

Copyright © 2005 by Klee Associates, Inc. Page 1

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

By Axel Angeli, logosworld.com and Lynton Grice, Consultant

Editor’s Note: Axel Angeli and Lynton Grice face off in this defining showdown of Java versus
ABAP as they assess which is the most effective development environment for SAP Portals
applications. Pull off your boots and get comfortable while Axel and Lynton show you the good,
the bad, and the ugly aspects of each environment in this comprehensive, 35-page discourse for
developers. The authors give a detailed account of the effort put forth in implementing a portal
application in Java, and then two years later, a “nearly identical” application in BSP. Axel and
Lynton use side-by-side code examples and feature comparisons to demonstrate significant
issues such as finding the right technical skills, language complexity and learning curves,
database needs, and transport and version management for each language. The goal? To
identify the best environment to support infrastructure stability and production agility By the end of
the paper, you'll know why these authors think that ABAP BSP means "high noon" for Java.

Introduction
This article describes the experiences of implementing a nearly identical SAP Portal application,
first in Java, and two years later, in BSP. This article attempts to give a practical viewpoint on
Java and BSP development in the Portal production environment. It has not been written to
promote Java over BSP or vice versa, but rather to distil some “ground level” insight into how the
languages compare in complexity and “user friendliness” from a development perspective—while
still being able to get the job done!

The Right Strategic Choice for Portal Development

The strategic choice a company makes with regard to the development environment in the
enterprise can have a huge impact on that company’s agility and productivity going forward.
Whatever choice the company makes, it will require a serious amount of investment to establish
an infrastructure for production, testing, and development, along with permanent costs in training
(for the necessary technical skills). Through a series of coding examples and side-by-side
comparisons, we will assess the pros and cons of both ABAP and Java development. By the end
of the paper, readers will have a clear sense of why we feel ABAP and BSP remains the
preferred option for most Portal development projects.

The “standards-based” approach of the SAP Portal has given companies the flexibility to make
best use of their current programming skills, while still being able to produce the rich Portal
content demanded by the business. Getting a programmer to learn a new programming language
can be a very daunting task and often requires a deep paradigm shift in mindset. Take, for
example, the task of trying to transform a traditional R/3 ABAP developer into a modern day Java
developer—this is more often than not a VERY difficult move. Java, BSP, .NET, and WebDynpro
are the matrix of Portal technologies that need to be carefully understood, when deciding on a
strategic Portal development language.

Finding the Best Practical and Economical Solution

Sure, a company can “mix and match” here and there, but making best use of your current
resources should be your first priority. Reading about these “Portal technologies” is one thing—
understanding them on the practical level is another. It is not only the question of Java or ABAP,
but also of the environment used. You must never forget that allowing several development

Copyright © 2005 by Klee Associates, Inc. Page 2

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

frameworks will mean doubling the education for the maintenance team, sharing precious time
(for gaining experience between contending areas), and dealing with possible conflicts in
collaboration during production. On the other side, it should not be underestimated that a friendly
competition between technologies can have an acceleration effect on productivity and innovation.
ABAP Objects got the final push towards object orientation mainly due to the rivalry with Java. So
the sum of TCO (Total Cost of Ownership) and ROI (Return on Investment) is the final value.

Getting an SAP Portal developer’s viewpoint on development language choice is by no means an
easy task. The Java developer will stress the openness and flexibility of the open source software
over the proprietary approach delivered by SAP. The BSP developer, on the other hand, will
probably talk about the SAP transport system, debugging features, and integrated repository to
get his case across. Finding a fully “bi-lingual” SAP Portal developer in both Java and BSP/ABAP
(with a good amount of business knowledge in both) is not easy.

This discussion tackles this problem head-on by portraying certain segments and findings by one
such “bilingual” developer (certified in both Java and ABAP) over the past two or so years. As the
authors come from the two different ends of technology, the respective benefits and
disadvantages of the language framework could be clearly worked out. Here are the findings:1

J2EE Versus SAP Web AS
Although a separate discussion on its own2, the known robustness and reliability of the underlying
application framework is a very important one that influences application development directly.
The SAP kernel has proved its reliability and stability over the years, and is definitely a force to be
reckoned with when analyzing application frameworks. Although J2EE has numerous benefits to
the extended enterprise, the relatively “young” framework still has numerous questions
surrounding its efficiency and stability.

In our Java development experience for EP 5.0, a relatively simple code error had the potential to
cause the J2EE engine to crash. Besides analyzing the accompanying Java “error stack trace”
and accompanying log files, the error resolution could potentially also involve the “SAP Portal
administrator”. His or her role would typically include reviewing J2EE configuration files and/or
applying one or more SAP notes (and possibly re-starting the J2EE engine). This did not help in
speeding up the development cycle of Java iViews. On the positive side, however, the newer
version of the SAP Portal (EP 6.0) seems to have improved in “robustness” over the earlier
releases of EP 5.0, with regard to the J2EE engine, etc., and general user friendliness.

