
Andreas Schneider-Neureither, Bernd Noll,
Andreas Schlindwein, André Schüngel,

Dominik Wittenbeck

The ABAP® Developer's
Guide to Java

5Contents

Contents

Foreword 9

1 Introduction 11

2 Technology Overview 17

2.1 Enterprise Services Architecture .. 18

2.2 SAP NetWeaver .. 19
2.2.1 People Integration ... 20
2.2.2 Information Integration .. 20
2.2.3 Process Integration .. 20
2.2.4 Application Integration ... 20
2.2.5 Life Cycle Management .. 21
2.2.6 Composite Application Framework .. 21

2.3 System Architecture of the SAP Web Application Server 21
2.3.1 Presentation Layer ... 23
2.3.2 Application Layer ... 24
2.3.3 Database Layer ... 24

2.4 Major Components of the SAP Web Application Server 24
2.4.1 The Internet Communication Manager (ICM) 24
2.4.2 The ABAP Runtime Environment .. 26
2.4.3 The J2EE Engine ... 26
2.4.4 The Integration Engine ... 28

2.5 Database Integration ... 30
2.5.1 Database Independence ... 30
2.5.2 Client Capability .. 31
2.5.3 Caching and Trace Mechanisms .. 31
2.5.4 Transaction Capability ... 31
2.5.5 Object-Relational Mapping .. 32
2.5.6 Native SQL ... 32

2.6 Web Services ... 33
2.6.1 What Are Web Services? .. 33
2.6.2 The Web Service Paradigm .. 33
2.6.3 The SAP Web Application Server as Web Service Client 35
2.6.4 The SAP Web Application Server as Web Service Provider 35
2.6.5 Outlook ... 36

2.7 Frontends .. 36
2.7.1 SAP GUI for Windows .. 36
2.7.2 SAP GUI for Java .. 38

Contents6

2.7.3 SAP GUI for HTML .. 40
2.7.4 Pure Browser Interface (BSP, JSP) ... 42
2.7.5 Web Dynpro ... 44

2.8 Authorization System .. 46
2.8.1 Authorizations in the ABAP Personality .. 46
2.8.2 Authorizations in the Java Personality .. 48
2.8.3 Security of J2EE Applications ... 51

2.9 Versioning and Transport System .. 54
2.9.1 Versioning ... 54
2.9.2 Transport System ... 56
2.9.3 Versioning and Transport Process under Java 58

2.10 Availability, Performance, Scalability .. 59

2.11 Integration Options for ABAP and J2EE ... 60
2.11.1 J2EE Calls ABAP ... 60
2.11.2 ABAP Calls J2EE ... 61

3 The “ResMan” Example Project 63

3.1 Prerequisites .. 63
3.1.1 Business Benefit ... 63
3.1.2 Functional Prerequisites .. 64
3.1.3 Technical Prerequisites .. 65

3.2 The Data Model .. 65

3.3 Technical Implementation of the Prerequisites .. 69

4 The Programming Languages of the
SAP Web Application Server 71

4.1 ABAP and ABAP Objects ... 71
4.1.1 Typical Activities .. 71
4.1.2 Basic Terminology and Concepts ... 72
4.1.3 Variables and Data Types .. 74
4.1.4 The Most Important Commands and Language Constructs 78

4.2 Java ... 90
4.2.1 Basic Terminology and Concepts ... 90
4.2.2 Object-Oriented Programming .. 91
4.2.3 A First Example Program in Java .. 93
4.2.4 Comments .. 94
4.2.5 Identifiers and Keywords .. 95
4.2.6 Data Types, Variables, and Constants ... 96
4.2.7 Operators .. 101
4.2.8 Control Structures ... 107
4.2.9 Exception Handling ... 112
4.2.10 Methods .. 114
4.2.11 Classes and Objects ... 115

7Contents

4.2.12 Packages ... 123
4.2.13 Inheritance ... 124
4.2.14 Preventing Overwriting and Inheritance .. 127
4.2.15 Encapsulation ... 128
4.2.16 Abstract Classes and Methods ... 129
4.2.17 Interfaces .. 129
4.2.18 Summary of the Most Important Modifiers 131
4.2.19 Programming Conventions ... 131

5 Development Tools and Objects 137

5.1 ABAP ... 137
5.1.1 The ABAP Development Environment ... 138
5.1.2 ABAP Dictionary and Data Modeler ... 141
5.1.3 Development Objects ... 143
5.1.4 Transport System and Versioning .. 157
5.1.5 Testing ... 165

5.2 J2EE .. 166
5.2.1 Architecture .. 167
5.2.2 Development Environment .. 207
5.2.3 Development Objects ... 216
5.2.4 Java Dictionary ... 223
5.2.5 Deploy Process .. 233
5.2.6 Collaboration Tools ... 237
5.2.7 Versioning ... 240
5.2.8 Testing ... 248

6 Application Layers 255

6.1 Retrieval Logic and Persistence ... 255
6.1.1 ABAP ... 255
6.1.2 Java .. 260

6.2 Middleware: Connectivity Between Applications 297
6.2.1 RFC .. 298
6.2.2 JCo ... 298
6.2.3 EJB Proxy Class ... 312
6.2.4 More Interfaces .. 314
6.2.5 Web Services .. 315

6.3 Business Logic ... 344
6.3.1 ABAP ... 345
6.3.2 Java .. 347

6.4 Presentation Logic ... 361
6.4.1 ABAP ... 362
6.4.2 Java .. 369

Contents8

7 Application Design 421

7.1 A Typical Problem ... 421

7.2 Design Patterns .. 422
7.2.1 MVC .. 422
7.2.2 Façade ... 428
7.2.3 Adapters .. 430
7.2.4 Driver Model .. 431
7.2.5 Lazy Initialization ... 434

7.3 Developing an ABAP Web Application .. 436

7.4 Developing a J2EE Web Application .. 438

8 Performance Aspects 441

8.1 Performance under ABAP .. 441
8.1.1 Rules for Boosting Performance .. 442
8.1.2 Performance Analysis Tools .. 443

8.2 Performance under Java .. 445
8.2.1 Rules for Boosting Performance .. 447
8.2.2 Performance Analysis Tools .. 450

9 Outlook 455

A Glossary 459

B Sources and Further Reading 479

C About the Authors 481

Index 485

9Foreword

Foreword

Several years ago, SAP AG announced that future application develop-
ment would take place in parallel in both Java and ABAP. This paradigm
shift for SAP Development was launched successfully with Version 6.20
of the SAP Web Application Server (SAP Web AS). The current release,
SAP Web AS 6.40, now supports both development tracks fully and reli-
ably, giving SAP developers a platform with an incomparable arsenal of
modern and proven technologies to develop powerful, professional, and
stable applications.

This twin-track development has received little attention in customer
products to date, however, due in large part to a lack of information
among ABAP developers, who are unfamiliar with Java and J2EE syntax
and concepts, as well as their distinct implementation and integration in
SAP Web AS.

This book is aimed at correcting this information deficit. Not only will it
illustrate the various options that the new technologies in SAP Web AS
provide—in detail and with a practical focus—but also provide experi-
enced ABAP developers with a defined, efficient migration path to this
new world of SAP development.

This book is intended primarily for accomplished ABAP developers and IT
managers who want to learn how to harness the great potential of the
new SAP technology and integrate it into their own IT strategies to
achieve a successful outcome.

We, the authors, aren’t afraid to criticize, either. As experienced develop-
ers and consultants who apply these technologies in customer systems on
a daily basis, we examine the individual concepts and technologies in
detail, and always with a critical eye toward their practical usability.

Writing this book—coupled with our daily consulting work—demanded a
tremendous effort of the authors. This effort would not have been possi-
ble were it not for the support of both our coworkers and our families.
Our special thanks go out to all of them.

We would particularly like to thank Ulrich Klingels from SAP NetWeaver
Product Management, whose detailed comments enriched this book. We
also want to thank Florian Zimniak at Galileo Press—who provided valu-
able advice, assistance, and motivation for our last book in the SAP PRESS
series—for his professional support and coordination efforts and Nancy

Foreword10

Etscovitz at SAP PRESS for her editorial help with this translation. Our
thanks also go to everyone at SNP who supported or otherwise assisted
us with this book project, whether directly or indirectly. Last but not
least, we thank Bernhard Hochlehnert of SAPinfo, who gave us the impe-
tus for our book projects.

We trust that you will find this book to be a useful tool for familiarizing
yourself with the new technologies and implementing them successfully
in your projects.

We hope that this is a pleasant, stimulating read for you!

Andreas Schneider-Neureither
Heidelberg, November 2004

255Application Layers

6 Application Layers

Conventional applications from both the ABAP and Java/J2EE
worlds can be described as three-tier models. Each application
contains a certain proportion of data handling, business logic,
and presentation logic. In this chapter, we will examine all
the layers for both sides—ABAP and Java—of the application.

6.1 Retrieval Logic and Persistence

The data retrieval logic and persistence layer is responsible for providing
data to the downstream business logic, which then has to process this
data. The goal of the retrieval logic for the business logic is to establish a
certain amount of abstraction for the countless resources that can be
accessed—including databases, files, remote calls, and services—to fully
standardize access in the best case (or at least greatly simplify it) and hide
the technical details that aren’t relevant for the business logic.

The next sections introduce the options for dealing with the different
types of resources available on both platforms.

6.1.1 ABAP

Open SQL

SQL (Structured Query Language) is used for relational databases. It is
available for nearly every RDBMS (relational database management sys-
tem), although in different, vendor-specific versions. The SQL standards
of ANSI (American National Standards Institute) and ISO (International
Standards Organization) generally serve only as guidelines, which the
database vendors more or less follow.

Aside from querying data from the database, SQL also supports changes
to table contents, modification of structures, configuration of user autho-
rizations, and settings for system security. SQL is divided into DML (Data
Manipulation Language) for reading and changing data, DDL (Data Defi-
nition Language) for creating and managing tables in the database, and
DCL (Data Control Language) for authorization and consistency checks.

A subset of the SQL statements called Open SQL is implemented in all
widespread database systems and is available fully in ABAP. This enables
standardized access to all databases supported by SAP, making ABAP

Application Layers256

developments nearly independent of specific database products, as long
as Open SQL is used exclusively.

Native SQL Open SQL contains only DML commands, however, which were
described in detail in Section 4.1.4. In cases where these commands are
not sufficient to meet a specific requirement, ABAP also permits data-
base-specific commands. To do so, the native SQL statement is placed
between the ABAP statements EXEC SQL and ENDEXEC:

EXEC SQL.
CREATE TABLE BUILD_COMP (

CLIENT CHAR(3) NOT NULL,
BUILD CHAR(9) NOT NULL,
COMP1 CHAR(6) NOT NULL,
COMP2 CHAR(6) NOT NULL,
PRIMARY KEY (CLIENT, BUILD)

)
ENDEXEC.

Listing 6.1 Example of a Native SQL Statement Embedded in ABAP

The statements embedded in the ABAP coding are forwarded directly to
the database system. As such, native SQL lets you use the full range of
functions provided by the database-side interface.

On the ABAP side, every work process on an application server contains
a database interface with a vendor-dependent layer, which hosts all com-
munications between the ABAP side and the database.

When native SQL statements are used in ABAP programs, switching to a
different database product will be costly—because database commands
generally differ, you will have to find and adjust all the involved coding
manually. Moreover, you should not execute any DDL operations in
application programs anyway; instead, use the ABAP Dictionary to create
and maintain tables. Lastly, the SAP System does not perform any addi-
tional checks of database-specific commands. For these reasons, you
should avoid using native SQL in ABAP whenever possible.

Logical Databases

A logical database is simply an ABAP program. However, logical databases
are special programs that can supply an application program with data for
processing. They are most commonly used to read data from database

257Retrieval Logic and Persistence

tables and link them with an executable program. They can also be called
with function module LDB_PROCESS, which makes it possible to call sev-
eral logical databases—with the correspondingly complex nesting—
within an executable program.

