tstdb/xdb01.dbf 475840 4 .147650471 0
 1 4 /od04_01/oradata/tstdb/indx01.dbf 7 6 .142857143 0
 1 9 /od04_01/oradata/tstdb/xdb01.dbf 7 6 .142857143 0
 1 14 /od04_01/oradata/tstdb/nomadd01.dbf 7 6 .142857143 0
 1 12 /od04_01/oradata/tstdb/tstdb_reportd01.dbf 7 6 .142857143 0
 1 21 /od04_01/oradata/tstdb/CRWd01.dbf 7 6 .142857143 0
 2 4 /od04_01/oradata/tstdb/indx01.dbf 7 6 .142857143 0
 3 22 /od04_01/oradata/tstdb/CRWx01.dbf 7 4 .142857143 0
 2 21 /od04_01/oradata/tstdb/CRWd01.dbf 7 6 .142857143 0
 2 20 /od04_01/oradata/tstdb/REEx01.dbf 7 6 .142857143 0
 2 15 /od04_01/oradata/tstdb/TA1d01.dbf 7 6 .142857143 0
 2 12 /od04_01/oradata/tstdb/tstdb_reportd01.dbf 7 6 .142857143 0
 2 9 /od04_01/oradata/tstdb/xdb01.dbf 7 6 .142857143 0
 2 8 /od04_01/oradata/tstdb/users01.dbf 7 6 .142857143 0
 2 2 /od04_01/oradata/tstdb/undotbs01.dbf 7 6 .142857143 0
 1 25 /od04_01/oradata/tstdb/perfstat01.dbf 7 6 .142857143 0
 3 19 /od04_01/oradata/tstdb/REEd01.dbf 109796 4 .133611425 0
 3 15 /od04_01/oradata/tstdb/TA1d01.dbf 40327 4 .132839041 0
 3 20 /od04_01/oradata/tstdb/REEx01.dbf 333992 4 .121095715 0
 3 16 /od04_01/oradata/tstdb/TA1x01.dbf 103495 4 .120218368 0

At this point, it is still important to look for unbalanced timings between the
instances.

The final example will look at system events. The following code shows the report
script.

col event format a30 heading 'Event Name'
col waits format 999,999,999 heading 'Total|Waits'
col average_wait format 999,999,999 heading 'Average|Waits'
col time_waited format 999,999,999 heading 'Time Waited'
col total_time new_value divide_by noprint
col value new_value val noprint
col percent format 999.990 heading 'Percent|Of|Non-Idle Waits'
col duration new_value millisec noprint
col p_of_total heading 'Percent|of Total|Uptime' format 999.9999
set lines 132 feedback off verify off pages 50
 select to_number(sysdate-startup_time)*86400*1000 duration from v$instance;
select
sum(time_waited) total_time
from gv$system_event
where total_waits-total_timeouts>0
 and event not like 'SQL*Net%'
 and event not like 'smon%'
 and event not like 'pmon%'
 and event not like 'rdbms%'
 and event not like 'PX%'
 and event not like 'sbt%'
 and event not in ('gcs remote message','ges remote message',
 'virtual circuit status','dispatcher timer') ;
select max(value) value from gv$sysstat where name ='CPU used when call started';
@title132 'RAC System Events Percent'
break on report
compute sum of time_waited on report
spool rep_out/&db/rac_sys_events
select inst_id,
 name event,
 0 waits,
 0 average_wait,
 value time_waited,
 value/(&÷_by+&&val)*100 Percent,
 value/&&millisec*100 p_of_total
from gv$sysstat
where name ='CPU used when call started'
union

select inst_id,
 event,
 total_waits-total_timeouts waits,
 time_waited/(total_waits-total_timeouts) average_wait,
 time_waited,
 time_waited/(&÷_by+&&val)*100 Percent,
 time_waited/&&millisec*100 P_of_total
from gv$system_event
where total_waits-total_timeouts>0
 and event not like 'SQL*Net%'
 and event not like 'smon%'
 and event not like 'pmon%'
 and event not like 'rdbms%'
 and event not like 'PX%'
 and event not like 'sbt%'
 and event not in ('gcs remote message','ges remote message',
 'virtual circuit status','dispatcher timer')
SEE GRID CODE DEPOT FOR DOWNLOAD (http://www.rampant-
books.com/book_2004_1_10g_grid.htm)

Example results from the script above are shown below.

Date: 02/02/04 Page: 1
Time: 01:51 PM RAC System Events Percent TSTDBMRA
 tstdb database

