
69

CHAPTER 5
Functional Test Automation*

Functional testing assures that your implementation of SAP meets
your business requirements. Given the highly configurable and

tightly integrated nature of the SAP modules, as well as the probabil-
ity that you will also integrate in-house applications or third-party
plug-ins, it is a critical and challenging task requiring the verification
of hundreds or even thousands of business processes and the rules
that govern them.

This chapter explores the business case for automating your func-
tional testing, the alternative automation approaches to consider, and
organizational considerations and techniques for maintaining and
managing your test automation assets.

WHY AUTOMATE?

Test automation is not a panacea, but it can make a dramatic differ-
ence in the quality and stability of your SAP deployment over the long
term. The key is to understand when automation works and when it
does not, and how to assure your success.

Business Case for Automation

There are three key benefits to automation:

1. Expand your test coverage.
2. Save time and resources.
3. Retain knowledge.

*This chapter was authored by Linda Hayes, CTO of WorkSoft, Inc.

05_4782 2/5/07 10:41 AM Page 69

Expanding your test coverage is one of the most valuable benefits
of automation because it translates into higher quality and thus less
costs associated with downtime, errors, and rework. Over the life of
your SAP deployment you will likely experience an increase in the
number of business processes it supports, either through the imple-
mentation of additional modules or integration with other systems.

As a result, each successive implementation or modification af-
fects a greater number of business processes, which increases the risk
and opportunity for failure. Even a 10 percent increase in total func-
tionality still requires testing of 100 percent of the process inventory
due to the risk of unexpected impact. The tightly integrated nature of
SAP increases this risk.

As Exhibit 5.1 shows, a manual test process cannot keep pace
with this expanding workload because time and resources available
for testing are either fixed or even declining. In this exhibit, the
lighter arrow indicates the processes that need to be tested and the
dark arrow indicates the number of test resources. This combination
of increasing processes that need to be tested with a static number of
testers leads to increased risk and potential cost of failure.

Under the scenario represented in Exhibit 5.1, automation is the
only practical answer. It enables one to capture tests as repeatable as-
sets that can be executed for each successive release or deployment,
so that the inventory of tests can keep pace with the inventory of
business processes at risk.

This repeatability saves time and resources as well. Instead of re-
quiring repetitive manual effort to reverify processes each time
changes are introduced, tests can be automatically executed in an un-
attended mode. This allows your resources to focus on adding new

70 TESTING SAP R/3: A MANAGER’S STEP-BY-STEP GUIDE

Risk

Test Resources

Business Processes

Time

#

EXHIBIT 5.1 Test Workload Compared to Test Resources

05_4782 2/5/07 10:41 AM Page 70

tests to support new functionality instead of constantly repeating ex-
isting tests.

Ironically, when test time is short, testers will often sacrifice re-
gression testing in favor of testing new features. The irony is that the
greatest risk to the user is in the existing features, not the new ones.
If a business process that the enterprise depends on stops working—
or worse, starts doing the wrong thing—then you could halt opera-
tions. The loss of a new feature may be inconvenient or even
embarrassing, but it is unlikely to be devastating.

This benefit will be lost if the automated tests are not designed to
be maintainable as the application changes. If they either have to be
rewritten or require significant modifications to be reused, you will
keep starting over instead of building on prior efforts. Therefore, it is
essential to adopt an approach to test library design that supports
maintainability over the life of the application.

Finally, the process of automating your test cases introduces dis-
cipline and formality to testing, which results in the capture of appli-
cation knowledge in the form of test assets. You cannot automate
what is not defined. By defining your business processes and rules as
test cases, you are converting the experience of subject matter experts
(SMEs) and business analysts (BAs) into an asset that can be pre-
served and reused over the long term, protecting you from the in-
evitable loss of expertise due to turnover.

When to Automate

Conventional wisdom holds that you should automate your tests only
for regression testing; that is, the initial deployment should be per-
formed manually and only successive changes automated. This belief
arises from the historical record/playback approach to test automa-
tion, which requires that the software be completed and stable before
scripts can be captured.

New approaches exist, however, that allow automated tests to be
developed well in advance of configuration or code completion.
These approaches are further described later in the Test Automation
Approaches section.

Using these new approaches, automated tests can serve a dual
purpose: They can provide documentation of the “to be” business
process as well as deliver test automation. This collapses two steps—

Functional Test Automation 71

05_4782 2/5/07 10:41 AM Page 71

documentation and automation—into one, thus further conserving
time and resources.