The logical database implements database access using Open SQL access
from outside of the application program. It reads the information from
the database line by line and supplies it to the executable program at
runtime.

Logical databases have a hierarchical organization because many tables
are interrelated through their foreign keys.

TasksLogical databases can execute the following tasks:

� They can be used in multiple executable programs.

� They can provide a uniform selection screen for all the programs that
use a logical database.

� The authorization check is saved centrally in the logical database.

� Changes aimed at boosting performance will affect all application pro-
grams that use a given logical database.

ComponentsThe logical database is basically divided into three objects: The structure
definition defines the data view of the logical database, the selection
defines the user interface of the executable program, and the database
program executes the statements for reading the data and passing it on to
the calling program. The call has the following structure:

GET <table_header>.
...
GET <table_item>.
...

Listing 6.2 Theoretical Call in an Executable Program

Persistent Objects

Persistent objects belong to the object services, which supply applications
with various central services that cannot be represented by ABAP Objects
language elements directly. SAP currently provides two such object ser-
vices, the Persistence Service and the Transaction Service. The Persistence
Service helps ABAP developers use object-oriented data in relational
databases.

Application Layers258

Transient and
Persistent Data

Data can generally be differentiated in two different categories: transient
and persistent data. Put simply, transient data exists only during program
runtime, while persistent data is durable, for example, in a database. Per-
sistent data can also be found as content in the application and presenta-
tion layers. In object-oriented programs, data is usually portrayed as
attributes of objects. Methods also define and use local data, of course,
but we will overlook that here. In object-oriented programming, an
object exists only during program runtime, between the creation and
deletion of a program session. To work with persistent data in objects,
accesses to the data store must be programmed within the class methods.

The logic behind using persistent objects is that the data of an object is
saved in the database transparently for the developer, and is retrieved
during the initialization of the object, to allow a program to continue pro-
cessing the same objects that another program left behind in a certain
state. Therefore, the Persistence Service is responsible for providing ways
to save the attributes of an object persistently and mapping them to the
correct class.

To use the Persistence Service for objects, their classes have to be defined
as persistent classes in the Class Builder. The Persistence Service manages
these objects and their states. The objects in such a class are not created
using the CREATE OBJECT statement in an ABAP program, but instead
with a method of the Persistence Service, which also ensures that the ini-
tialization is accurate. In addition to the unique ID, the persistent classes
can contain key attributes to identify the object uniquely. The Persistence
Service manages the persistent objects and oversees the connection
between object and database.

Tutorial: Persistent Class

Objective This tutorial shows you how to create a simple persistent class for a data-
base table. Its objective is to show developers the details of developing
persistent classes to compare them to the Java equivalent, the Java Data-
base Object (JDO), later in this chapter.

Requirements You should be familiar with the basics of the ABAP Workbench and also
have had some contact with ABAP Objects.

Process 1. To create the persistent class, you use the Class Builder (Transaction
SE24) or the Object Builder (Transaction SE80).

2. Enter the name for the persistent class as ZCL_<dbtab>_PERSISTENT.

3. In the properties for the class, be sure to select class type Persistent
Class.

259Retrieval Logic and Persistence

4. The created class implements the methods of interface IF_OS_STATE,
which manages the object status.

5. Other classes are now generated automatically for the new persistent
class: ZCB_<dbtab>_PERSISTENT and ZCA_<dbtab>_PERSISTENT.

6. In the persistence map, assign class database table <dbtab> to class
ZCL_<dbtab>_PERSISTENT. To display the persistence map, choose
menu path Goto • Persistence Map.

7. You can define the mapping for database table DBTAB here.

8. Save and activate the persistent class.

9. The following coding should give you an impression of how persistent
classes are used within a context, such as a report. Reference table
agent is used to assign a reference to the persistent class, ZCL_
<dbtab>_PERSISTENT. Method GET_PERSISTENT is used to check
whether an entry exists in the database. If no entry exists, an exception
is raised. The program then attempts to create an object within this
CATCH block. The entry does not exist in the database until after the
COMMIT WORK. If no commit work is performed, the generated object
exists only during runtime.

DATA: connection TYPE REF TO zcl_<dbtab>_persistent,
agent TYPE REF TO zca_<dbtab>_persistent.

Agent = zca_<dbtab>_persistent=>agent.
TRY.
Connection = agent->get_persistent(

i_key1 = wa_<dbtab>-key1
...
i_keyn = wa_<dbtab>-keyn).

CATCH cx_os_object_not_found.
TRY.
agent->create_persistent(

i_key1 = wa_<dbtab>-key1
...

i_field1 = wa_<dbtab>-field1
...).
CATCH cx_os_object_not_found.
...

ENDTRY.
ENDTRY.

Application Layers260

6.1.2 Java

To analyze the complex architectural details of the Java personality of the
persistence layer on the SAP Web Application Server, we first have to
examine the interdependencies of data retention within the SAP context.
In the pure SAP world that you have dealt with so far, all data is saved in
a centralized database. ABAP programs access the database directly, using
the mechanisms described above. Why shouldn’t it be as easy to imple-
ment this in Java? We would assume that new tables would be created in
the ABAP Dictionary and accessed at some point in the Java coding.

While this approach may seem simple and logical at first glance, it harbors
several disadvantages. The most serious of these is the fact that this
approach does not comply with defined J2EE standards, as it would
require the existence of an ABAP instance—which is extremely unlikely
for a pure J2EE environment, which are used widely in enterprise projects
outside of SAP Systems. Moreover, merging ABAP and Java tables would
require Java developers to follow ABAP conventions that ensure data
consistency, such as those for lock management or update requests.

Design Objectives Nonetheless, a central database for the Java personality of the Web AS
also has enormous advantages. The central instance of the Web AS builds
on a central database instance that behaves similarly to the corresponding
ABAP instance—Customizing and configuration data is saved along with
the application tables. To enable this, SAP’s design objectives pursue the
following goals:

� Strict separation of ABAP and Java persistence
Each personality has its own isolated database schema, characterized
by two logically—or even physically—separated databases. No trans-
action can extend over both schemas; a Java application can access
ABAP data, but not at the database level. In other words, table
accesses between the ABAP and Java stacks are not possible. Instead,
they are performed at the business logic level or its encapsulating mid-
dleware, for example, via Remote Function Call (RFC) by means of the
Java Connector (JCo). Therefore, the collaboration has to take place at
component level at this point.

� Minimization of database administration effort
To keep the effort required for installation and administration to a min-
imum, despite the necessity of separating both database schemas, it is
possible to realize both schemas within a single database. This means

261Retrieval Logic and Persistence

an ABAP transaction accesses the ABAP schema and a Java transaction
accesses the corresponding Java schema, but in the same physical
database.

� Extension of Java persistence technologies
Familiar features and concepts from the ABAP world, such as caching
statements and support for table buffers, have been transferred to the
Java world.

The object orientation of the Java language is another aspect that has had
a major impact on the persistence layer architecture on the Java side.
While most conventional SAP applications are still based on relational
persistence and procedural code—making it relatively simple to model
business data in tables—Java forces you to think in terms of objects. For
this reason, SAP supports both options for accessing data, which gener-
ally must be considered separately: relational and object-based data
retention. The two methods also differ in the way developers use and
manipulate the data.

Open SQL for Java

Framework for a
Standardized Data
Access Layer

Just like Open SQL provides standardized access to databases in an ABAP
environment, Open SQL for Java creates a database access layer for Java
applications. This layer provides performance-boosting mechanisms, such
as table buffers and statement pooling, and at the same time enables por-
table access to many different databases, including Oracle, IBM DB2,
Microsoft SQL Server, MaxDB, and others. You don’t have to modify the
applications under this method, because the SQLJ subset balances out
the differences between the databases, which means applications can run
on different databases without requiring modification.

All the programming models that SAP covers for the supported databases
are part of this Open SQL for Java Framework. Application developers
have various options for accessing data in the persistence layer. All access
options within Open SQL for Java are based on the lowest instance—the
JDCB API described in Section 5.2. SAP then builds various abstraction
layers on top of this programming interface—each of which exists and can
be used independently of the others—and offers various functions within
its own hierarchy level, each with its own advantages and disadvantages.

JDBC

As you can see in Figure 6.1, JDBC represents the lowest abstraction level.
Ultimately, all the higher layers generate JDBC calls that the vendor-spe-

Application Layers262

cific JDBC database drivers process as SQL statements—based on the Java
JDBC API—and send directly to the database. JDBC’s extreme popularity
is due not least to the wide variety of example coding that is publicly
available.

Figure 6.1 Open SQL Framework—Database Access Layers

Native JDBC Using native JDBC alone does not guarantee database independence;
however, ultimately, how the JDBC calls are executed depends on the
JDBC driver implementation and the semantics of the underlying data-
base. Note that if you use native SQL or native JDBC explicitly to imple-
ment database access, the JDBC API will not provide any framework for
inspecting or validating SQL statements. Therefore, you will not be able
to verify whether your application coding can be executed on other data-
base platforms.

To avoid potential portability problems with JDBC and SQL, SAP has
defined a subset of SQL statements to ensure database independence—at
least for the databases that SAP supports. Here, Open SQL for Java is an

Table Buffer

Table CatalogSQL
Processor

Statement Cache

SQL Trace

DB
Access
Layer

JDBC (J2EE)SQLJ JDOEJB CMP (J2EE)

Connection Pool

Vendor-specific JDBC Driver

Database

Relational Persistence (SQL) Object Relational Persistence
O

pe
n

SQ
L

En
gi

ne

»open«

»native«

»vendor«

263Retrieval Logic and Persistence

equivalent to the known Open SQL on the ABAP side, and solves the
related problems associated with nearly every programming language.

The core of the Open SQL for Java framework is the Open SQL Engine,
which consists of three layers that build on one another, with each higher
layer providing more functions. The lowest layer is the connection pool,
which is the foundation for the database access layer, which, in turn, is
the foundation for the top layer—the SQL processor layer (see Figure
6.2).

Figure 6.2 Open SQL Engine—Layer Model

Relational and
Object/Relational
Persistence

As mentioned above, SAP supports various programming models for
accessing data. You can differentiate between relational and object/rela-
tional persistence and choose between different approaches for imple-
menting each model. Within the relational model, we differentiate fur-
ther between the SQLJ and JDBC persistence scenarios. For object-
oriented persistence, Java provides two possible implementations, using
either enterprise entity beans or Java Data Objects. The individual pro-
gramming models are described in detail later in this chapter. For now, all
you need to know is that every model can be built on any of the three lay-
ers within the Open SQL layer model (aside from SQLJ, which is based on
the highest layer of the Open SQL Engine), which means a connection to
the lowest layer is an essential prerequisite. Accordingly, SAP separates
these groups into “open,” “native,” and “vendor-based” connection mod-
els. All three layers of the Open SQL Engine are described below.

Open SQL

· SQLJ
· Portability guaranteed by SQL/JDBC
· Java Dictionary
· Table Buffer

Recommended
Obligatory in SAP projects

Only for the »default«
database schema

Native SQL

· SQL Trace
· SQL Statement Cache

Recommended if the default database
schema cannot be used because of
already existing database tables

Vendor-specific SQL
· Database Connection Pool
· Full JDBC standard API
· Vendor-specific SQL Statements

Tolerated

Application Layers264

Connection Pool – Vendor SQL
The lowest layer is the connection pool, which builds directly on the ven-
dor-specific JDBC driver. As you are already aware, creating and providing
database connections is a complex process, and an expensive undertak-
ing—from a system resource perspective. The connection pool saves con-
nections to the same data sources in a pool, allowing you to create con-
nections without any time delay. The pool also enables access to the
default database schema, which is already predefined in the connection
pool and does require adjustment.

Once administrators create the connection pools centrally on the J2EE
server, the pools are referenced through only logical, unique names from
the Java Naming and Directory Interface (JNDI) context. This keeps sen-
sitive data, such as authentication data or maximum loads, away from
developers, and prevents these typically architecture-based parameters
from being shifted to the application logic.