As mentioned earlier, the SAP application framework is known for its stability and reliability. In my
BSP development experience for EP 5.0, I have never seen or even heard of a scenario (or piece
of ABAP code) that caused the SAP instance to crash.

On the application framework level, SAP Web AS can definitely compete directly with J2EE; both
in regard to development and in terms of general support for “open standards”. In fact, probably
one of the biggest advantages of the SAP Web AS framework is the seamless integration of the

1 It should be noted that the authors come from the two different ends. While Lynton comes from
the “Java world” into the “SAP world”, Axel comes from the traditional ABAP line. Both have done
considerable amounts of development in each language.
2 See "The Clash of the Titans" in the SAPtips Document Library in the Web AS and
NetWeaver™ section. i

Copyright © 2005 by Klee Associates, Inc. Page 3

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

development environment with the repository and data dictionary. J2EE cannot compete with
SAP Web AS on this level.

Under the code name “Unbreakable Java”, SAP is currently putting in a great deal of effort in
order to build a new J2EE framework on top of the reliable ABAP engine. Subtitled as the
“Always On Java” initiative, it addresses and critiques the robustness of the J2EE
implementations. But it will take some time until it is available to the public, so it is still worthwhile
to concentrate on the current J2EE releases.

A Sample Portal Application

When trying to determine whether one programming language is easier to use than another, it is
no use comparing them on the “Hello World” level. Some form of complex “nuts and bolts” code
needs to be written and analyzed in order to have a true comparison.

Also, just repeating the alleged object-oriented features of a language does not help further.
Completeness, flexibility, and readability are high value items to consider. The language should
be able to map common design patterns one by one into appropriate code. In these points, both
ABAP and Java perform only moderately well compared to the “ideal” programming language.
But let us do some practical things to get a feeling of the essentials with respect to Portal
development.

As an example, the solution we have chosen is to enter a Request for Quotation (RFQ) via the
SAP Enterprise Portal that we implemented first in Java, then a good while later, again in BSP.

The RFQ procedure is a fairly complex process in SAP. Typically, transactions ME42 and ME43
are used to change and display RFQ data in SAP. Allowing a supplier to view, update, and print
RFQ information directly from the SAP Portal has numerous time and cost saving benefits to a
company.

Figures 1 and 2 show a particular “RFQ iView” that was first developed in Java and later in BSP.
Some of the functionality provided in the iView includes:

• Printing the selected RFQ (via a custom SmartForm)

• Updating “pricing conditions” related to an RFQ

• Adding “tooling information” to an RFQ

• Viewing material, quality, engineering, transport. and packaging information for an RFQ

These two screenshots of the RFQ iView show the typical functionality provided.

Copyright © 2005 by Klee Associates, Inc. Page 4

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

Figure 1: RFQ iView Example – RFQ Quote Maintenance

Figure 2: RFQ iView Example – RFQ Tooling Information

The “RFQ iView” was complex enough to make a good comparison between Java and BSP.
Code snippets and observations follow.

Finding the Right Technical Skills

When trying to source SAP Portal developer skills, one can immediately see that there is
potentially a much larger pool of Java developers out there than ABAP developers. This is mainly
due to the large output from universities that have a passion for Java nowadays. However, this
assertion is relative, and hence debatable, because the vast majority of Java developers have no
(or only little) experience in enterprise application development. They write programs, but not
applications, and have difficulties in understanding and communicating practical business issues.

Copyright © 2005 by Klee Associates, Inc. Page 5

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

In addition, the practical applications written in Java are limited and concentrate mostly around
portal developments or smaller application add-ons. This is also mirrored on the job markets.
While there is still a high demand on enterprise level ABAP developers, the opportunities for Java
developers are still a niche market.

Language Complexity
Having made the transition from Java to ABAP, we can honestly say that Java is a far more
complex language than ABAP. ABAP’s syntax (which stems from the more readable 3rd
generation languages like PASCAL, COBOL, and dBASE) is relatively simple to pick up, and you
get a much better understanding of the underlying business processes at the same time.

Time is money in any business environment. When developing a Java iView for the SAP Portal,
you would typically need TWO developers for any one application—one Java developer for the
front-end, and one ABAP developer for the back-end.

From a business point of view, it is not a very comfortable situation needing TWO developers to
solve ONE problem. It is not economical, as you block two widely redundant resources, and it is
often awkward as the two developers need to communicate a lot with each other to synchronize
their work. (To many, however, this would seem fine, as either programmer’s work should be
totally transparent to the other.) In reality, this synchronization never happens to a satisfying
degree, leading in tradeoffs regarding the quality of work. When using BSP development, you
have a tool on hand that allows you to achieve the same goal with only one developer, thus
circumventing the above mentioned difficulties.

Reality may teach another lesson: the only efficient and successful path for integrated
development is having skilled developers who understand both worlds – ABAP and JAVA –
equally well.

Think about the “potential” application time needed for Java iView development: meetings with
both developers; specifications for both developers; development and testing for both developers;
and obviously keeping both developers skilled and trained in their respective technologies. These
costs in time, effort, and maintenance can quickly add up.