What to Automate

Automation is all about predictability. If you cannot express the pre-
cise inputs and expected outputs, you cannot automate a test. This
means that it should be used to verify what is known or predicted.
Typically this means positive tests, as in assuring that the business
process is executed successfully, but can also be applied to negative
tests that verify if business or field edit rules are violated, such as
invalid data types or out-of-range values in which the data is rejected
and an error message given. Think of these tests as “making sure”
that processes work as expected.

In the context of SAP, the obvious automation candidates are the
“to-be” processes, processes that are executed frequently, critical to
the business, and contain integration points (touch points). For SAP-
based production systems, SAP transaction ST03 allows for quick fil-
tering of which SAP transaction codes are actually used in production
and to what extent/volume.

Further, for each process, the data variations that exercise busi-
ness and edit rules can also be automated. Applying data-driven tech-
niques to automation enables you to quickly expand your test cases
by adding data. This also means, however, that automation is not ap-
propriate for ad hoc, random, or destructive testing. These tests must
be performed manually because by their very nature they introduce
unexpected or intentionally random conditions. Think of these tests
as covering “what-if” scenarios.

Ad hoc tests are uniquely suited to manual testing because they
require creativity and are deliberately unpredictable. By allowing au-
tomation to take care of what you expect to work, you can free your
experts to try to break the system.

Critical Success Factors

Successful test automation requires:

■ Management commitment
■ Planning and training

72 TESTING SAP R/3: A MANAGER’S STEP-BY-STEP GUIDE

05_4782 2/5/07 10:41 AM Page 72

■ Dedicated resources
■ Controlled test environment
■ Pilot project

No project can succeed without management commitment, and
automation is no exception. In order for management to manage,
they must know where things stand and what to expect. By letting
management know up front what investment you need to succeed
with automation, then keeping them informed every step of the way,
you can get their commitment and keep it. This requires a compre-
hensive project plan.

Your automation plan must clearly identify the total costs and ben-
efits of the project up front, provide a detailed project plan with the re-
quired resources, timelines, and related activities, then track results and
report to management regularly. Costs include selecting and licensing
the right tool, training the team, establishing a test environment, de-
veloping your test library, and maintaining both the tests and the tool.
The number and type of resources you need, the time required, and the
specific activities will depend on the approach you adopt.

If and when obstacles are encountered, let management know
right away. Get bad news out as early as possible and good news out
as soon as you can back it up. Nothing is more disconcerting for
management than to invest resources without seeing progress or,
worse, by sudden surprises. Also keep focus on the fact that the test
automation project will last as long as SAP is being used and main-
tained. Every successive release, update, patch, or new integration
will need to be tested and the automated test assets accordingly main-
tained and reexecuted.

No matter how easy to use the tool is claimed to be, plan for
training as well, and perhaps consulting. Learning a tool through trial
and error is costly and time consuming, and it is better to get off on
the right foot. Since it is easier to get money allocated all at once in-
stead of piecemeal, be careful not to buy the software first and then
decide later you need training or additional services.

Although the promise of automation is exciting, realize that test
tools do not work by themselves. Buying a test tool is like buying a
treadmill—the only weight you lose is in your wallet! You must use
the equipment, do the exercises, and sweat it out to get the benefits.
Also understand that even though test automation saves time and re-
sources in the long run, in the short term it will require more than

Functional Test Automation 73

05_4782 2/5/07 10:41 AM Page 73

manual testing. Make sure management understands this, or you may
find yourself with a tool and no one to implement it.

Not only must you have the right resources, you must also com-
mit to a controlled test environment that supports predictable data.
Automation is all about repeatability, and you cannot repeat the same
tests if the data keeps changing. In most cases the data values are the
key to the expected results. Identifying, creating, and maintaining the
proper data is not a trivial problem to address and often represents
more than half of the overall effort. Do not wait until you are ready
to start testing to implement your strategy.

The ideal test data strategy is to have a known data state that can
be archived and refreshed for each test cycle. If this is not possible or
practical, you may consider using automation to “seed” or condition
the data to create or modify data to meet your needs.