Applications declare resource references to the pool as a data source.
They receive and return their connections through the pool. Thus, the
connection pool is shared by both different requests and different appli-
cations. Aside from the performance aspects mentioned above, this
approach also provides you with a central repository where you can both
configure and monitor database connections and accesses.

As you can see in Figure 6.3, each connection approach at least builds on
this layer, which means all the functions in the layer are always available.

Vendor SQL or
JDBC

When applications access data in a relational database directly, JDBC is
used. Although using abstraction models such as enterprise entity beans
or JDOs hides this fact from the developer to a certain extent, these
object-oriented models also rely on JDBC. Therefore, if you build on this
lowest level, you can use the proprietary capabilities of the individual
databases, but will lose all the benefits afforded by Open SQL—portabil-
ity, table buffering, and SQL statement cache, to name just a few. Because
this approach involves working directly at the vendor-specific layer of the
database, SAP calls this approach “vendor-specific” or “vendor
SQL/JDBC.”

SAP specifies persistence based on this third layer as “tolerated.” There-
fore, you should develop at this level only if your applications absolutely
require the database’s proprietary capabilities.

265Retrieval Logic and Persistence

Figure 6.3 Connection Pool

DB Access Layer—Native SQL/JDBC
The second layer for database access builds on the connection pool
layer—in accordance with the layer model—to enhance certain functions.
Like the vendor-specific layer, this layer gives developers all the functions
of the underlying proprietary database system, but again at the cost of
portability and table buffering.

Native SQL or
JDBC

All method calls are sent to the underlying JDBC driver directly and
unchanged. Basically, the implementation of the Native JDBC API is a
simple wrapper around the vendor-specific JDBC driver, but with two
decisive enhancements regarding the speed and ease of maintenance of
the J2EE engine—SQL trace und statement pooling.

SQL TraceThe SQL trace is available on demand to trace all SQL statements submit-
ted to the database and executed using methods of this layer or the
higher layer of the Open SQL Engine—the SQL processor layer. You can
activate and deactivate the SQL trace dynamically in the Visual Adminis-
trator. The trace format is database-independent. Aside from the actual
SQL statements, the log entries contain information about the time of a
statement, its duration, its input parameters, and its results (where rele-
vant), along with context information.

J2EE
Application #1

J2EE
Application #2

Connection Pool
· Configurations
· Monitoring Joint usage of requests

 and applications

DB Schema

Establishing a connection is expensive!

Application Layers266

The SQL trace is available through a browser interface within the SAP
Web AS and is particularly helpful for performance analyses. It reveals the
causes of errors and poor persistence designs quickly and easily, espe-
cially the higher-level APIs that are used create an unreasonably large set
of SQL statements. The SQL trace can also be a big help at development
time, as it shows developers which SQL coding is generated from their
JDOs, JSPs, servlets, and EJBs.

Statement Pooling Statement pooling improves runtime performance by caching frequently
used SQL statements. A buffer helps the engine detect whether an iden-
tical request has been recently placed. You can save a significant amount
of CPU time because frequently used requests have to be prepared only
once (in the prepare phase) and can then be executed repeatedly, which
reduces the total number of parse routines sent to the database.

PreparedStatement ps = con.prepareStatement("SELECT *
FROM ZRM_RES_MASTER WHERE RESID = ?”);
ps.setInt(1, 256);
[...]
ResultSet rs = ps.executeQuery();
[...]
ps.close();

Listing 6.3 Life Cycle of a SQL Statement

You should note that this source code fragment can be part of a servlet
that is executed several times within the J2EE application, but with differ-
ent empl_id values. The resulting SQL statement would have to be pre-
pared and sent to the database each time that the servlet is executed.
Preparing the SQL statement—which means the database has to parse it
and create an optimized execution plan—is an extremely cost-intensive
process on most systems, and represents a significant performance over-
head in the long term.

Prepared-
Statement Object

Statement pooling lets the application reuse a statement object that is
already prepared (PreparedStatement object), similar to the approach
of reusing database connections under connection pooling. This reuse is
completely transparent for the application. When an application uses a
PreparedStatement object, whether or not that object participates in
statement pooling is immaterial. No coding changes are required. When
an application closes a PreparedStatement, it can reuse it again with the
Connection.prepareStatement() method.

267Retrieval Logic and Persistence

Figure 6.4 Statement Cache

A statement pool instance is associated with a physical database connec-
tion and caches PreparedStatement and CallableStatement objects
that are created for this connection. Each time a prepareStatement()
or prepareCall() method is called for a specific connection, the native
JDBC driver automatically searches the associated statement pool for a
suitable statement. The following criteria are relevant for the developer:

� The statement text must be identical to the statement in the cache
(case-sensitive).

� The call type must be the same (prepared or callable).

� The scrollable type of the result set of the call must be the same (for-
ward-only or scrollable).

If a suitable statement is found in the pool, a new PreparedStatement
object is created and passed on to the calling program. Otherwise, the
prepare call is parsed initially to create a new object. Each of these new
objects is pooled when its close() method is called.

SAP Web AS

Database

 Parse and
Compile SQL

SQL Avoiding repeated (expensive!)
SQL statements

} once !!!

One cache per physical
database connection

Result Set

Execute SQL

SQL
Execution Plan

Pr
ep

ar
e

SQ
L

Caching of JDBC statements

Identification of the statement based
on its textual representation

Application Layers268

SQL Processor—Open SQL/JDBC
The third and highest layer of the Open SQL Engine is the SQL processor
layer. It manages the table buffer, which is another building block for
boosting efficiency. The objective of the table buffer is to hold parts of the
database tables on the application server after they are first accessed in
order to avoid multiple accesses to the same datasets within the data-
base. This reduces the load on both the database and the network. A
buffer exists for each database schema and Web AS instance, although
one buffer can work for several connections simultaneously.

This buffering can be configured for each table individually, and you can
also configure the buffering granularity—to buffer only some of the table
contents or the entire table. Buffering is transparent for the application:
The first buffer access loads the data into the buffer implicitly so that sub-
sequent accesses are served directly from the buffer and don’t have to
access the database.

Visual
Administrator

You can display statistics regarding table buffer usage in the Visual Admin-
istrator, in the Monitoring Services tab.

While the native SQL/JDBC approach, which builds on the second layer
of the Open SQL Engine, should be selected only if no standard database
schema can be used (because data tables already exist, for example), the
Open SQL approach is generally the first choice. The roles at develop-
ment time are clearly structured in this model, and the Java Dictionary is
included in the process explicitly.

Figure 6.5 Table Buffer

SAP Web AS

Execute SQL

Database

Result Set

SQL Table
Buffer

The same data set is not read several
times from the database

} once !!!

One buffer per database schema and
Web AS instance (one buffer is used
for several connections)

269Retrieval Logic and Persistence

Java DictionaryFully integrated in SAP NetWeaver Developer Studio, the Java Dictionary
is used to manage the life cycle of the database object, that is, definition,
creation, and modification. It is available only to those developments
passed on the top layer of the SQL engine. As is true for ABAP, DDL oper-
ations should be executed only within the Dictionary.

Requests and DML expressions are handled by the Open SQL Engine,
which performs a dual role in this model. It also handles all database con-
nections, SQL statement processing, table buffering, statement pooling,
and SQL trace.

In addition to these performance optimization features, the SQL proces-
sor level rounds out the concept of the Open SQL Engine by offering
functions that make a new programming model possible within the Java
persistence. Ultimately, all of the programming models introduced so far
(JDBC, EJB, JDO)—regardless of which layer they are built on within the
Open SQL Engine—use the JDBC driver to generate the finished SQL
statements.

It’s also evident that the Open SQL Framework for Java is generally quite
similar to its ABAP counterpart, but with one major difference: The syntax
of pure JDBC requests (including derived requests) cannot be analyzed
until runtime; therefore, errors cannot be detected at design time, mak-
ing the overall development process more complex. To avoid these diffi-
culties, SAP has developed another abstraction level for persistence—
SQLJ.

SQLJ

SQLJ defines a syntax for embedding static SQL expressions in Java source
code—in contrast to JDBC, where SQL statements are passed on as string
arguments of a JDBC method.

Because the Java compiler cannot handle these expressions, source code
files with SQLJ elements are saved with file extension .sqlj. An SQLJ trans-
lator in the Open SQL processor replaces these elements with calls to the
SQLJ runtime environment in a preprocessor step. It is then possible to
compile the resulting Java source text.

SQLJ was initiated by Oracle, which founded an SQLJ consortium that
grew to include Oracle, IBM, Microsoft, Sun, Sybase, Tandem, and Infor-
mix. Oracle then developed the reference implementation and standard-
ized it as an ISO/IEC specification (number 9075–10).

Application Layers270

The API used for SAP’s Open SQL for Java Framework was derived from
this specification. This SAP implementation ensures that the syntax is
always compliant with the Open SQL grammar, which results in maxi-
mum database portability—since the Open SQL syntax is a subset of the
SQL syntax that all leading database vendors support. Consequently, you
cannot use SQLJ to process any database-specific SQL calls.

Open SQL
Grammar

The Open SQL grammar is based on Entry Level SQL and is specified by
ISO/IEC 9075 (Third Edition, November 1, 1992). It also supports the fol-
lowing SQL constructs:

� Joined tables

� Dynamic parameter specification

Open SQL supports the following subset of SQL statement sets:

� Queries

� Data Manipulation Language (DML)

Syntax The SQLJ syntax is extremely simple to read: In SQLJ, SQL expressions
start with the directive #sql. The precompiler skips the Java coding and
processes only the SQL coding directly, with an initial syntax check. If no
errors are found, the translator generates the Java source code, convert-
ing the SQLJ expressions into the necessary JDBC calls.

The SQLJ translator is seamlessly integrated in SAP NWDS. When the
SQLJ source files are saved, the corresponding Java classes are generated
automatically. The original SQLJ source files are displayed and edited to
debug the application.

The objective of this API, which is defined at a higher level than JDBC, is
to create simpler, more compact, more robust programs. Although the
programs are certainly more robust—because syntax, semantics, type
validity, and portability are checked at development time, and not after
deployment at runtime—we cannot say that the SQL commands and
source coding have become much less complex.

Nor is the test phase necessarily shortened, because the additional pre-
compiler cycle shifts this phase forwards to before the deployment oper-
ation. SAP is working to mitigate these effects, however. Because the
development environment supports the resolution of SQLJ statements,
you can already test at design time.

271Retrieval Logic and Persistence

The code is not any less complex; in fact, it can now be even more con-
fusing due to the resulting mixture of languages and syntaxes. For exam-
ple, variables are addressed in SQLJ with :varName.

While the SQLJ model represents a simplification for practiced ABAP
developers, it is similar to the embedding of Open SQL in ABAP coding.
But, because the SQL statements are hard-coded in the Java source text,
and the syntax check doesn’t support dynamically generated statements,
SQLJ lets you use only static SQL functions contrary to Open SQL in
ABAP, which, to a certain extent, supports the dynamic generation of SQL
statements.

SQLJ
Development

SQLJ statements start with directive #sql and finish with a semicolon. In
addition to the reserved Java keywords, the iterator, context, and
with keywords are also reserved within SQLJ expressions. Like Java cod-
ing, SQLJ statements are case-sensitive.

The actual SQL statement is contained within curly brackets, { and }, and
is case-insensitive. Host variables have a colon (:) as a prefix.

#sql context Ctx with (dataSource = ”jdbc/SYS”);
String var;
#sql [ctx] { Select col into :var FROM tab };

You can use the following comments within an SQLJ source file:

� Java-like comments (/* ... */ or //)

� SQL-like comments (/* ... */ or --)

The SQL comments can be used for only the SQL parts of the source cod-
ing; you have to use Java comments outside of the SQL fragment:

/* #sql context Ctx with (dataSource = "jdbc/SYS");*/
// String var;
#sql [ctx] {

--Select col into :var FROM tab
};

Host VariablesJava host variables are used to exchange data between Java (the host lan-
guage) and SQL (the embedded language). They have the following syn-
tax:

<host expression> ::= (IN | OUT | INOUT)?
':'(<java variable> |

'(' <java expression> ')').