Using the Java Connector (Jco) library3 to communicate from Java with a disparate SAP system
is very well documented and easy to use. The problem is that there are two developers needed to
get a relatively simple Java iView onto the SAP Portal. Different development speeds, and higher
expectations from either side, can slow down application development pretty dramatically, and
require a high amount of patience to avoid animosities and rivalry. From a Java developer’s
perspective, receiving export parameters like LIFNR, EBELN, etc., from a function module in R/3
can be pretty confusing as first. Furthermore, figuring out how the application fits into the
underlying business process can be pretty difficult to grasp.

ABAP is Easier to Learn
Conversely, it is a pure frustration for an ABAP, PASCAL, ADA, or Visual Basic developers when
they encounter the inflation of parenthesis and curly brackets, which still dominate the overall
layout of a Java class.

3 The Java Connector JCo had been originally developed by Thomas Schuessler of arasoft.de in the later
1990s

Copyright © 2005 by Klee Associates, Inc. Page 6

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

With ABAP and BSP development, you have ONE developer doing the entire application. The
understanding of the business process from a developer’s perspective cannot be stressed
enough. This is definitely one of the big advantages found in BSP development, in that ABAP
developers can utilize business process knowledge already gained from years of “traditional”
experience.

So the conclusion is, as long as enterprises are driven by R/3 (and hence ABAP – back-end
servers), a considerably elevated degree of ABAP skill is indispensable. This implies that you can
do your future work in Java with a great deal of ABAP know-how or you find a way to continue
fulfilling your work in ABAP, a way offered through BSP developments.

When looking at what a programmer needs to do in order to get a basic SAP Portal application up
and going, it soon becomes obvious that ABAP is the more attractive choice. Let’s take a closer
look at this.

Syntax
ABAP syntax is much easier to read and learn than Java! Most of the SAP developers out there
with a little Java knowledge will agree that the lines of code to open a file and output it to the
screen, for example, are easier to read and learn in ABAP than in Java.

Let’s take a look at some code:

data: lv_filename(128) TYPE c default ‘/usr/tmp/myFile.txt’,

 lv_buffer(128) TYPE c.

…

open dataset lv_filename for input in text mode.

….

do.

 read dataset lv_filename into lv_buffer.

 if sy-subrc <> 0.

 exit.

 endif.

 write / lv_buffer.

enddo.

…

Figure 3: Example of ABAP Code

Copyright © 2005 by Klee Associates, Inc. Page 7

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

…

private static final int BSIZE = 1024;

…

FileChannel fc = new FileInputStream(“myFile.txt”).getChannel();

ByteBuffer buffer = ByteBuffer.allocate(BSIZE);

fc.read(buffer);

buffer.flip();

while(buffer.hasRemaining())

 System.out.print((char)buffer.get());

Figure 4: Example of Java Code (Typical Scenario Using java.nio.* Package)

From our experience in BSP development, we have found that we need to do substantially less
code in ABAP than Java to get the same functionality working on the SAP Portal.

One big advantage of Java development using Eclipse is the “intellisense” feature provided when
writing code that displays the possible properties and parameters while you type. ABAP is not at
that stage yet, and you often have to go to transaction SE24 just to see what properties, methods,
(and associated parameters) can be used with a certain object. You can use “pattern” but it is not
the same as a nice “drop down” list box of available properties and methods.

Figure 5: Intellisense Feature (to Help with Typing Code in Eclipse)

Database Access

One of the main strengths of ABAP is its database access layer that is an integral part of the
programming language itself, and models a dialect of the open SQL standard. This, combined
with the tightly integrated development environment (repository, data dictionary, etc.), frees the
developer from all database connection issues typical in most application development
environments.

In ABAP the developer is not required to care for any “open connection” / “close connection”
statements, as shown in Figure 6.

Copyright © 2005 by Klee Associates, Inc. Page 8

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

CALL FUNCTION 'Z_RFQPP_GETDETAIL' DESTINATION lv_dest

 EXPORTING

 document = lv_ebeln

 IMPORTING

 …

 TABLES

 …

Figure 6: Illustration: Database Access in ABAP

Java on the other hand needs to explicitly handle the connections to SAP R/3. Figure 7
demonstrates a typical code example of opening a connection to SAP using connection pooling.

…

IJCOClientService clientService =

(IJCOClientService)request.getService(IJCOClientService.KEY);

poolEntry = clientService.getJCOClientPoolEntry("SAPProd500", request);

sapConnection = poolEntry.getJCOClient();

…

sapConnection.connect();

…

try{

 sapConnection.execute(function); //e.g. 'Z_RFQPP_GETDETAIL'

}catch(JCO.AbapException ex) {

…

Figure 7: Illustration: Database Access in Java

One could argue that the Java “connection issues” (compared to ABAP) will definitely improve in
the future with SQLJ (OPEN SQL for Java). This is currently a major feature of SAP Web AS 6.40
and looks very promising. How it matches ABAP’s performance and ease of use is still to be
seen.