If this is your first automation effort, start with a small pilot pro-
ject to test your project plan assumptions. Invest two to four weeks
and a couple of resources in automating a representative subset of
your business processes, and carefully document the effort and results
during the pilot as these results can be used to estimate a larger im-
plementation. Since you can be sure you do not know what you do
not know, it is better to learn your lessons on a small scale.

Also be sure to commit the right type of resources. As described
in the following section on test automation approaches, depending on
the approach you adopt you will need a mix of skills that may or may
not be part of your existing test group. Do not imagine that having a
tool means you can get by with less skill or knowledge: The truth is
exactly the opposite.

Common Mistakes

Pitfalls to avoid when automating your SAP testing include:

■ Selecting the wrong tool.
■ Using record and play techniques.
■ Writing programs to test programs.
■ Ignoring standards and conventions.

In order to select the right test tool you must perform an evalua-
tion in your environment with your team. This is the only way to

74 TESTING SAP R/3: A MANAGER’S STEP-BY-STEP GUIDE

05_4782 2/5/07 10:41 AM Page 74

assure that the tool is compatible with your SAP implementation—
including any gap applications—and especially that your team has
the right skill set to be productive with it. A scripting tool that re-
quires programming skills, for example, will not be successful unless
you have technical resources available on your team.

For purposes of this evaluation, make sure you understand how
the tool handles not only test development but also test management
and especially maintenance, since these are critical to long-term pro-
ductivity. Do not settle for a simplistic record-and-play script. Insist
on understanding how to write robust tests that are well structured,
documented, reliable, and easy to maintain.

Record and play is a very attractive approach: Simply perform a
manual process and have it automatically recorded into a script. But
while these scripts are easy to record, they are unstable when exe-
cuted and all but impossible to maintain. They do not have the doc-
umentation and structure to be readable, and they lack any logic to
detect and respond to the inevitable errors and changes that will
occur. Even variations in the response time of an SAP transaction can
cause failures.

Another drawback to recorded scripts is that they contain hard-
coded data. Recording the process of creating a hundred invoices, for
example, will yield a script containing the same steps 100 times over.
This means if a configuration change is made to any step of the
process, it must be made 100 times. Since this is impractical, recorded
scripts are rarely reused after changes and must often be re-recorded.
Thus, the value of automation is lost.

While the issues with capture/playback can be resolved using ad-
vanced scripting code, this leads to the other extreme: writing pro-
grams to test programs. This technique requires programming skills,
which may exclude your most experienced testers. Further, if each test
case is converted to script code, you will have more code than the
SAP module does. This approach results in custom code that is also
difficult to maintain, especially by anyone other than the original
author.

Balancing the trade-offs between ease of use and coding is the
subject of the discussion of test automation approaches in the next
section.

The last common mistake is to ignore the need for naming stan-
dards and test case conventions. If each tester is permitted to adopt
their own approach and store their tests wherever they wish, it will

Functional Test Automation 75

05_4782 2/5/07 10:41 AM Page 75

be impossible to implement a centralized, unified test library where
tests can be easily located and shared. Treat your automated tests as
the asset they are and ensure that they are easily found, understood,
and maintained.

TEST AUTOMATION APPROACHES

Test automation has steadily evolved over the past two decades
(longer if you count mainframes) from record and play, which is all
code and no data, to code-free approaches that are all data and little
or no code. This trend reflects the fact that code is more costly to
develop and maintain than data.

This evolution has followed these four stages:

1. Record and play
2. Data-driven
3. Frameworks
4. Code-free automation

These represent varying combinations of code and data used to con-
struct test cases and each has different advantages and drawbacks.

Record and Play

Record and play appears to be easy but turns out to be difficult.
Recorded scripts usually have a very short useful life because they are
hard to read, unstable when executed, and almost impossible to main-
tain. The time that is saved during the initial development is more
than offset by the downstream costs of debugging failed sessions or
re-recording after changes. Exhibit 5.2 shows an example of a
recorded script.

The ideal use of record and play, oddly enough, is to capture the
results of manually executed tests. This assists the tester in docu-
menting results and perhaps reproducing the exact steps that led to
any errors.

76 TESTING SAP R/3: A MANAGER’S STEP-BY-STEP GUIDE

05_4782 2/5/07 10:41 AM Page 76

Traditional test automation tools that cost thousands of dollars
per user are overkill for this use. Instead, look for simple session
recorders that are available for as low as $100.