 Percent Percent
 Total Average Of of Total
 INST_ID Event Name Waits Waits Time Waited Non-Idle Waits Uptime
---------- ------------------------------ ------------ ------------ ------------ -------------- ---------
 1 io done 222,168 2 532,399 7.930 .1285
 1 CPU used when call started 0 0 360,648 5.372 .0870
 1 imm op 168 1,812 304,377 4.533 .0735
 1 control file parallel write 134,810 1 160,829 2.395 .0388
 1 control file sequential read 748,737 0 106,655 1.589 .0257
 1 i/o slave wait 377,955 0 99,104 1.476 .0239
 1 enqueue 574,470 0 56,854 .847 .0137
 1 IPC send completion sync 6,328 7 44,580 .664 .0108
 1 wait for master scn 272,879 0 25,184 .375 .0061
 1 DFS lock handle 65,619 0 18,470 .275 .0045
 1 library cache pin 2,027 8 16,750 .249 .0040
 1 db file sequential read 56,356 0 10,377 .155 .0025
 1 name-service call wait 190 49 9,280 .138 .0022
 1 direct path read 119,524 0 9,210 .137 .0022
 1 log file parallel write 68,692 0 7,989 .119 .0019
 1 global cache cr request 71,664 0 7,130 .106 .0017
 1 process startup 145 35 5,112 .076 .0012
 1 async disk IO 497,496 0 3,636 .054 .0009
 1 db file scattered read 3,749 0 1,738 .026 .0004
 1 switch logfile command 17 82 1,399 .021 .0003
 2 CPU used when call started 0 0 625,945 9.323 .1511
 2 control file parallel write 134,052 1 155,664 2.318 .0376
 2 enqueue 1,146,971 0 149,334 2.224 .0360
 2 control file sequential read 736,589 0 89,883 1.339 .0217
 2 wait for master scn 274,211 0 24,081 .359 .0058
 2 global cache cr request 308,585 0 21,361 .318 .0052
 2 DFS lock handle 70,138 0 16,284 .243 .0039
 2 db file sequential read 78,344 0 16,000 .238 .0039
 2 log file parallel write 70,637 0 9,560 .142 .0023
 2 db file scattered read 50,454 0 8,247 .123 .0020
 2 IPC send completion sync 59,587 0 5,567 .083 .0013
 2 name-service call wait 97 53 5,116 .076 .0012
 2 direct path read 67,032 0 4,462 .066 .0011
 2 process startup 68 43 2,904 .043 .0007
 2 CGS wait for IPC msg 4,344 0 1,632 .024 .0004
 2 library cache pin 3,939 0 1,384 .021 .0003
 2 db file parallel read 3,664 0 789 .012 .0002
 2 log file sequential read 71 11 757 .011 .0002
 2 row cache lock 8,193 0 649 .010 .0002
 3 CPU used when call started 0 0 3,171,613 47.238 .7655
 3 db file sequential read 3,838,010 0 571,051 8.505 .1378
 3 global cache cr request 2,670,668 0 388,165 5.781 .0937
 3 control file parallel write 134,107 1 177,376 2.642 .0428
 3 library cache pin 11,677 12 142,391 2.121 .0344
 3 control file sequential read 979,741 0 122,439 1.824 .0296
 3 IPC send completion sync 2,378 20 47,029 .700 .0114
 3 db file scattered read 123,285 0 27,301 .407 .0066
 3 global cache busy 257 105 27,044 .403 .0065
 3 direct path read 135,560 0 23,154 .345 .0056
 3 DFS lock handle 75,839 0 18,137 .270 .0044
 3 name-service call wait 197 49 9,683 .144 .0023
 3 log file parallel write 84,689 0 9,356 .139 .0023
 3 latch free 1,983 4 7,881 .117 .0019

 3 process startup 127 48 6,037 .090 .0015
 3 global cache s to x 26,158 0 3,521 .052 .0008
 3 global cache open x 20,776 0 3,452 .051 .0008
 3 row cache lock 28,131 0 2,916 .043 .0007
 3 log file sequential read 654 4 2,541 .038 .0006
 3 pipe get 125 19 2,420 .036 .0006

sum 7,700,701

The above example has been reduced to 20 events per node to make displaying the
report easier. Node three is using more CPU cycles than the other nodes and is
also using more db file reads and more global cache cr request waits. At this point, node
three should be reviewed for bad SQL.

Conclusion

Quite a bit of territory has been covered on RAC tuning in this chapter. The
following are a few general guidelines:

n The cluster interconnect network should be tuned to get an optimal transfer
rate and buffering.

n RAC objects should be tuned for:

n initrans.

n Freelists.

n Rows per block (pctfree).

n Freelists and init_trans should be used whenever possible.

n Larger shared pools should be used rather than those used with normal Oracle,
to allow for the Global Directory.

n Cache transfer speeds and intra-instance pings should be monitored to
determine latencies.

n Holistic monitoring should be performed at all times

Using these guidelines, and the scripts and techniques covered in this chapter, the
RAC environment can be made to perform optimally.

References

Oracle Real Application Clusters Administrator's Guide 10g, Release 1 (10.1), Part No.
B10765-01, December 2003

Oracle Real Application Clusters Deployment and Performance Guide
10g, Release 1 (10.1), Part No. B10768-01, December 2003

This is an excerpt from Oracle 10g Grid & Real
Application Clusters (http://www.rampant -
books.com/book_2004_1_10g_grid.htm), by Mike Ault
and Madhu Tumma.

Oracle10g Grid and RAC is the first-of-its-kind reference
for Oracle Grid computing. Covering all areas of Oracle
Grid computing, this book is indispensable for any Oracle
DBA who is charged with configuring and implementing
Oracle10g Grid with server blades.

This text presents a complete guide to the installation, configuration and design of
Oracle Grid and 10g RAC. It supplies expert internals of shared disk technology,
raw devices and RAID, and exposes the internal configuration methods for server
blades. The text also demonstrates the use of Oracle Grid using the Enterprise
Manager Grid control utility.