Application Layers272

Host variables and expressions can be used anywhere in an embedded
SQL statement where the Open SQL grammar permits the use of dynamic
parameters. To use a Java variable as a host variable, you must preface it
with a colon (:). Moreover, the variable names within the Java part must
be identical to the names in the SQLJ part of a source file, including case
sensitivity:

String res_id = "1";
#sql [ctx] { DELETE FROM ZRM_RES_MASTER

WHERE RESID = :res_id };

Host Expressions Like variables, complex Java expressions can also be embedded in SQL
statements as host expressions. Host expressions must be enclosed with
:(and). Host expressions are evaluated from left to right as they appear
within the statement.

In the following coding example, two Java expressions are embedded in a
SQL statement: ref.getKey() is an IN parameter, while values[++i] is
an OUT parameter. Both expressions are evaluated after the statement is
executed.

String[] values = new String[5];
MyClass ref = new MyClass();
int i = 3;
#sql [ctx] { SELECT col

INTO :(values[++i])
FROM dbtab
WHERE key = :(ref.getKey()) };

Parameter Mode To determine the parameter mode of a host variable or expression, you
can use one of the optional parameter mode indicators “IN,” “OUT,” or
“INOUT” (all directions are from the database perspective). While this
aids comprehension of the source coding, the system actually recognizes
and executes the data flow automatically. The IN parameter indicates that
data is passed from the Java variable to the SQL statement, while the OUT
parameter shows that the result of the SQL statement is passed back to
the Java application. INOUT defines a data flow in both directions, as
illustrated in the following source text:

#sql [ctx] { SELECT col
INTO :OUT var
FROM dbtab
WHERE key = :IN (ref.getKey()) };

273Retrieval Logic and Persistence

You should exercise caution when using host expressions, as they are
evaluated at specific times: OUT expressions are evaluated after the SQL
statement is executed, while IN expressions are evaluated beforehand.

Database
Connection
Context

Database connections are identified in SQLJ through a defined connection
context, which specifies the target database, the session, and the transac-
tion. All SQLJ expressions or DML statements have to use an explicit con-
nection context. This means such expressions have to contain a label to
determine the connection context object where the expression is exe-
cuted. Simply put, the connection context object represents a database
connection.

The SQLJ translator substitutes this connection context declaration with
the declaration of a specific Java connection context class, which imple-
ments the sqlj.runtime.ConnectionContext interface. Because the
generated class contains static variables, a connection context can only be
declared as a global or static inner class.

The connection context class, in contrast to the object, does not repre-
sent a database connection, but instead a data source and a logical cata-
log (at design time); the latter is discussed later in this section.

We differentiate between two types of data source connection contexts:
The URL connection context has constructors that make it possible to
instantiate a new connection context based on a URL. In contrast, the
data source connection context makes it possible to create an object
based on a data source.

Connection
Context with
Data Source

The declaration of a connection context can contain a with clause that
specifies the value for the data source. This case involves a connection
context with data source: The data source is linked and can be found
under the specified name in the JNDI directory. The default constructor
generates an instance of this context class, which contains a JDBC link to
the associated data source. If a with clause is not specified, a URL con-
nection context is involved. The following coding illustrates a connection
context with data source:

#sql context SysCtx
with (dataSource = "java:comp/env/jdbc/MyDB");
[...]

SysCtx sysCtx = new SysCtx();
#sql [sysCtx] { DELETE FROM dbtab WHERE key = 17 }

;

Application Layers274

[...]
sysCtx.close();

SQLJ in the IDE The SAP NetWeaver Developer Studio models the entire development
process of the persistence of a Web AS J2EE application.

Java Dictionary Before you create a new project, all the tables you need must be defined
in the Java Dictionary. The Java Dictionary is integrated completely in the
NetWeaver Developer Studio. When you create new tables, metadata for
the tables is initially created only on the client side (the developer’s work-
station) and then generated in the respective database during the deploy-
ment process. Because the procedure for developing with the Java Dictio-
nary was described in detail in the corresponding tutorial in Chapter 5,
we will only address the major SQLJ issues here.

Tutorial: SQLJ Development

Objective You have to create the SQLJ source files. You can either create completely
new files or convert existing pure Java source code into SQLJ source code
and them embed SQL statements within them. As described above, the
SQLJ translator generates Java classes from the SQLJ files automatically as
soon as you save your work. For this reason, you should always use the
SQLJ layer, and never the Java files directly, as you will otherwise create
inconsistencies because the Java classes will be overwritten the next time
the corresponding SQLJ files are saved.

Requirements � You are working in the SAP NetWeaver Developer Studio.

� A project already exists.

Process Use the wizard to create new files:

1. Choose File • New • Other …

2. Select Persistence on the left side of the screen and then SQLJ Source
on the right side.

3. Choose Next.

4. Enter the required information, as you would do so for a Java file.

To convert an existing Java source file, proceed as follows:

1. Create a Java source file—if you have not done so already or do not
have a usable file.

2. Click on the Java source file with the right mouse button and choose
Convert to SQLJ from the context menu.

275Retrieval Logic and Persistence

ResultYou now have a SQLJ file and a Java file with the same name. Never edit
the Java file, as it contains only the generated code.

Validation—
SQLJ Checker

The SQLJ Checker is integrated seamlessly in SAP NetWeaver Developer
Studio. When the SQLJ files are converted—which is performed automat-
ically as soon as the data is saved—the checker runs through the embed-
ded SQL statements. The checks validate compliance with the Open SQL
grammar and also test the schema against an offline catalog provided by
.gdbtable files. These files were created when you created the Java Dictio-
nary project and contain all the metadata, which was also used in the
deployment process.

To perform this schema check, the SQLJ converter has to know the path
of the .gdtable file that contains the offline catalog. Therefore, you must
associate this file with your project:

Procedure1. Select the project.

2. Select Properties in the context menu.

3. Select SQLJ Translator.

4. Select XML Source and enter the path for the .gdtable file.

5. Click on OK.

Once you associate the offline catalog description, the SAP NWDS allows
you to localize SQL errors at design time. Conversion errors and Java
compiler errors are displayed directly. Options are also available to navi-
gate directly to the relevant part of the SQLJ source file, as well as set
breakpoints in it.

DebuggingAlthough you should not use debugging on the pure Java code that is
generated, you can activate it for the SQLJ source files at any time. Oth-
erwise, the debugging is exactly like debugging for Java source files:
Breakpoints are set within the Java files, the source text is analyzed step
by step, and the values are checked. You cannot set breakpoints for SQLJ
statements.

ProcedureTo activate SQJL debugging, proceed as follows:

1. Choose the menu path Window • Customize Perspective …

2. Select Other.

3. Select SQLJ Debugging.

4. Click on OK.

5. SQLJ Debugging is added to the Run menu.

6. Choose Run • SQLJ Debugging.

Application Layers276

Result SQLJ debugging is now active for the current session.

The procedure for writing the actual SQLJ source texts almost always
involves the following steps:

1. Declare a database connection context object, for example:

#sql context SysCtx with (dataSource = "jdbc/myDB");

This object is based on the connection context class.

2. Create a connection to the database by instantiating the object (con-
nection context).

3. You can now use this connection to send SQL statements and process
the results.

4. Close the connection.

Combination of SQLJ and JDBC

To develop dynamically generated statements, you can use JDBC on the
relational persistence side to implement dynamic SQL requests and state-
ments. Because SAP recommends using Open SQL (SQLJ) to implement
the Java persistence—and even requires it explicitly for internal develop-
ments—you may ask how you can combine these two models.

You can combine SQJL and JDBC to use dynamic and static expressions
together in the same application. JDBC connections and SQLJ connection
contexts are mutually convertible, as are SQLJ iterators and JDBC result
sets.

Exchange
Connections

Because Open SQL and SQLJ are converted to JDBC requests at runtime,
by using the Open SQL Engine, both of them can employ the same data-
base connection and transaction. Conversely, SQLJ cannot use the same
connection or transaction as native SQL/JDBC or vendor SQL/JDBC,
because the latter don’t run the full stack of the Open SQL Engine.

Using the JDBC
Connection with

SQLJ

All connection context classes have a constructor that contains an exist-
ing JDBC connection as an argument. The SQLJ connection created using
this constructor shares the underlying database connection with the
JDBC connection from which it was created. When the SQLJ connection
context is closed with the close(boolean closeConnection) method,
the underlying JDBC connection is also closed. If the Boolean value true
is passed on an argument, however (or, for better readability, as constant
ConnectionContext.KEEP_CONNECTION), the close() method call

277Retrieval Logic and Persistence

merely disassociates the SQL connection context object from the under-
lying JDBC connection, which means the former is not closed.

In the following coding example, an SQLJ connection context, ctx, is cre-
ated by the JDBC connection conn. ctx and conn now share the same
database connection. The INSERT and DELETE statements are both per-
formed for this connection and share the same transaction.

#sql context MyCtx;

//...

Connection conn = ... ;
Statement stmt = conn.createStatemnt();
stmt.executeUpdate("INSERT

INTO ZRM_RES_MASTER
(MANDT, RESID, RESTYPE, DESCRIPTION,
INV_NUMBER, LOC_ADDRESS)

VALUES (100, 1, 'R', 'Conference room 1st floor',
null, '0000100100')");

MyCtx ctx = new MyCtx(conn);

#sql [ctx] { DELETE FROM ZRM_RES_
MASTER WHERE RESID = 1 };

Listing 6.4 Connection Sharing from JDBC to SQLJ

JDBC Connection
from SQLJ
Context

The getConnection() method of the ConnectionContext interface
makes it possible to receive a JDBC connection from an underlying SQLJ
connection context. In the following example, the JDBC connection that
underlies the ctx SQLJ connection context is made available to the pure
Java coding, outside the SQLJ coding. ctx and conn then share the same
database connection. The INSERT and DELETE statements are both per-
formed for this connection and share the same transaction.

#sql context DemoCtx with (dataSource = "jdbc/DEMO");

// ...

DemoCtx ctx = new DemoCtx();
#sql [ctx] { INSERT
INTO ZRM_RES_MASTER

Application Layers278

(MANDT, RESID, RESTYPE, DESCRIPTION,
INV_NUMBER, LOC_ADDRESS)

VALUES (100, 1, 'R', 'Conference room first floor',
null, '0000100100') };

Connection conn = ctx.getConnection();
Statement stmt = conn.createStatemnt();
stmt.executeUpdate(

" DELETE FROM ZRM_RES_MASTER WHERE RESID = 1");

Listing 6.5 Connection sharing from SQLJ to JDBC

Exchanging Result
Sets/Iterators

Result sets and iterators can be shared—like database connections—and
are mutually interchangeable.

JDBC Result Set
to SQLJ

It’s easy to convert a JDBC result set to an SQLJ iterator, using an SQLJ
CAST statement. You can apply the CAST statement to any result set iter-
ator in the current viewing area in Open SQL/SQLJ. To ensure compatibil-
ity with SQLJ translators from other vendors, you should apply only the
CAST statement to public result set iterators. Once the SQLJ ResultSet-
Iterator object has been created, you should use the results of this
method to handle all data retrieval operations.

In the following example, JDBC result set rs is converted to an SQLJ
result set iterator with the CAST statement.

#sql iterator NamedIterator (String name);

//...

NamedIterator namIter;
Connection conn = ...

Statement stmt = conn.createStatement();
ResultSet rs =

stmt.executeQuery("SELECT RESID FROM
ZRM_RES_MASTER"

);

#sql namIter = { CAST :rs };

279Retrieval Logic and Persistence

while (namIter.next()) {
System.out.println(namIter.name());

Listing 6.6 Converting a JDBC Result Set to a SQLJ Result Set Iterator

Iterators from
SQLJ to JDBC

You can use SQLJ results records within JDBC in a similar manner. Every
ResultSetIterator object has the getResultSet() method, which is
used to retrieve the underlying JDBC ResultSet object. As this example
once again clearly demonstrates, SQLJ merely hides the underlying JDBC
layer from the user.