Data-Driven

Data-driven techniques address the hard-coded data issue of record
and play by removing the data from the scripts and instead reading it
from an external file. Typically, a process is recorded once, then script
code is added to substitute variables for literal data, read the variable
values from a file, and loop until all records are completed.

This approach reduces overall code volume and allows test cases
to be added quickly as data records, but requires programming skills
to implement. It also results in custom code for each process that
must be maintained as the application changes. Exhibit 5.3 reflects
the type of changes introduced into a recorded script in order to make
it data-driven.

Frameworks

While data-driven techniques succeeded in reducing code volume
attributable to hard-coded data, they did not directly address the

Functional Test Automation 77

EXHIBIT 5.2 Example of Recorded Script

05_4782 2/5/07 10:41 AM Page 77

inefficiencies of not sharing common code to handle common tasks
across test cases. They also limited the analyst’s ability to design test
flows consisting of multiple scenarios and data.

In response, frameworks evolved as a way to provide an infra-
structure to handle common tasks and allow business and quality an-
alysts to write test flows by calling reusable code components.

Typical elements of a framework include:

■ A layer that allows test flows to be constructed as data in a
spreadsheet or database.

■ Reusable or generated code components that execute testing tasks
against SAP.

■ An infrastructure that handles test packaging, timing synchro-
nization, error handling, context recovery, result and error log-
ging, and other common tasks.

Frameworks require two roles and skills: the test engineer, a pro-
grammer or scripter who develops the framework and reusable code
components, and the test designer, a business or quality analyst who
constructs processes by ordering these components, together with the
test data values they require, into a spreadsheet or database.

78 TESTING SAP R/3: A MANAGER’S STEP-BY-STEP GUIDE

EXHIBIT 5.3 Example of Data-Driven Script and Data File

05_4782 2/5/07 10:41 AM Page 78

A framework offers several advantages. Nontechnical testers can
design automated test flows and provide data in a standard format,
and test engineers can optimize their coding and maintenance effort
by developing reusable components. The framework also takes care
of managing and monitoring execution to provide reliable results.

There are three basic types of frameworks: key/action word,
screen/window, and class library. Each type can be implemented using
text files (spreadsheets) or databases. Spreadsheets are more eco-
nomical, as most users already have access to them and are familiar
with their use, but they are more challenging to manage and maintain
because they are not centrally stored or controlled. It is also easier to
make typographical or spelling errors in a spreadsheet.

A database, however, requires more cost and effort to implement
but is easier to manage. By providing a graphical user interface (GUI)
front end, users can select from drop-down lists and otherwise be
protected from making input errors. Relational databases also enable
more rapid maintenance as mass changes can be introduced using
Structured Query Language (SQL) statements and similar functions.

Key/Action Word Framework A key or action word framework comprises
business functions that perform tasks against SAP such as entering an
order or verifying an invoice. Each key or action word has a set of
data values associated with it for either input or verification. Exhibit
5.4 illustrates a typical key/action word implementation using spread-
sheets.

Key/action word frameworks can be developed internally or ac-
quired from commercial vendors. Some of the commercial tools gen-
erate the scripts for common components, then allow test engineers
to add additional code to handle errors and decision making at run-
time as well as other application-specific logic or functionality.

The maintenance of key/action word frameworks is divided be-
tween the code and the data. The code may have to be regenerated or
modified when the application behavior changes and the spreadsheet
or database may have to be updated as functionality is enhanced or
changed.

Screen/Window This type of framework is a variation of key/action
word in that there are reusable code components that perform specific
tasks, but in this case they are organized around actions such as data

Functional Test Automation 79

05_4782 2/5/07 10:41 AM Page 79

input or verification against each SAP screen. Exhibit 5.5 shows a
screen/window implementation using a database and GUI interface.

When a screen changes, the related screen action code compo-
nents must be modified or regenerated as well as the related test case
spreadsheet or database.

Class Library A class library framework is built around code compo-
nents that are mapped to SAP objects instead of tasks or screens. Each
object class has an associated set of actions that can be performed
against it—for example, input to a text box or pressing a button.
These class/action code components may be developed or generated,
with code added for decision-making logic based on the results dur-
ing execution. Exhibit 5.6 is an example of a spreadsheet implemen-
tation for a class library framework.

As with other framework types, these can be organized into test
processes in spreadsheets or databases. In this case, the data is pro-
vided for each single action.