The ideal would be, of course, to make SQLJ part of the Java language specification. It will
certainly happen in the context of the upcoming standard for Java Data Objects (JDO). JDO
(similar to .NET’s Active Data Objects) introduces a data access layer that presents any data
provider as a fully self-contained object and cleans the path for pure object databases.

Copyright © 2005 by Klee Associates, Inc. Page 9

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

Connections.
As object databases are still in their adolescence, we need to concentrate on what we find here
today. Java uses the concept of connection channels to connect to a database. Using
connections over an integrated database provides flexibility but makes prototyping more difficult.

While seeing the above Java code for the first time could make you shiver, you should, however,
remain fair and realistic. The need to maintain database connection channels in Java provides for
greater flexibility, as it allows connecting to any kind of data source. On the other hand, rapid
prototyping and agile development become slightly more difficult, due to the missing integration of
the database layer into the IDE. However, in real development situations, this is not too high of a
challenge. In an application development, you would probably create and open the connection
object upon creation of the application object in its constructor code. This will leave you with a
“ready to use” database connection that you can use pretty similarly to the intrinsic ABAP.

Using database connections compared with the fully intrinsic database has, of course,
advantages as well. One advantage is that a database connection does not necessarily have to
be a real physical database, but could well be a virtual interface into some remote Web service.
Imagine AMAZON.COM as a huge bibliographic catalog that you could simply access via SQL,
provided someone wrote a driver that translates the SQL statements into the AMAZON Web
service language.

The true value of the intrinsic OpenSQL language in ABAP is the integration into the
programming language syntax, and that it is interwoven with the data dictionary. Therefore the
compiler can check whether table or column names are actually correctly spelled and exist at all.
In the usual Java scheme, such errors are only detected at execution time, thus eventually
leading into a run-time-error and a program crash upon execution of the statement.

Libraries
Java provides more libraries and associated functionality than ABAP does. While this is a definite
plus in favor of Java, it is immediately diminished by the language constraints that make using the
libraries rather awkward. The Java developer does have to take extra care to download the
appropriate JAR files (if needed), ensure that the classpath environment variable is set correctly,
and use the correct import statements in code in order to use certain classes/interfaces, etc.
IBM’s Eclipse does, however, take much of this effort off of the developer’s shoulders. When it
comes to SAP Portal development, you would like to keep overall complexity and maintenance to
an absolute minimum.

Although a Java developer is provided with a great Portal development environment using IBM’s
Eclipse framework (eclipse.org) and associated Portal Development Kit (PDK), there are still
“unnecessary extras” that need to be looked at and maintained, compared to BSP development.
In any one Java source file, you could find numerous library import statements (as a tribute to
flexibility) that do add increased complexity to the application as a whole. This can be seen in
Figure 8.

Copyright © 2005 by Klee Associates, Inc. Page 10

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

….

import com.sapportals.portal.prt.component.IPortalComponentProfile;

import com.sapportals.htmlb.rendering.IPageContext;

import com.sapportals.htmlb.type.AbstractDataType;

import com.sapportals.htmlb.enum.DataType;

import com.sapportals.htmlb.table.TableView;

import com.sapportals.htmlb.table.DefaultTableViewModel;

….

….

AbstractDataType rowEdited = AbstractDataType.getInstance(DataType.STRING);

….

Figure 8: Illustration: Library Usage Needs to Be Declared in JAVA

ABAP/BSP on the other hand does not require explicit library import statements to be able to
declare and/or use variables, etc., of a specific type, interface, or class. How it works can be seen
in Figure 9.

DATA: lx_my_view TYPE REF TO if_bsp_page.

…

FIELD-SYMBOLS: <fs> TYPE ihttpnvp.

…

Figure 9: Illustration: DDIC Libaries Are Always Known in ABAP Without Declaration

The role of the import statements in ABAP is fully delegated to the data dictionary, which records
any object that exists in the same ABAP instance. Such a repository would certainly be a priority
wish for future enhancements to Java. NET defines the libraries in external manifests so that the
compiler defines contexts. This approach is even more flexible than ABAP, while it retains the full
adaptability of the library use of Java.

Single-Sign-On
One of the focus points of the SAP Portal is to allow seamless interaction with multiple
applications through one, central “unified” framework.

For a BSP developer, the interaction to R/3 is seamless. Should the situation occur where BSP
development occurs on another server making RFC calls into the R/3 back-end; it is up to the
“SAP Portal administrator” to set up the security certificates correctly to enable SSO.

For a Java developer, the SSO side of things is very well documented and relatively simple to
implement. There is, however, more effort required by the developer to implement this correctly.
Figure 10 shows an example of “standard” code required to enable SSO into the R/3 back-end.

Copyright © 2005 by Klee Associates, Inc. Page 11

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

import com.sapportals.portal.prt.component.IPortalComponentRequest;

….

private IPortalComponentRequest request;

….

request = (IPortalComponentRequest) getRequest();

….

poolEntry = clientService.getJCOClientPoolEntry("SAPProd400", request);

….