Conversely, once the JDBC ResultSet object is created, you should use
this specific object instance to transfer the data to the surrounding Java
program—instead of going to the additional (redundant) effort of instan-
tiating a SQLJ ResultSetIterator.

In the example below, the getResultSet() described above is called for
the SQLJ ResultSetIterator object, namIter, and returns it as the
JDBC ResultSet.

#sql iterator NamedIterator (String name);

//...

NamedIterator namIter = null;
#sql [ctx] namIter = { SELECT RESID FROM

ZRM_RES_MASTER };

ResultSet rs = namIter.getResultSet();
while (rs.next()) {

System.out.println(rs.getString(1));
}

Listing 6.7 JDBC Taking Over a SQLJ Iterator

Object/Relational Persistence

In the previous chapters, we mentioned the object orientation of the Java
language several times, but didn’t elaborate on any details of Enterprise
Java Beans. Now, we’ll examine the entity beans more closely.

Subjects of
Business
Processes

Entity beans model business concepts that can be expressed as subjects.
This general model helps developers decide whether a business concept
is suitable for implementation as an entity bean. Unlike session beans,
entity beans aren’t business processes; rather, they are business objects or

Application Layers280

actual entities. They describe the state and the behavior of objects in the
real world, and enable developers to encapsulate the data and business
rules that belong to a specific concept. Therefore, these beans represent
data in the database, which is why changes to the beans automatically
result in changes to the database.

There are many advantages to using entity beans instead of accessing the
database directly. The data is molded into object form, providing a simple
mechanism for accessing and changing it, which a method employed by
the beans themselves. In a sense, the developer doesn’t communicate
with the database, but instead, he or she communicates with objects by
using the method, PersonObject.tellMeYourName(). If used properly,
this method simplifies the implementation and makes the coding easier
to understand (think of the countless SQL statements, many of them
nested, that you would otherwise have to deal with). It also increases
your chances of writing reusable software. However, you must ensure
that an entity bean holds all the functions to ensure data consistency and
simplicity for the developer.

When a new bean is generated, a new data record has to be added to the
database, and a bean instance linked with this data. If the bean is used
and its state changes, these changes have to be synchronized with the
data in the database: adding, changing, or deleting entries. Therefore, the
communication between the application and the database still takes
place, but is transparent to the developer. This communication process of
coordinating the database with the data represented by a bean instance is
called persistence.

We differentiate between two types of entity beans, which implement
this persistence using two different concepts: container-managed persis-
tence and bean-managed persistence.

Container-Managed Persistence (CMP)

Under container-managed persistence, as the name implies, the persis-
tence is managed automatically by EJB containers. These containers know
how the bean’s instance attributes are mapped to the database (or the
table fields within it) and take care of inserting, changing, and deleting
the data for the entities in the database.

Developer
Perspective

From the developer’s perspective, CMP entity beans are easier to pro-
gram, because they enable you to focus on implementing the business
logic by delegating responsibility for persistence to the container. When

281Retrieval Logic and Persistence

you implement a bean of this type, you define a mapping to specify
which fields the container will manage and how they are mapped to the
database. Once defined, the container generates the necessary logic to
save the state of the bean instance automatically.

Fields that are mapped to the database are called container-managed
fields, and can contain any primitive Java types or serialized objects. The
advantage of CMP is that the bean can be developed independently of
the underlying database that saves its state later. Container-managed
beans can be used in both relational and object-based databases. The
bean’s state is defined independently, increasing flexibility and therefore,
possibilities for reuse.

A general disadvantage of CMP is that it requires complex mapping tools
to define how the fields are mapped to the database. In some cases, how-
ever, it will suffice to map each field in the bean to a column in the data-
base or serialize it in a file. But, there are also much more complicated
cases; for example, a bean’s state could be defined based on a complex
relational database join. Even so, the SAP NetWeaver Developer Studio
features many different functions for defining the mapping.

O/R MappingSAP calls this type of mapping O/R mapping (object/relational mapping).
This concept involves certain O/R mapping rules that determine which
Java data types can be mapped to which JDBC types. If you create the
O/R mapping in the SAP NWDS, these requirements are fulfilled auto-
matically; if you deviate from this schema, the Developer Studio also fea-
tures O/R mapping verification.

O/R Mapping Rules
Enterprise Bean
Requirements

Each entity bean class corresponds to a separate table in the database. To
ensure data integrity, you cannot map different bean classes in the same
table.

Rules for the CMP
Fields

A CMP field, which represents a basic attribute, is mapped to a single col-
umn. The following JDBC types are accepted for the corresponding CMP
fields:

Application Layers282

Java Data Type Possible JDBC Data Types Default JDBC Data Type

java.lang.String VARCHAR, CHAR, LONG-
VARCHAR, CLOB

VARCHAR

byte[] VARBINARY, BINARY, LONG-
VARBINARY, BLOB

VARBINARY

java.lang.Byte[] VARBINARY, BINARY, LONG-
VARBINARY, BLOB

VARBINARY

Short SMALLINT SMALLINT

java.lang.Short SMALLINT SMALLINT

Int INTEGER INTEGER

java.lang.Integer INTEGER INTEGER

Long BIGINT BIGINT

java.lang.Long BIGINT BIGINT

Float REAL REAL

java.lang.Float REAL REAL

Double DOUBLE, FLOAT DOUBLE

java.lang.Double DOUBLE, FLOAT DOUBLE

java.math.BigDecimal DECIMAL, NUMERIC DECIMAL

java.util.Date TIMESTAMP TIMESTAMP

java.sql.Date DATE DATE

java.sql.Time TIME TIME

java.sql.Timestamp TIMESTAMP TIMESTAMP

java.sql.Clob CLOB CLOB

java.sql.Blob BLOB BLOB

Boolean SMALLINT SMALLINT

java.lang.Boolean SMALLINT SMALLINT

Byte SMALLINT SMALLINT

java.lang.Byte SMALLINT SMALLINT

java.io.Reader VARCHAR VARCHAR

java.io.InputStream VARBINARY VARBINARY

Table 6.1 Rules for Mapping CMP to JDBC

283Retrieval Logic and Persistence

Rules for
Reference Fields

Relationships are implemented as references between primary key col-
umns and foreign key columns.

You define one or more different foreign key column(s) for each relation-
ship. If n connections exist between two beans, then n mappings have to
exist between the primary and foreign key columns as well. The foreign
key and primary key both must have the same JDBC data type.

In addition, a column with type “unique key” cannot be part of a foreign
key. For that reason, you cannot define a foreign key column as “unique,”
because the corresponding primary key would be “unique” automatically.

1:1 RelationshipWhen you implement a 1:1 relationship, the foreign keys are contained in
one of the two tables involved in the relationship.

1:n RelationshipIn a 1:n relationship, the foreign keys are located in the table that belongs
to the bean, which represents the n side of the relationship.

n:m RelationshipTo define an n:m relationship, you have to implement an intermediate
table that contains the foreign keys for both primary keys of the objects
involved in the relationship. The columns must have the same JDBC type
as the primary key columns.

RestrictionsThe validation functions in O/R mapping cannot detect and handle the
following errors:

� A column is defined as a logical foreign key, but is not a true foreign
key.

� A column is a primary key, but is defined as a foreign key.

CMP is often referred to as declarative persistence. It is very easy to use,
even if the object model of the persistent data is complex. You don’t have
to program any SQL statements—you can generate the O/R mapping, the
corresponding tables, and the SQL statements automatically within the
development environment.

Tutorial: Creating a Container-Managed Entity Bean

This tutorial describes the procedure for using the wizard in the SAP
NetWeaver Developer Studio to create an entity bean. You can also cre-
ate enterprise beans, using the context menus of the relevant project.

RequirementsAn EJB module project already exists.

Process1. Choose the menu path File • New • Other.

2. Choose J2EE • EJB on the left side of the first wizard page and then
Enterprise Bean on the right side.

Application Layers284

3. Click on Next.

4. Enter a name for the new entity bean in the EJB Name field.

5. Select the name of the project where you want to create the bean in
the EJB Project field.

6. Choose Entity Bean in the Bean Type field.

7. Specify a package in the Default Package field or, if none exists yet,
create a new one.

8. Choose Generate default interfaces or specify which interfaces will
be generated and used, as shown in Figure 6.6.

Figure 6.6 Selecting Bean Interfaces

9. Click on Next.

10. Select the persistence type, Container-Managed Persistence or
Bean-Managed Persistence—select Container-Managed Persis-
tence in this case. You can now add and remove persistence fields
(and any time later as well).

11. Click on Next.

12. Add superclasses (if necessary) and click on Next.

13. Add the methods (which you can also do at any time during the
development phase). For each method, choose the method type and
click on Add. Enter the names and return types of the methods and
specify the parameters.

14. Click on Finish.

Result The J2EE Explorer in the SAP NWDS resembles Figure 6.7.

285Retrieval Logic and Persistence

Figure 6.7 Result in the J2EE Explorer

You can now edit the entity bean in the source code and create the fields
for container-managed persistence (CMP fields).

Process1. In the J2EE Explorer window, select your project, then ejb-jar.xml, and
finally the enterprise bean whose fields you want to create.

2. Select Open in the context menu; the bean properties appear in the
right-hand window.

3. Select the Fields tab.

4. Select Persistent Fields and click Add. A new persistence field appears
as a sub-node within the Persistent Fields tree structure.

5. Enter the following data in each of the fields listed below:

� Name: name of the field. The SAP NetWeaver Developer Studio
uses this name to create the corresponding get and set access meth-
ods. In accordance with Java conventions, the first letter of the field
name is uppercase, prefaced by set or get.

� Fully Qualified Name: the fully qualified name of the field type,
which also must contain the package name.

� Array: Choose this option to specify that the persistence field repre-
sents an array of the specified type. Enter the dimension of the array
in the field that appears after you select Array option. You must
enter values between 1 and 9.

ResultThe persistence fields are now described by the corresponding ejb-jar.xml
deployment descriptor file. Its O/R mapping was automatically written to
the SAP J2EE Engine-specific deployment descriptor, persistent.xml. This
file configures the EJB container to take over the container-managed per-
sistence, by setting the following values and properties in the
persistent.xml file:

Application Layers286

� Data source and database vendor

� Type and method of lock mechanisms for the entity beans

� The O/R mapping

� The deployment properties of the finder and select SQL methods,
which the container uses to optimize performance of the entity beans

During the deployment process, all the necessary code is generated by
the EJB container, based on the information in the deployment descrip-
tors.

As a result, developers no longer have to implement the access logic; they
only have to declare and configure attributes and relationships.

Bean-Managed Persistence (BMP)

Bean-managed persistence is much more complicated than container-
managed persistence, because you—the developer—have to program the
persistence logic explicitly in the bean class.

This means you have to implement the SQL statements completely your-
self. Consequently, this model makes you highly flexible in defining how
the state is managed between the bean instance and the database. Entity
beans that are defined through complex joins, a combination of different
database systems, or other resources (such as legacy systems) generally
benefit from BMP. Even though O/R mapping of the abstract schema
does not meet the project’s requirements, this programming model can
still help.

Container-managed persistence lets you map objects to only one table,
which is relatively restrictive when it comes to true distributed objects—
which aren’t held in just one table, but instead can be composed of mul-
tiple attributes from different data sources. Bean-managed persistence
offers many more possibilities and greater flexibility in such cases.

The disadvantage of BMP is that a lot more work is required to define the
beans. You have to understand the database structure and develop the
logic to generate, update, and remove the data associated with an entity.
You have to be very careful when dealing with the generic bean methods,
especially ejbLoad() and ejbStore(). You even have to develop the
search methods defined in the bean’s home interface, along with the
mapping of the bean attributes to the database, explicitly and manually.

A bean-managed application is not as database-independent as a con-
tainer-managed entity, but is better suited to dealing with complex data.

287Retrieval Logic and Persistence

You can use both pure vendor-specific JDBC and the native form, as well
as Open SQL (SQLJ) to ensure the greatest possible database indepen-
dence.