Since the SAP class library rarely changes, the only code that re-
quires maintenance for functional changes is any decision-making or
other custom code that has been added. The rest of the maintenance
occurs in the spreadsheets or database.

80 TESTING SAP R/3: A MANAGER’S STEP-BY-STEP GUIDE

EXHIBIT 5.4 Key/Action Word Implementation Using Spreadsheets

Test Name: Add Order

Description Create orders
and verify total
and tax

Testcase Customer Product Quantity Price

Add Order Acme Signs Posterboard 1000 5
Add Order Baltimore Sun Paper 65000 1.15
Add Order Crosstown, Inc. Confetti 1250000 0.05

Testcase Customer Product Tax Total

Verify Order Acme Signs Posterboard 400 5400
Verify Order Baltimore Sun Paper 5980 80730
Verify Order Crosstown, Inc. Confetti 0 1000000

05_4782 2/5/07 10:41 AM Page 80

Functional Test Automation 81

EXHIBIT 5.5 Screen/Window Implementation Using a Database and GUI
Interface

EXHIBIT 5.6 Spreadsheet Implementation for a Class Library Framework

Build versus Buy Any of these framework types can be internally devel-
oped or licensed from a commercial vendor. While building your own
framework may sometimes appear to be less costly and provide the
most flexibility and control, it requires an investment in the develop-
ment and ongoing support and maintenance of the framework. Since
robust frameworks consist of tens of thousands of lines of code, the

05_4782 2/5/07 10:41 AM Page 81

resource costs and time to create and support this code may be
substantial.

Further, if the original framework developers leave, it is common
for the replacement engineer to rewrite or restructure the framework
code according to their own style or preferences. This adds to the on-
going cost of ownership.

Of course, buying a framework incurs a licensing fee, but this cost
may be offset by reducing the continued support and maintenance
costs to a fixed-price annual fee. The decision as to which option is
more economical should also take into consideration how much cus-
tom code is needed in either scenario. If the commercial framework
still needs significant code development to support the desired test
work flows, it may not offer enough of a cost advantage to offset the
license costs.

Code-Free Automation

A new type of test automation solution has recently emerged that
does not require any code to be developed at all. This approach
includes vendor-supported reusable code components that are
mapped to the SAP class library and allows test analysts to construct
processes using point and click within a GUI interface. The tester
selects the SAP screen, the object and the action to be performed from
a series of drop-down lists, then provides the test data or variable
name for any required values.

The difference between the code-free approach and the previous
frameworks is that no code is written or generated in order to auto-
mate the tests. All test processes are stored as data within a database.
Even decision making is supported through a GUI without requiring
the development of any additional code.

In this approach, the application screens and fields are defined ei-
ther by learning the SAP screens or by extracting the screen informa-
tion directly from the SAP metadata. This information is stored as a
map within the database and it is used to populate the drop-down
lists as tests are defined. Test analysts can further select from prede-
fined options for making decisions at runtime to control the process
workflow. Exhibit 5.7 depicts an example GUI process editor for a
code-free automation solution.

82 TESTING SAP R/3: A MANAGER’S STEP-BY-STEP GUIDE

05_4782 2/5/07 10:41 AM Page 82

Aside from removing the need for test engineers to develop and
maintain custom code, code-free solutions enable automated mainte-
nance. As the application changes, the map components are com-
pared and all differences documented, including the affected test
assets. Global changes can be made automatically as well to modify
or remove test steps related to changes or deletions. Since all test as-
sets are stored as data, this can be more easily accomplished than
finding impact and making changes to code.

Even a code-free solution, however, should support extensibility
options in the event that your implementation of SAP contains inter-
faces to non-SAP applications to fill gaps.

TEST LIBRARY MAINTENANCE

The primary benefit of automating your SAP test processes is for
future reuse as configuration changes are made or new patches or

Functional Test Automation 83

EXHIBIT 5.7 Example GUI Process Editor for a Code-Free Automation
Solution

05_4782 2/5/07 10:41 AM Page 83

versions installed. By automatically reexecuting all of your test
processes after changes, you can ensure that there have been no unin-
tended effects. This level of test coverage can prevent costly produc-
tion errors, failures, and downtime.

In order to enjoy this benefit you must be able to maintain your
test processes as changes are made to SAP or your configuration. If
you do not update the tests each time you make a change, they will
become obsolete. In the same vein, you must add new test processes
or test data to verify new functionality as it is added so that your test
coverage continues to expand as your usage of SAP does.