Figure 10: Illustration: Single SignOn in Java

Session Handling
Most of the SAP Portal applications we have developed did require that the objects have “session
state”. This is handled quite differently in Java compared to BSPs. The “Model-View-Controller”
(MVC) design pattern plays a big role in providing a nice framework for Portal development and
directly influences how “state” is handled, in either Java or BSPs.

Session Handling in JSP
The Java implementation for handling “session state” is relatively simple to implement, but does
require a lot of object instantiation and manipulation. Figure 11 shows the basic interaction
among the Java “JSPDynPage”, the JSP page, and the object itself.

Copyright © 2005 by Klee Associates, Inc. Page 12

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

….

private IPortalComponentRequest componentRequest;

private IPortalComponentSession componentSession;

….

public void doProcessAfterInput() throws PageException {

…

 componentRequest = (IPortalComponentRequest) getRequest();

 componentSession = componentRequest.getComponentSession();

…

 myPortalObject = (PortalObject) componentSession.getValue("myPortalObject");

….

 //Manipulate object’s properties etc are necessary…

….

 componentSession.putValue("myPortalObject", myPortalObject);

…

}

…

public void doProcessBeforeOutput() throws PageException {

….

 setJspName(jspPage);

….

}

Figure 11: Illustration: Code for Persistent Session State in Java: JSPDynPage

…

<jsp:useBean id="myPortalObject" scope="session" class="com.portal.PortalObject" />

…

<hbj:textView id="txtVendor" text="<%=myPortalObject.getVendorName()%>"

design="LABEL"/>

…

Figure 12: Illustration: The JSP Page for the JSPDynPage Example

Copyright © 2005 by Klee Associates, Inc. Page 13

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

Persistence Session Handling in BSP
To get the same effect in BSP, we do it a little differently. Out of pure habit, we have always
ensured that both the “Stateful” and “Supports Portal Integration” check boxes are ticked in the
BSP applications properties. This is depicted in Figure 13.

Figure 13: BSP Application Properties

You do need to beware of abusing this feature too often, as it appears obvious that the session
state needs to be stored somewhere on the BSP server, and so it does. If you have many
simultaneous requests, it may overflow your session state cache.

In Java nearly everything is an object4 and hence the JSP page needs to (typically) reference an
object in “session state”, in order to read its properties, etc., and display them on the Web page.
In ABAP, not everything is an object and, therefore, the developer can just pass through the
variables that are needed on a specific “view,” and not the whole reference variable. This is
shown in the following:

METHOD do_request.

 DATA: lx_tooling_view TYPE REF TO if_bsp_page.

….

 lx_tooling_view = create_view(view_name = 'tooling.htm').

 lx_tooling_view->set_attribute(name = 'TOTAL_TOOLING_PRICE'

 value = lv_total_tooling_price).

….

 call_view(lx_tooling_view).

ENDMETHOD.

Figure 14: Controller Class

A BSP developer is given a very nice maintenance screen when creating a “view” in a BSP
application. There he or she can set the relevant import parameters and associated data types,
etc., to be used by the view. This is depicted in Figures 15 and 16.

4 Java and ABAP (also: DELPHI, .NET, ADA) are – other than SMALLTALK or LISP - object aware but
not bottom-up object oriented. A fully object-oriented language should be extensible by itself. Neither Java
nor ABAP allows this, e.g., you cannot redefine or overload intrinsic operators like assignment (=) or
arithmetics (+,-,*,/).

Copyright © 2005 by Klee Associates, Inc. Page 14

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

Figure 15: Illustration: Maintaining Session Variables in BSP

….

<htmlb:inputField id = "TOTAL_TOOLING_PRICE"

 type = "BCD"

 width = "120"

 disabled = "true"

 value = "<%= TOTAL_TOOLING_PRICE %>" />
Figure 16: Illustration: BSP Page Using Persistence Variables

Although both options solve session state “problems” in their accompanying MVC architecture
quite well, the BSP approach appears to be more sexy than the Java implementation, purely due
to flexibility and general ease of use.

Validation
Experience shows that the amount of time a programmer spends on trying to recuperate from
incorrect entry of data consumes a large amount of the overall development time.

The aim of a “development framework” should be to minimize the amount of time spent by the
developers on validation code, so that they can spend more time on the more important “business
issues”.

Copyright © 2005 by Klee Associates, Inc. Page 15

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

You soon realize that it would take far less time to build great validation processes throughout the
entire BSP application, than it would to do the same in Java. For example, let’s say you have an
HTMLB TableView control on the “view” that allows the user to input data into a “quantity” field
(decimal value). Let’s also say that this field is to be rendered as “user”.

Easy Data Entry Validation in HTMLB
In BSPs all you need to do is demonstrated in the code in Figures 17 and 18, in order to have
proper (built-in) validation on the field. All accompanying JavaScript is generated for you in the
background.