Even so, SAP recommends always using CMP (or JDO, which are
described below) within object-related developments. Accordingly, we
will not describe BMP in further detail here. If you would like to learn
more, see the specific Java or J2EE literature.

Java Data Objects (JDO)

Java Data Objects are SAP’s second recommended method for imple-
menting object/relational persistence.

The JDO standard is a very promising technology for implementing per-
sistent Java objects. Although JDO is one of the many Java standards and
is usually mentioned in the context of J2EE, it is not included in the J2EE
1.3 or 1.4 specifications. Java Data Objects is implemented in the SAP
Web AS, however, due to the many advantages it offers compared to the
EJB concept.

While EJB entity beans are based on the component model of the J2EE
architecture, the JDO standard tries to keep as close as possible to the
Java object model. JDO lets you make almost any Java class persistent
directly, independently of the architecture layer where the objects are
contained. Accordingly, JDO does not require the container model of the
J2EE environment, but instead adds persistence directly to the Java lan-
guage.

JDO also enables you to access nearly any type of data store—relational
databases, object/relational databases, or even file-based formats.

JDO is based on a byte-code transformation of the classes to be made
persistent. An XML-based mapping file has to be created for each class
that you want to save persistently. This file describes how the class
attributes are mapped to the database tables, similar to the CMP
approach. The byte-code enhancer then overwrites the access methods of
the class and replaces them with the required SQL statements.

JDO features a Persistence Manager, which manages the life cycle, trans-
actions, requests, and identities of the persistence objects. The query lan-
guage is JDOQL (Java Data Objects Query Language).

Application Layers288

JDO can be combined with JSPs, session beans, and entity beans (BMP)—
but not with container-managed entity beans (CMP)—within a J2EE envi-
ronment.

Tutorial: JDO Development Cycle

Objective For the developer, developing a persistent object is an extremely struc-
tured process, with a defined procedure. The JDO development tools are
not yet integrated in the SAP NetWeaver Developer Studio, however,
which means all the steps have to be performed manually. This tutorial
describes the development cycle for an employee object, implemented
by the class Resource:

Process 1. Define the database tables.

2. Create the pure Java classes that you want to make persistent.

The classes that will implement the persistence must be created and
implemented in the SAP NetWeaver Developer Studio, just like any
other Java classes. Ultimately, each of these classes defines objects that
will be saved in a database and can be retrieved from the database.

To create the classes, choose New • Java Class. Enter “Resource” as
the class name.

The new Java files open automatically and you can enter the coding.
The following coding excerpt illustrates an example of such a class; it is
limited to three attributes of the resource object at this point.

public class Resource {

// Class attributes: the persistent fields
// of a resource.
// Also defined inside the file Resource.jdo

private int resId;
private String resType;
private String description;

// Required: a no-args constructor
public Resource() {
this.resId = 1;
this.resType = "INITIAL";
this.description = "INITIAL";

}

// Constructor where the ID is set

289Retrieval Logic and Persistence

public Resource(int resId) {
this.resId = resId;
this.resType = "INITIAL";
this.description = "INITIAL";

}

// Implement the getter methods of the class
public int getResId() {
return resId;

}

public String getResType() {
return resType;

}

public String getDescription() {
return description;

}

// Implement the setter methods of the class
public void setResType(String type) {
resType = type;

}

public void setDescription(String desc) {
description = desc;

}
}

3. Define the object identity.

JDO provides for an identity class for each persistent object, which
ensures that an individual JDO instance is associated with a persistence
manager that represents a specific data store object—the database.

While the JDO standard describes three types of identity—application,
data store, and nondurable identity—SAP’s JDO implementation sup-
ports only the application identity. In this form, the application man-
ages the JDO identity and holds it in the data store. In most cases, the
instance identity is the primary key.

To implement the identity, you have to create a special object identity
class for each persistent class, which is defined as static public

Application Layers290

inner class ID of the corresponding persistence class. The object
identity class has a corresponding public instance field for each pri-
mary key field, with the same name and data type.

The object identity class has a constructor without arguments, like the
persistent class. It also has a string constructor, which returns an
instance as a string (like a toString() method).

It also has to implement a hashCode() method, which returns the pri-
mary key, and an equals() method, which uses a Boolean return
value to check the instance or check which instance a given object
belongs to.

The following coding illustrates the identity class for the resource
object as an example:

import com.sap.jdo.SAPJDOHelper;
static public class Id {

// public field corresponding to the primary key of the
// PC class
public int resId;

static {
// establish the relation: Resource$Id
// class is the identity class for the
// PC class Resource.
SAPJDOHelper.registerPCClass(Resource.class);

}

public Id() {
//required: a no-args constructor
}

public Id(int resId) {
this.resId = resId;

}

public Id(String string) {
// required: a string constructor
// defined as the counterpart of toString()

resId = Integer.parseInt(string);
}

291Retrieval Logic and Persistence

public int hashCode() {
// required: implement hashCode()

return resId;
}

public String toString() {
// required: toString() defined
// as the counterpart of the string constructor

return Integer.toString(resId);
}

public boolean equals(Object that) {
// required: define equals()

if (that == null || !(that instanceof Id))
return false;

else
return resId == ((Id) that).resId;

}
}

4. Define the JDO metadata.

You can now define the XML metadata for the JDO objects. To do so,
each persistence class is assigned a corresponding *.jdo file, which
must be located in the same directory.

� Choose New • File.

� Enter the directory where you want to save the file and enter the
same file name as the corresponding Java class file, but with exten-
sion .jdo.

� You can now enter the definitions. The following listing shows the
coding for the preceding Java class as an example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jdo SYSTEM "jdo.dtd">
<jdo>
<package name="temp.persistence.gettingstarted.jdo">

<class name="Resource"
identity-type="application"
objectid-class="Resource$Id">

<field name="resId"

Application Layers292

persistence-modifier="persistent"
primary-key="true"/>

<field name="resType"
persistence-modifier="persistent"/>

<field name="description"
persistence-modifier="persistent"/>

</class>
</package>

</jdo>

5. Define the O/R mapping for the persistence classes.

You can now create the mapping, using another XML file that you also
save under the same name in the same folder, but with file extension
*.map.

The format of this class is defined by the JDO mapping metadata Doc-
ument Type Definition (DTD).

You create this file just like the *.jdo file; the mapping for this example
is demonstrated below:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE map SYSTEM "map.dtd">
<map version="1.0">
<package name="temp.persistence.gettingstarted.jdo">
<class name="Resource">
<field name="resId">
<column name="RESID" table="ZRM_RES_MASTER"/>

</field>
<field name="resType">
<column name="RESTYPE" table="ZRM_RES_MASTER"/>

</field>
<field name="description">
<column name="DESCRIPTION"

table="ZRM_RES_MASTER"/>
</field>

</class>
</package>

</map>

293Retrieval Logic and Persistence

6. Use the JDO Enhancer to compile the code.

Now that you have created the appropriate classes and descriptors,
use the JDO Enhancer to create the classes that will communicate with
the application business logic.

Because the JDO Enhancer and the validation tools are not integrated
in the Developer Studio yet, you have to perform these steps manu-
ally. To do so, we recommend using the ANT build tool, which is avail-
able as a plug-in for the Developer Studio.

� Create a new file for your project—using the context menu—with
name build.xml, and save it in the main directory of your project.

� Enter the following coding (continuing the above example):

<project name="GettingStartedWithJDO" default="enhance"
basedir="..">

<property name ="sourceproject.dir"
value="GettingStartedJDOWeb"/>

<property name ="dictproject.dir"
value="GettingStartedPersistenceDic"/>

<property name ="src.dir"
value="${sourceproject.dir}/source"/>

<property name ="bin.dir"
value="${sourceproject.dir}/bin"/>

<property name ="catalog.dir"
value="${dictproject.dir}/gen_ddic

/dbtables/"/>

<property name ="enhancer"
value="com.sap.jdo.enhancer.Main"/>

<property name ="utility"
value="com.sap.jdo.sql.util.JDO"/>

<property name ="tssap"
value="C:/Program Files/SAP/JDT/eclipse

/plugins"/>
<property name ="jdo"

value="${tssap}/com.sap.ide.eclipse.ext
.libs.jdo/lib/jdo.jar"/>

<property name ="xml"
value="${tssap}/com.tssap.sap.libs

Application Layers294

.xmltoolkit
/lib/sapxmltoolkit.jar"/>

<property name ="jdoutil"
value="${tssap}/com.sap.jdo.utils

/lib/sapjdoutil.jar"/>
<property name ="dictionary"

value="${tssap}/com.sap.dictionary.database
/lib/jddi.jar"/>

<property name ="logging"
value="${tssap}/com.tssap.sap.libs.logging

/lib/logging.jar"/>
<property name ="catalogreader"

value="${tssap}/com.sap.opensql
/lib/opensqlapi.jar"/>

<property name ="classpath"
value="${jdo};${jdoutil};${xml}"/>

<property name ="classpath.check"
value="${classpath};${dictionary};${logging};

${catalogreader};${bin.dir}"/>
<target name="enhance">
<antcall target="enhance.Resource"/>

</target>

<target name="check">
<antcall target="check.Resource"/>

</target>

<target name="enhance.Resource">
<java
fork ="yes"
failonerror="yes"
classname ="${enhancer}"
classpath ="${classpath}">
<arg line ="-f -d" />

<arg value="${bin.dir}"/>
<arg value="${src.dir}/temp/persistence/

gettingstarted/jdo/Resource.jdo"/>
<arg value="${bin.dir}/temp/persistence/

gettingstarted/jdo/Resource.class"/>
</java>

295Retrieval Logic and Persistence

</target>

<target name="check.Resource">
<java
fork ="yes"
failonerror="yes"
classname ="${utility}"
classpath ="${classpath.check}">
<arg line ="-v -p" />
<arg value ="${sourceproject.dir}

/checker.properties"
/>
<arg value ="-c"/>
<arg value ="${catalog.dir}"/>
<arg value ="check"/>
<arg value ="temp/persistence/gettingstarted/jdo

/Resource.class"/>
</java>

</target>
</project>

� Now create a new file called checker.properties, again from the con-
text menu of the project, and save it in the main folder for the
project as well. Enter the following coding in this new file:

com.sap.jdo.sql.mapping.useCatalog=true
com.sap.jdo.sql.mapping.checkConsistency=true
com.sap.jdo.sql.mapping.checkConsistencyDeep=true

7. In the Java perspective of the Developer Studio, open the context
menu for the build.xml file and choose Run ANT…

8. If they are not set already, set the enhance and check objects in the
Targets tab.

9. Choose Apply and then Run. The result of the process is output in the
Developer Studio console.

10. The generated classes now implement interface javax.jdo.spi.
PersistenceCapable, which can be used by the business logic.

ResultFigure 6.8 summarizes the development process of JDO persistence.

Application Layers296

Although the JDO development process is quite structured, the fact that
the corresponding tools for using JDO are not integrated in the Devel-
oper Studio yet is a distinct disadvantage. Therefore, you have to spend a
lot of time on tasks that the appropriate tools could perform automati-
cally. Errors are likely in larger projects because developers can quickly
lose track of the manually created files.

Figure 6.8 JDO Development Cycle

You probably won’t be able to leverage the full potential of the JDO
approach in SAP environments until SAP adds the necessary extensions to
the Developer Studio.

As we already mentioned, SAP recommends using CMP or JDO for
object-oriented persistence, instead of using relational-persistence by
implementing raw SQL via JDBC bean-managed persistence, which is
completely ignored at this time. The following table compares and con-
trasts the two SAP-recommended approaches and suggests possible uses
for each:

Enhancer Tool
(IDE)

Compiler

.java

.class

.class

.jdo

.map

Write
Java Class

Declare Persistent
Properties (XML)

Compile
Class

Expand Class by
JDO Metadata

Use Persistent Java Class
in Application

Declare
Database Tables

Object-Relational Mapping
and Declaration of Tables (XML)

297Middleware: Connectivity Between Applications

6.2 Middleware: Connectivity Between
Applications

Direct access to
the ABAP Perso-
nality

As we have already mentioned several times, all connectivity between the
ABAP and Java personalities has to occur at application level. It is usually
not possible for a Java application to access the ABAP instance’s database

JDO 1.0 Entity Beans (CMP) 2.0

Not part of the J2EE standard, that is, it is
not supported by all J2EE application
servers.