One way to limit maintenance time and overhead is to adopt a
framework or code-free approach so that script code maintenance is
limited or eliminated entirely and most changes occur in data instead.

Because maintenance is an ongoing requirement, it is critical that
it be efficient. Extensive manual changes to custom-coded compo-
nents may be too time-consuming or difficult, resulting in a reduced
useful life for your automated tests. This means you must design your
tests to be easily maintained by following development standards and
naming conventions, and by enforcing change management and ver-
sion control on all test assets.

Maintenance Events

There are three primary events that can trigger maintenance of your
test assets. The first arises when your SAP configuration changes,
whether to modify screens or the business process workflow. Depend-
ing on your automation approach, this will require that your test
components—whether stored in code, spreadsheets, or a database—
be modified to accommodate the differences.

The second maintenance event is a change to a business process
due to new or different rules. The SAP screens themselves may not be
modified, but the rules that govern the workflow may be changed. In
a script code–based framework, this may necessitate scripting or re-
generation of code; a code-free solution will need only changes to the
test processes.

Changes to data can cause the third type of maintenance event.
This change may arise from different data in the test environment it-

84 TESTING SAP R/3: A MANAGER’S STEP-BY-STEP GUIDE

05_4782 2/5/07 10:41 AM Page 84

self, or new data may be needed to exercise new process or rules. Un-
less you are using record and play, your test data should be located in
a text file, spreadsheet, or database.

In each of these cases it is important that your naming conven-
tions or coding standards permit you to easily identify which test as-
sets are affected by changes without individually inspecting every test
process or data file. Depending on the automation technique and
framework type you select, the impact of a change may be analyzed
automatically or manually. Generally, assets stored as code make it
more difficult to locate and make changes than assets stored as data.
Similarly, data housed in a database is easier to manage and maintain
than data stored in text files or spreadsheets.

Version Control

Because maintenance events result in changes to test assets, it is nec-
essary to institute version control. Prior versions of a test should be
kept in case the functionality has to be rolled back, or for audit trail
purposes to comply with regulatory requirements.

If your tests are stored as script code, you may use a software
source control system that supports check in/check out for code mod-
ules and allows you to identify differences and perform merges be-
tween versions.

If your tests are stored as data in text files or spreadsheets, you
may also use most software source control systems. For test assets
stored in a database, make sure the database schema permits multi-
ple versions to be maintained and compared, and if a test asset is
being modified, that it is protected from being overwritten by some-
one else.

MANAGING TEST AUTOMATION

Your test automation team will require a mix of skills, depending on
the approach you have selected. Estimating the time and effort will
also depend on the techniques and tools you have adopted.

Functional Test Automation 85

05_4782 2/5/07 10:41 AM Page 85

Team Roles

As described in previous sections, the code-based approaches and
frameworks require a minimum of two roles: test engineers, who
develop and maintain the script code components, and test analysts
or designers, who construct and execute the test processes and data.

Test designers should be SMEs or BAs who have domain exper-
tise in the business processes to be tested. Test engineers need to have
programming skills and either training or experience with the script-
ing tool of choice. Test analysts need SAP domain expertise and busi-
ness process experience. If you have adopted a database repository,
you will also need database administration skills.

Whether your test framework is internally developed or commer-
cially licensed, you will need to plan for training the test team on how
to design and develop reusable, maintainable test processes.

It is important not to skimp on training team members on nam-
ing standards and coding conventions. These are essential skills for
implementing a test library that can be managed, maintained, and
transferred over the long term.

Estimating

Estimating the timeline for your test automation effort requires you
to consider the following factors: the automation approach you
adopt, the number of business processes to be executed, and the num-
ber of business rules to be verified.

For example, if you select the key/action word framework ap-
proach you will need to define the inventory of key or action words
that are needed, together with any custom decision-making code.
Generally, if it takes one hour to record a process, it will take another
five to modify the script to add variables, timing, logic, error han-
dling, and so forth, plus another five to integrate it into the frame-
work, test, and debug it. So a one-hour manual process will take
about 10 hours to reduce to a script code component. From there, ad-
ditional rules can be tested by adding rows of test data, which may be
rapid if the data is already defined and slower if not.