<htmlb:tableView id = "Tooling"

 design = "ALTERNATING"

 ….

 iterator = "<%= ITERATOR %>"

 table = "<%= IT_TOOLING %>"

 width = "100%" >

….

<htmlb:tableViewColumns>

<htmlb:tableViewColumn columnName = "QUANTITY"

 width = "80"

 type = "user"

 title = "Quantity"

 horizontalAlignment = "RIGHT" >

</htmlb:tableViewColumn>

….

</htmlb:tableViewColumns>

</htmlb:tableView>

Figure 17: Illustration: Data Entry Validation in ABAP BSP

Copyright © 2005 by Klee Associates, Inc. Page 16

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

METHOD if_htmlb_tableview_iterator~render_cell_start.

….

 CASE p_column_index.

….

 WHEN lc_quantity_col. //Quantity column

 ….

 lv_quantity = <fs_tooling>-quantity.

 p_replacement_bee = cl_htmlb_inputfield=>factory(

 id = p_cell_id

 value = lv_quantity

 type = 'BCD'

 dovalidate = 'TRUE'

 width = '120'

 alignment = 'right'

 decimals = '2').

 ENDCASE.

ENDMETHOD.

Figure 18: Illustration: Controller Class to Execute the Data Entry Validation in ABAP

You can see that it does not take much to get awesome validation on a field in BSPs. You can get
a similar effect in Java, but it requires more effort. It is actually very surprising how easy it is to
implement validation in BSPs—it certainly saves a lot of time!

The HTMLB extension library houses all of the user controls generally displayed visually to the
user on the SAP Portal. There are still some compatibility issues between the Java and BSP
versions of the HTMLB framework. There are a couple of features found in HTMLB (BSP) that we
did not find in the Java library, but this can be expected to change as the libraries evolve.

One thing you may quickly notice is that the Java HTMLB InputField control does not have the
“doValidate” property.

If you go to the “Class Builder” (transaction SE24) in SAP and type “CL_HTMLB_INPUTFIELD”,
and view its properties and methods, and then view the JavaDocs for the
“com.sapportals.htmlb.InputField” class, you will see that they are quite different in
implementation.

Javascript is No Replacement for HTMLB
You may argue that certain HTMLB controls have an “onClientClick” event through which you can
trigger JavaScript, but once again, not ALL controls have this. We have had to use TabStrip

Copyright © 2005 by Klee Associates, Inc. Page 17

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

controls a lot, and this is one of the controls that has no “onClientClick” event. This is not a
problem for a BSP developer, in that, should the “doValidate” method be set for a specific
InputField, the user will not be able to go to another tab until the InputField’s contents are correct.
This is, however, a little different in Java. The Java developer has roughly three options:

1. Use a combination of methods like

• setRequiresValidation(boolean requiresValidation)

• setValidator(Validator validator) of the “com.sapportals.htmlb.InputField“
class

2. Do server side validation

3. Go through tricky JavaScript generation to get the field validated correctly

The “server side” validation is shown in Figures 19 and 20 and shows the InputField in the
TableView with a little red “error” box surrounding it (if incorrect).

<%@ page import=" com.portal.ToolingTableCellRenderer, … %>

<hbj:tableView id = "Tooling"

 design = "ALTERNATING"

 …

 model = "myPortalObject.getToolingModel"

 width = "100%"

 onNavigate = "onNavigate">

 <%

 Tooling.setUserTypeCellRenderer(new ToolingTableCellRenderer());

 ….

 %>

</hbj:tableView>

Figure 19: Illustration: Data Entry Validation in Java JSP

Copyright © 2005 by Klee Associates, Inc. Page 18

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

public class ToolingTableCellRenderer implements ICellRenderer {

…

public void renderCell(int row, int column, TableView tableView, IPageContext

rendererContext) {

…

String quantity;

InputField ip;

DecimalFormat df = new DecimalFormat("0.00");

…

 switch(column){

…

 case co_quantity_col:

 ip = new InputField("txtQuantity");

 ….

 quantity = tableView.getValueAt(row, column).toString().trim();

 ip.setString(quantity);

 ….

 try{

 Double.parseDouble(quantity);

 df.parse(quantity);

 }catch(NumberFormatException ex){

 ip.setInvalid(true);

 }catch(ParseException e){

 ip.setInvalid(true);

 }

…

 ip.render(rendererContext);

 break;

 }

…

}

Figure 20: Illustration: Class that Executes the Data Entry Validation in Java

Copyright © 2005 by Klee Associates, Inc. Page 19

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

Bear in mind that the developer still needs to write code too. For instance, you will want to keep
the user on the current tab and display a suitable error message. All these “extras” add unwanted
time to the development cycle. And if the developer wishes to try the “JavaScript generation”
route, then this would look similar to the code in Figure 21, for a basic field on the screen, not to
mention what a “TableView JavaScript routine” would look like!

….

<script language="javascript">

function validateVendor(){

 if(document.mainform.txtVendorNumber.value == ""){

 alert(“Please enter a vendor number.”;

 return false;

 }else{

 return true;

 }

}

</script>

….