Part of the J2EE standard; the J2EE speci-
fications guarantee support for CMP.

CMP features a complete programming
model.

Does not support direct remote calls, but
they can be implemented using façade
session beans.

Although direct remote calls are possible,
SAP recommends using entity beans only
locally, and delegating remote communi-
cation to façade session beans.

No implicit security features are available. The CMP specifications contain security
features.

JDO is available in both managed envi-
ronments and open Java environments.

Only executable in managed environ-
ments such as EJB containers.

Supports inheritance and interfaces, mul-
tiple mapping, and mapping to legacy
tables.

Does not support inheritance or inter-
faces. A bean can only be mapped to a
single table.

A separate class is required for the pri-
mary keys; this implementation is not
automated and is therefore time-inten-
sive.

No primary key class is required.

The inter-object relationships are not
managed centrally.

The inter-object relationships are man-
aged centrally.

JDOQL permits dynamic queries, which
always return objects. JDOQL has a Java-
like syntax, however, and is not as pow-
erful.

EJBQL can execute only static queries
that return unchangeable datasets. EJBQL
has a syntax comparable to OQL and is
more powerful than JDOQL.

Faster development cycles. The deployment processes are very com-
plex and hence, much slower.

Java skills are sufficient to create new
implementations.

Using EJBs requires extensive knowledge
of object orientation and distributed con-
cepts.

Table 6.2 Comparison Between JDO and Entity Beans

485Index

Index

3-tier architecture 22

A
ABAP 71

business logic 345
presentation logic 362

ABAP application 436
ABAP development environment 138
ABAP Dictionary 139, 141, 459
ABAP Editor 139, 459
ABAP Interpreter 459
ABAP Objects 83, 137, 147, 459
ABAP Personality 26, 459

authorizations 46
ABAP program 459
ABAP VM (Virtual Machine) 26, 459
ABAP Web service 315

SOAP request 327
SOAP response 328

ABAP Workbench 138, 207, 459
ABAP/Java integration 60
Abstract class 459
Abstract method 459
abstract, keyword, Java 129
ActiveX 459
Adapters 430
Adaptive RFC 396
Aggregation 459
Alert monitor 452
ALV 138
American Standard Code for Infor-

mation Interchange (ASCII) 460
Applet 460
Applet container 172, 460
Applets 49, 168
Application class 150
Application client archive 173
Application client container 460
Application hierarchy 459
Application integration 20
Application layer 24
Application Link Enabling (ALE) 29,

315, 459
Application Modeler 402
Application platform 20

Application programming interface
(API) 460

Application server 460
Application Tracing Service 451
Application tracing, Java 451
Arrays, Java 100, 121

multidimensional 100
Assembler 445
Assembly project 58
Association 460
Attributes, Java 118, 460

hiding 126
Authentication

J2EE 52
Java 203

Authorization 46, 460
EJBs 53
J2EE 53
Java 204

Authorization concept 460
Authorization field 46
Authorization object 46
Authorization profile 47
Authorization system 46
AWT 460

B
Back-end 460
BAPI 345, 460
BAPI Explorer 139, 346, 460
Basic authentication 53
Batch input 460
Batch input session 460
Bean-managed persistence (BMP) 179,

286
Beans 461
Binding, JNDI 190, 461
Bottom-up modularization 461
BPM 461
Branching, CVS 245
Break, statement, Java 110
Breakpoint 145, 461
BSP application 149, 437

stateful 152
stateless 153

Index486

BSP extensions 155, 364, 367, 438
Buffer control, JSP 187
Build 461
Business Application Programming

Interfaces (BAPI) 137, 345
Business Connector 28, 461
Business Framework 461
Business intelligence 20
Business logic 344, 461

Java 170, 214
Business object 346, 461
Business Object Builder 139, 461
Business Object Repository 346
Business Server Pages 23, 42, 138, 151,

364, 461
Business Workflow 461
Byte code 461
Byte code enhancer 287

C
C++ 445
Caching 31, 461
CALL METHOD, statement 86
Call-by-reference 461
Call-by-value 461
CASE, statement 79
Cast, Java 99
Casting 461
CATT 461
CBS 461
Certificate interfaces 202
CGI 462
Change Management Service (CMS)

58, 239
Change request 462
Changing parameter 462
Class 459, 462

ABAP 147
ABAP Objects

abstract 89
final 89

abstract 462
concrete 462
inner 462
Java 115

abstract 129
defining 116
extending 125

CLASS ... ENDCLASS, statement 84
Class attribute 462
Class Browser 462
Class Builder 139, 147, 462
Class inheritance 462
Class library 462
Class members 119
Class method 462
Class pools 73
Client 462
Client tier 52
Clients, Java 167
CMS 462
Code Inspector 144, 443, 445
Collision control, CVS 245
COM 462
COM/DCOM Connector 29
Comments, Java 94
Common Client Interface (CCI) 195
Compiler 462
Component Build Service (CBS) 58,

215, 238, 461
Component controller 399, 462
Component interface 398, 462
Component model technologies, Java

174
Component, Web Dynpro 462
Composite Application Framework 21,

462
Composite profile 47
Composite role 47
Composition 463
Compression 427
Computing Center Management

System (CCMS) 59, 450
Concurrent Version System (CVS) 244
Connection context 273
Connection management, Java 195
Connection pool 264, 300, 304
Connectors 28
Consolidation routes 159, 463
Consolidation system 463
Constants

ABAP 74
Java 99

Constructors 117, 463
Container 463
Container services 171

487Index

Container-managed persistence (CMP)
179, 280, 463

Containers, Java 170
Context (Web Dynpro) 463
Context Builder 463
Context Editor 404
Continue, statement, Java 111
Contracts 195
Control Framework 362, 463
Control structures

ABAP 78
Java 107

Control technology 137
Controller Editor 404
Controllers 150, 398, 409, 423

ABAP 438
Java 439

CORBA 33, 178, 190, 463
Coverage Analyzer 443, 445
Credentials 203
Cryptographic services 202
CSF 463
CSS 463
CSV 463
Custom controller 397, 399, 416
Custom controls 362
Custom Tags 463
Customizing requests 161
CVS 240

D
Data Control Language (DCL) 255
Data Definition Language (DDL) 255
Data Dictionary project, Java

creating 226
Data element 464
Data encapsulation 464
Data Manipulation Language (DML)

255
Data Modeler 139, 141, 463
Data objects, ABAP 74
Data structures, Java

deployment 233
Data types 141, 464

ABAP 75
Java creating 228
JCo 302

Database 463

Database commit 464
Database independence 30
Database integration 30
Database layer 24
Database queries

performance 442
Database rollback 464
Database tables 142

defining 230
Database transaction 464
Database, logical 464
DB access layer 265
DCOM 33, 464
DCOM Connector 315
Debugger 464
Debugging 144
Declarative programming 464
Decrement operators 101
DELETE, statement 83
Delivery routes 160
Delphi 445
Delta handling 426
deltav 243
Deploy process 233
Deployment 440, 464
Deployment descriptor 182, 464
Design patterns 464
Design Time Repository (DTR) 58, 215,

238
Development class 464
Development cycle, Web Dynpro 465
Development environment 465
Development objects

ABAP 143
Java 216

Development paradigm, Java 212
Development projects

ABAP 441
Development system 465
Dialog program 465
Diff algorithm 245
Distributed statistics record (DSR) 59,

450
DNS 190
DO, statement 80, 109
Doc comment 132
Document management systems 240
Document Object Model (DOM) 196

Index488

Document Type Definitions (DTD) 196
Documentation conventions 132
DOM 465
Domain 143, 465
Driver model 431
DTD 465
DTR 465
Dynpro 145, 362, 391, 465

E
EAR 465
ebXML 465
ebXML Registry 197
eCATT 165
Eclipse 465
EIS 465
EJB 465

assembly project 221, 372
class diagram 332
container 171, 175, 350, 453, 465
project 220, 372
proxy class 61, 312

Electronic Data Interchange (EDI) 29
Encapsulation, Java 128
Endless loops, Java 110
Enjoy controls 465
enjoySAP 137, 465
Enterprise application project 222, 372,

387
Enterprise archives 173
Enterprise information system (EIS)

167, 170
Enterprise JavaBeans 174, 176

deployment 182
Enterprise JavaBeans archives 173
Enterprise Services Architecture (ESA)

18, 36
Entity bean 170, 220, 279, 466

life cycles 177
equals(), method, Java 122
ERP 466
Error handling 466

JSP 186
ESA 466
Escape sequences, Java 97
Event 466
Event block 466
Event handler 152

Event, ABAP Objects 89
Exception 466
Exception handling 466

Java 112
Exchange connections 276
Executable programs, ABAP 72
Export parameter 466
Extended program check 144
extends, keyword, Java 125
Extreme Programming (XP) 249

F
Façade pattern 428
Field symbols 77
Filters 423

servlets 219
final, keyword, Java 127
for, statement, Java 109
Form-based authentication 53
Framework 466
Function 466
Function Builder 139, 466
Function code 466
Function group 73, 466
Function library 466
Function module 146, 466

G
Garbage collection, Java 122
Garbage collector 466
Generation limit 145
Get method, Java 118
Group, J2EE 52
GUI status 146, 466
GUI title 146, 466
GuiXT 466

H
Hash 466
Host expressions 272
Host variables, Java 271
Hprof 447
HTMLB 367, 438, 467
HTTP 240, 241
HTTP error pages 186

489Index

I
IAC 467
IBM WebSphere 19
ICM 467
IDE 467
Identifiers, Java 95
IDoc 29, 315, 467
IF, statement, ABAP 78
If, statement, Java 107
implements, keyword, Java 130
Import parameter 467
Import queue 162
import, statement, Java 124
Inbound call 300
Inbound plug (Web Dynpro) 392, 467
Include programs 73
Includes 467

JSP 189
Increment operators 101
Information integration 20
Inheritance

ABAP Objects 88
Java 124, 127
preventing 127

Initialization 467
INSERT, statement 81
Instance 467
Instance members 119
Instantiation 467
Integration Engine 24, 30
Interface 467
Interface inheritance 467
Interface pools 73
Interface, ABAP 147
Interfaces, ABAP Objects 87
Interfaces, Java 129
Intermediate code 467
Intermediate Language (IL) 26
Internal table 77, 467
Internet Application Component (IAC)

40, 137
Internet Communication Framework

152
Internet Communication Manager

(ICM) 23, 24
Internet Inter-Object Request Broker

Protocol (IIOP) 178
Internet service, ABAP 148

Internet Transaction Server (ITS) 18,
137, 390, 467

Interpreter 467

J
J2EE 91, 467

security 51
J2EE applications, architecture 167
J2EE component 468
J2EE module 468
J2EE server 171, 468
J2ME 91, 468
J2SE 91, 468
Jakarta Struts 424, 439, 440
JAR 173, 222, 468
JarClientAPI 222
Java 468

business logic 347
presentation logic 369
security 48
versioning and transport 58

Java API for XML Registration Services
(JAXR) 197

Java applet 468
Java application 438, 468
Java Application Descriptor 459
Java archive 222
Java Authentication and Authorization

Service (JAAS) 202
Java byte code 468
Java Community Process 451
Java Connector (JCo) 28, 298
Java Cryptography Architecture (JCA)

202
Java Cryptography Extensions (JCE)

202
Java Data Dictionary 269
Java Data Objects (JDO) 198, 287
Java Database Connectivity 198
Java Database Objects (JDO) 217
Java Development Infrastructure (JDI)

58, 237
Java Dictionary 214, 217, 223, 407, 468
Java IDL 468
Java Message Service (JMS) 191, 354,

355
Java Naming and Directory Interface

(JNDI) 173, 175, 190, 350

Index490

Java Native Interface (JNI) 298
Java platform 91
Java Remote Method Protocol (JRMP)