If you are developing the framework internally, add time to de-
velop and test the infrastructure as well. A typical custom framework

86 TESTING SAP R/3: A MANAGER’S STEP-BY-STEP GUIDE

05_4782 2/5/07 10:41 AM Page 86

infrastructure for a single application is about 50,000 lines of code.
Plan for time to design the library, develop, test, and document it. At
25 to 50 tested lines of code (LOC) per developer per day, this trans-
lates into about four to eight person-years of development.

Likewise, the screen/window approach can be estimated by
counting the number of SAP screens you need to traverse, then mul-
tiplying by the number of actions you intend to support for each (e.g.,
input, verify, and store). Finally, automate one screen of average com-
plexity and use it as a baseline to project the remaining effort.

The class library implementation can be estimated by identifying
the number of classes and related actions plus the infrastructure.
There are about 12 different GUI object classes in the SAP GUI; if you
provide an average of five actions for each one of approximately 50
LOC each, you will have 600 LOC for the classes and actions plus
any custom code needed.

After that, estimate the number of test processes and test data val-
ues needed; developing the test workflows may take from half an
hour to an hour including writing, testing, and debugging. Adding
test data to a workflow to exercise different rules may take only a few
minutes by adding rows to a data file.

Code-free approaches require estimates for the number of busi-
ness processes and rules to be verified. Processes can typically be con-
structed in 15 minutes to half an hour depending on complexity, and
test data can be added in minutes as another row in a table. This does
not include any extensions for non-SAP applications.

In all approaches, however, be certain to plan for gathering and
analyzing the business process flows and the business rules and re-
lated data. Ideally, these were documented during the initial business
process engineering phase in the form of the “to-be” processes. If not,
plan time to interview application subject matter experts to extract
this information. Exhibit 5.8 summarizes the estimating factors for
each approach.

OUTSOURCING SCRIPTING TASKS

If you adopt one of the techniques that requires test engineers—and
especially if you elect to build instead of buy your framework—your
organization will need skilled script coders. If you do not already have

Functional Test Automation 87

05_4782 2/5/07 10:41 AM Page 87

these resources available, you have three options: Hire new employ-
ees, retain contractors, or outsource.

Outsourcing may offer the benefits of reduced costs and access to
resources already skilled in the test tool at hand. However, realize
that the test designer role requires domain expertise and cannot be
outsourced.

The biggest challenge of outsourcing is facilitating efficient com-
munication and project management between the designers and engi-
neers, especially if the engineers are offshore. Be sure to include extra
time for detailed, explicit test case documentation to support remote
engineering. Insist on industry best coding practices such as naming
standards, coding conventions, version control, and documentation,
as discussed previously in this chapter: All are essential to assure the
long-term viability of your automated tests.

88 TESTING SAP R/3: A MANAGER’S STEP-BY-STEP GUIDE

EXHIBIT 5.8 Effort Estimation Factors by Approach

Approach Framework Code Components Data Components

Key/action 50,000 LOC # business tasks × # processes × test
word 25–50 LOC/day 200 LOC each case variations × 1

or licensed minute per row

Screen 50,000 LOC # screens × 4 tasks # processes × test
word 25–50 LOC/day × 100 LOC each case variations × 1

or licensed minute per row

Class 50,000 LOC 10 classes × # processes ×
library 25–50 LOC/day 5 actions × number of steps

or licensed 50 LOC each × 30 seconds
or licensed per step plus #

test case variations
per process × 1
minute per row

Code-free Licensed Licensed # processes ×
number of steps ×
30 seconds per
step plus # test
case variations per
process × 1 minute
per row

05_4782 2/5/07 10:41 AM Page 88

Finally, plan for the results to be reviewed and analyzed by the de-
signers since they are the owners of the processes and ultimately ac-
countable for their accuracy.

SUMMARY

Test automation is a strategic solution to assuring that your SAP
implementation is accurate and reliable both the first time it goes live
and after every other time that configuration or software changes are
made. Thorough, automated test coverage can save millions in pro-
duction errors, downtime, and loss of user productivity by detecting
issues before they impact the business.

So take the time to select the right tool and technique for your
needs, invest the proper resources, and follow best practices so that
your test automation library can serve as a long-term asset.

Functional Test Automation 89

05_4782 2/5/07 10:41 AM Page 89

05_4782 2/5/07 10:41 AM Page 90