<hbj:button id = "myButtonID"

 onClick = "onButtonClicked"

onClientClick = "if(!validateVendor())htmlbevent.cancelSubmit = true;"

 text = "Go" />

….

Figure 21: Illustration: Data Entry Validation with Hand-coded JavaScript

So, in the end, validation can be handled equally well in Java and BSP, but we feel the BSP
version requires less object manipulation and coding effort and allows for much easier support
and error tracking when unwanted effects appear during runtime in a production environment.

Development Environment
As mentioned previously, the integrated ABAP Workbench, repository, and data dictionary are
really hard to beat. IBM Eclipse is a pleasure to work in, but still has some way to go in order to
match SAP in this arena, and .NET is a respectable challenger who is following close behind5

The main weaknesses of Eclipse compared to the ABAP Workbench are the power of the
debugger and, especially, the version control and change management. It is interesting to see
that those “going productive” support tools are mistakenly ignored by the challengers of ABAP.

Another feature not found in any of the major development studios is the ABAP Object Navigators
that hyperlink all tokens from the source code in the editor’s window, and allow you to “jump” from

5 We found a good decision matrix to compare the benefits of the individual approaches of .NET, Java, and
BSP to design Portal applications in an article fragment on SDN: sdn.sap.com from Ajay Bhardway:
Selection of EP Content Development Environment

Copyright © 2005 by Klee Associates, Inc. Page 20

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

a variable to its declaration, and from there to the repository, etc. This is done simply by double-
clicking on the token’s name. This feature is so utterly helpful, not just for those who program in
ABAP every day, but also for newcomers who are just starting to learn ABAP, as it allows them to
easily explore the landscape and the associations between objects.

Transport and Version Management
SAP is well known for its reliable change management system known as the “Transport (and
Versioning) Management System (TMS)” This is something that many ABAP developers take for
granted in a big way (compared to what is typically required in other application frameworks).

The transport of a BSP application is exactly the same as any normal SAP transport and is
“transparent” to the developer. Version management is automatically handled by SAP and once
again is “hidden” from the developer.

The situation is a little different for Java development. The full transport and version management
of the Java code needs to be handled explicitly by the Java developer and/or SAP Portal
administrator. This definitely adds complexity and overhead in the development process.

It is easy to upload a PAR file from DEV->QA->PROD, but this is generally not the way it should
be done. One way of doing this correctly would be to transport the page(s), iView(s), etc. from the
DEV (or QA SAP Portal) through to the PROD Portal. This illuminates the need, for example, for
.class files to be compiled on the PROD server, etc. This is typically done by the SAP Portal
administrator and is depicted in Figure 22.

Figure 22: SAP Portal iView Export Procedure

You will need to (potentially) use this deployment procedure regardless of whether your iView
was written in Java or BSP.

Copyright © 2005 by Klee Associates, Inc. Page 21

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

Post-Deployment Adaptation
The real challenge for all development projects comes when the software is ready to be deployed
to a production environment. Let us review an example of this. There is often the requirement, for
example, that if a file is uploaded into SAP from the SAP Portal, that file should be archived
somewhere for auditing reasons. Should you also want to display a URL (to a file created on the
Portal server) you may also need to change port numbers and protocols (HTTPS), etc.,
depending on which server the PAR file is running.

The SAP Portal developer and SAP Portal administrator obviously want the entire transport
system on the Portal to be as seamless as possible. They should not have to ever modify “config
files” manually after transporting! In order to make the PAR file somewhat “intelligent”, you may
have to incorporate some XML into the picture. Going back to the “upload file issue”, take a look
at the example XML file attached to the PAR file on upload in Figure 23.

<?xml version="1.0"?>

<config>

 <portalserver>

 <servername>SAPPROD400</servername>

 <protocol>https</protocol>

 <portnumber>80</portnumber>

 <filepath>c:\\SAPPortal\\Docs\\</filepath>

 <virtualdirectory>/SAPPortal/Docs/</virtualdirectory>

 <archivepath>c:\\SAPPortal\\Docs\\Project_1_Upload_Archive\\</archivepath>

 </portalserver>

….

….

</config>
Figure 23: Illustration: Server_Properties.xml

The above file could obviously have any number of <portalserver> entries, and depending on
which server the PAR file is executing on, it would react appropriately. This works very well in the
production environment, but does increase the amount of work on the Java developer side.
Figures 24 through 26 show the work that would normally go into getting this seamless XML
transport working.

….

XML_File_Name.value=server_properties.xml

….

Figure 24: Illustration: default.properties

Copyright © 2005 by Klee Associates, Inc. Page 22

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

public void doInitialization(){

….

 xmlFileName = componentProfile.getProperty("XML_File_Name");

….

 try{

 aResource = componentRequest.getResource(IResource.XML,"xml/" +

xmlFileName);

myPortalXMLObject.readXMLFile(aResource.getResourceInformation().getSource())

; }catch(ResourceException e){

 …

 }

}

Figure 25: Illustration: JSPDynPage

Copyright © 2005 by Klee Associates, Inc. Page 23

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

public synchronized void readXMLFile(String filePath, String serverName) throws

ServerNotFoundException,ParseException,XMLException{

….