178
Java security model 51
Java Server Pages (JSP) 23, 42, 169, 184,

219, 370
error handling 186
life cycle 186
technology 468

Java Standard TagLib (JSTL) 185
Java Transaction API (JTA) 192, 200
Java Virtual Machine (JVM) 90
Java Virtual Machine Profiler Interface

(JVMPI) 447
Java Web services 331
Java Web Start 468
Java XML API (JAXP) 196
Java XML RPC API 197
Java, concepts 90
JavaBeans 174, 176, 468

components 188
deployment 182

JavaMail 468
JavaOS 468
JavaScript 468
JavaServer Faces 424, 439, 440
JAXM 468
JAXP 468
JAXR API 197
JBC 469
JCA 469
JCo 60, 61, 469
JCP 469
JDBC 170, 261, 264, 265, 469

API 197
drivers 199
result set 278
with SQLJ 276

JDI 469
JDK 469
JDO 469

development 288
JDOM 469
JES 469
JFC 469
Jini 469
JMS 469

client 354
provider 354

JMX 451, 469
JNDI 469

lookup 439
lookup service 171

JNI 469
JNLP 469
JRA 470
JRE 470
JRun 470
JSP 470
JSP/servlet application 439
JSTL 470
JUnit 248
JVM 470
JWS 470

K
Key management interfaces 203
Keywords, Java 95
Knowledge Management (KM) 20

L
Layout manager 470
Lazy initialization 434
LDAP 190, 470
Life cycle management 21
List 470
Listeners, servlets 219
Lists 363
Literals, ABAP 74
Local object 470
Lock object 143, 470
Logging, Java 450
Logical databases 256
Loops, ABAP 79
LUW 470

M
main, method, Java 120
Mapping 470
Mass transport 162
Master Data Management (MDM) 20
ME, self reference, ABAP 117
Media types 187
Members 116
Memory management 445

491Index

Memory pipes 25
Menu Painter 145, 470
Message broker 355
Message management, Java 196
Message-driven bean 354, 470

deployment descriptor 359
life cycle 357

Metadata 470
Method 471

ABAP
redefining 126

ABAP Objects 85
abstract 471
Java 114, 118

abstract 129
overwriting 126

METHOD ... ENDMETHOD,
statement 85

Method signature 114
Microsoft .NET 19
Middleware 297, 471
MIDlet 471
MIDP 471
MIME 471
MIME objects 151
MIME Repository 156
Model 394, 408, 423

ABAP 437
Java 439

Modification Browser 139, 471
Modifiers 128, 131
MODIFY, statement 82
Module 471
Module pool 72, 471
Monitoring functions

Java 450
Multilingual capability 425
Multiple output formats 426
Multithreading 471
MVC 42, 138, 370, 422, 471

authentication 423
authorization 423
data visualization 425
hierarchy and distribution 424
multilingual capability 425
validation 423

N
Naming conventions

ABAP 132
Java 131

Native JDBC 262
Native SQL 32, 265, 471
.NET 459
.NET Connector 29
Next screen 471
null, keyword 101

O
O/R mapping 281
Object 471
Object catalog 471
Object class 46
Object list 471
Object Navigator 140, 471
Object services 257
Object/relational persistence 279
Object-oriented programming 91

ABAP 83
attributes 92
class definition 92
classes 92
encapsulation 93
inheritance 93
methods 92
objects 92

Object-relational mapping 32, 472
Objects, Java 116, 121

creating 118
finalization 122

ODBC 472
OLE 472
Open Database Connectivity (ODBC)

198
Open SQL 30, 80, 255, 472

Performance 441
Open SQL Engine 217, 263, 265, 268
Open SQL for Java 261
Operators, Java

+ 105
assignment 104
bit 102
Boolean 104
instanceof 105
new 105

Index492

point operator (.) 105
priorities 106
relational 103
type conversion 105

Outbound call 306
Outbound plug (Web Dynpro) 392,

472
Outline view 404
Overloading 115, 472
Overwriting 126

preventing 127

P
Packages 143, 472

Java 123
Packaging, Java 172
PAI 362, 472
Parameters 472

ABAP 75
Java 115

Parent class 472
Patterns 472
PBO 362, 472
People integration 20
Performance

ABAP 441
analysis tools 443
Java 445

Performance trace 145
Java 451

Persistence Service 257
Persistent objects 257
Personality 472
Pluggable Authentication Module

(PAM) 203
POH 362
Pointer arithmetic 445
Point-to-point model, JMS 193
Polymorphy 472
POV 362
PreparedStatement object 266
Presentation layer 23
Presentation logic 361
Pretty Printer 472
Private 472
Process integration 20
Processing block 473
Production system 473

Profilers 59, 447
Program status 473
Program structure, ABAP 72
Program type 473
Programmatic interface 398
Programs 144
Project life cycle, Java 207
Properties view 404
protected 473
public 473
Publish/subscribe model, JMS 194

Q
Queue 356, 357

R
R/3 17
RAR 173, 473
Realm 52
Reference 473
Reference equivalence 122
Remote Function Call 29
Report 144
Report program 473
Repository 473
Resource adapter archives 173
Return, statement, Java 111
Reuse components 138, 473
Reuse Library 139, 473
Revisions, CVS 245
RFC 29, 60, 61, 298, 473
Rich client 473
RMI 190, 473
Role, J2EE 47, 52
Runtime analysis 140, 145, 443, 473
Runtime environment 473

S
SAAJ API 197
SAML 473
Sandbox model 49
SAP Business Warehouse (BW) 20
SAP Enterprise Portal 20
SAP Exchange Infrastructure (XI) 20,

197, 315
SAP GUI 473
SAP GUI for HTML 40, 213
SAP GUI for Java 38

493Index

SAP GUI for Windows 36
SAP J2EE Engine 26

standards 27
SAP List Viewer 138
SAP Mobile Infrastructure 20
SAP NetWeaver 19, 474
SAP NetWeaver Developer Studio 44,

58, 182, 207, 438, 447, 474
Java Dictionary 214
perspectives 218
testing 248
user interface 209

SAP Query 71
SAP technology 17
SAP Web Application Server 18, 20

architecture 21
as Web service client 35
as Web service provider 35
components 24
frontends 36
transport system 56
versioning 54

SAP xEM 21
SAP xMA 21
SAP xPD 21
SAP xRPM 21
SAPconnect 314
SAPPhone 314
SAX 474
Screen 138
Screen Painter 145, 474
Scriptlets, Java 186, 474
SDM 474
Search help 143, 475
Security

J2EE 51
Security concept 474
Security management, Java 196
Security policy, Java 204
SELECT, statement 80
Selection screen 363, 474
Selection table 474
Server cache 25
Service 474
Service gateway 318
Service interface 316
Service Provider Interface (SPI) 202
Service-oriented architecture (SOA) 17

Servlet 219, 370, 474
Servlet specification 183
Session (SAP) 475
Session beans 170, 180, 221, 347, 475

as Web services 350
Sessions, Java servlets 25, 183
Set method, Java 118
Short-circuit evaluation 104
Signature 475
Simple API for XML (SAX) 196
Simple Object Access Protocol (SOAP)

197
Single transport 162
SL 475
SOAP 29, 33, 475
SOAP Runtime 62, 316
SOAP transport binding 330
SOAP with Attachments 330
SOAP with Attachments API for Java

(SAAJ) 197
Software Delivery Manager (SDM) 58,

239
Software Logistics (SL) 58, 239
SQL 255, 475
SQL for Java (SQLJ) 198
SQL processor 268
SQL processor layer 265, 268
SQL Studio, creating data 235
SQL trace 140, 265, 443, 444, 475
SQLJ 269

debugging 275
development 271, 274
Syntax 270

SQLJ Checker 275
SQLJ result set iterator 278
Stateful session beans 348
Stateless session beans 348
Statement cache 267
Statement pooling 266
static, keyword, Java 119
Status 475
Structure 475
Stub 318, 475
Stub/skeleton 178
Subclass 475
Subroutine pools 72
Subroutines 475
SunONE 475

Index494

super, keyword, Java 125
Superclass 475
Swing 475
Switch, statement, Java 108
Synchronized, statement, Java 111
Syntax check 144, 475
Syntax elements, ABAP 72
System data container 165
System field 475

T
Table, internal 476
Tag 476
Tag Browser 367
Tag library 367, 476
Tagging, CVS 246
TagLibs 371
TagLibs, JSP 185
Team collaboration, Java 237
Template 476
Test configuration 166
Test data container 166
Test scripts 165
Testing

ABAP 165
Java 248

Text elements 476
Text symbols 476
Thin client 476
this, keyword, Java 117
Threads, Java 111, 476
Three-tier architecture 476
Throw, statement, Java 112
throws, statement, Java 113
Title bar 476
Top-down modularization 476
Topic 355, 356
Total cost of ownership (TCO) 19
Tracing 31
Transaction 476

SCI 443, 445
SCOF 445
SCOV 443
SE11 459
SE24 462
SE30 443
SE37 466
SE81 459

ST05 443, 444
Transaction capability 31
Transaction code 476
Transaction data 476
Transaction management, Java 195,

196
Transaction Service 257
Transport group 476
Transport layer 159, 160, 476
Transport Management System (TMS)

159, 164
Transport Organizer 56, 139, 163, 477

extended view 164
tools 164

Transport process 57
Transport protocols, EJB 177
Transport request 477
Transport system 56, 157
Transporting 476
Try-catch-finally, statements, Java 113
Type conversions, Java 99

U
UDDI 33, 34, 197, 477
UI element 477
UML 477
UML-XMI 395
Unicode 477
UPDATE, statement 82
URL mappings 386
User master record 47
User, J2EE 52
Using parameter 477
UTF-8 477

V
Value domain 477
Variables

ABAP 74
Java 98

Variants 166
Vendor SQL 264
Version catalog, ABAP 157
Version control, CVS 245
Versioning 54

ABAP 157
Java 237

View 152, 400, 410, 423, 477

495Index

ABAP 437
Java 439

View controller 399, 415
View Designer 403
View set 392, 398
Views 142, 398
Visibility areas, ABAP Objects 84
Visibility, Java 128, 477
Visual Administrator 268, 451
VM 477

W
WAR 173, 220
Web Application Builder 148, 343, 364
Web application project 372
Web archive 173, 220
Web components, Java 169
Web container 453, 477

Java 172
Web Dynpro 23, 44, 138, 216, 369,

389, 477
for ABAP 437

Web Dynpro application 393, 437,
438, 477

Web Dynpro components 397
Web Dynpro controller 477
Web Dynpro Explorer 402
Web Dynpro IDE 401
Web Dynpro model 477
Web Dynpro project 478
Web Dynpro view 478
Web Dynpro view set 478
Web Dynpro window 478
Web project 218, 372
Web service client project 222
Web service technologies, Java 174
Web services 18, 29, 33, 60, 61, 315

ABAP 315
Java 331
process flow 33

Web tier 52
WebDAV 215, 240, 477

locking 242
metadata 243
namespace management 241

Where-used list 478
WHILE, statement 79
while, statement, Java 108

Windows 398
Work area 478
Workbench requests 161
Worker threads 25
Workflow 478
WSDL 33, 34, 478

X
X.509 53, 478
X/Open XA 202
xApp 21, 478
XI 474
XMI 478
XML 478
XML descriptors 220, 221
XML Metadata Interchange Format

(XMI) 395
XML schema 196, 478
XML Stylesheet Language Transfor-

mation (XSLT) 196, 478
XSL 478

	Extract - SAP Press
	The ABAP® Developer's
Guide to Java

	A. Schneider-Neureither, B. Noll, A. Schlindwein, A.Schüngel, D.Wittenbeck

	Contents
	--
	Foreword
	[...]
	Chapter 6: Application Layers
	6.1 Retrieval Logic and Persistence
	6.1.1 ABAP
	6.1.2 Java

	(...)

	Index
	--
	http://www.sap-press.com/
	(c) Galileo Press GmbH 2005