DocumentBuilderFactory docBuilderFactory = new DocumentBuilderFactoryImpl();

DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder();

Document doc = docBuilder.parse (new File(filePath));

…

NodeList listOfPortalServers = doc.getElementsByTagName("Portalserver");

totalPortalServers = listOfPortalServers.getLength();

….

while((i < totalPortalServers) && (serverFound == false)){

 ….

 tmpServerName = ((Node)textServerList.item(0)).getNodeValue().trim();

 if(tmpServerName.compareTo(getServerName()) == 0){

 serverFound = true;

 ….

 tmpArchivePath =

((Node)textArchivePathList.item(0)).getNodeValue().trim();

 ….

 setArchivePath(tmpArchivePath);

 ….

}

….

Figure 26: Illustration: MyPortalXMLObject’s readXMLFile Method

So, although relatively simple code, it is nevertheless extra development overhead that needs to
be considered on the Java side.

With regard to “version management”, a Java developer has a number of options available.
Obviously the “easy” approach is just to archive your PAR Java projects, with the current date
and time, in a directory on a server. This is definitely not the best approach. Another option is to
use a product like WinCVS to aid in proper version control and management. The developer
obviously has to then worry about checking in and checking out code all the time. This is
definitely acceptable, but not nearly as efficient as what SAP provides in this regard.

Copyright © 2005 by Klee Associates, Inc. Page 24

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

On a positive note, SAP has come up with a “design time repository” for Java development that
offers features such as version management and incremental activation procedures that do away
with the “nightly build procedures” previously undertaken.

This new development infrastructure is currently very immature but has a positive future ahead.

Debugging
Those coming from the Java world to the SAP environment will honestly say that debugging a
BSP application is much easier than in a Java Portal application. Let’s say you arrive at work on a
Monday morning and have to sort out a production issue ASAP! Let’s see how the debugging
environments compare.

In ABAP, you simply log onto the production Web AS, go to your BSP application via transaction
SE80, and set your “External Breakpoint” as shown in Figure 27.

Figure 27: Setting “External Breakpoint” in ABAP Source Code on the SAP Web AS

You then launch the browser and enter “debugging mode”.

Copyright © 2005 by Klee Associates, Inc. Page 25

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

Figure 28: Debugging a BSP Application (exactly the same as traditional ABAP)

BSP debugging is as simple as that! Any ABAP code changes will be transported as normal.

In Java, things are a little trickier. You “could” have to go through the following sequence of
events:

• Comment out “connection pooling” (if used) and use a “hard-coded” SAP connection in the

code.

sapConnection = JCO.createClient("300", "username", "password", "EN",
"sap.prod.server", "00");
Figure 29: Hard-Coded SAP Connection Example

• Make sure the TOMCAT Web server is started on the local machine in “debug mode” using

the parameters (or similar depending on version) in Figure 30:

rem --- Set TOMCAT_OPTS

set TOMCAT_OPTS=-Djava.library.path=%TOMCAT_HOME%/lib/apps -

Dhttp.proxyHost=%_PROXY_HOST% -Dhttp.proxyPort=%_PROXY_PORT% -

Dhttp.nonProxyHosts=localhost -Dcm.decode=X -server -Xdebug -Xnoagent

-Djava.compiler=NONE -

Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8000

echo TOMCAT_OPTS = %TOMCAT_OPTS%

Figure 30: Example Code for Starting TOMCAT Web Server

Copyright © 2005 by Klee Associates, Inc. Page 26

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

• Set a break point at the appropriate location in the Java code.

• Run the Portal project in “debug mode” as a “remote Java application” as shown in Figure 31.

Figure 31: Running the Portal Project in Debug Mode

• Open the browser to the desired URL and page and initiate debugging by triggering the

correct event.

• Debug the application in the Eclipse environment as depicted in Figure 32.

Copyright © 2005 by Klee Associates, Inc. Page 27

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

Figure 32: Debugging in Eclipse

• Any code changes require the Portal project to be re-compiled into a new PAR file and
uploaded to the Portal server.

• Version control will also need to be handled explicitly.

The SAP Portal administrator would also need to re-transport the Portal page, iView, etc., from a
development system to the productive Portal server.

As you can see there is potentially a vast difference in what needs to be done in order to
troubleshoot and fix a Java application on the Portal, compared to doing so with a BSP
application.

ABAP or Java, Which Is the Best?
We need finally to come back to the initial question: which development environment should you
use? It is obvious that none of the frameworks allow easy Portal application development.

What Do We Expect from a Portal Development Environment
Here we should at least lean back for a minute and try to recall what you might expect from a
Portal development environment.

Copyright © 2005 by Klee Associates, Inc. Page 28

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

• Provide a general application class that plugs the Portal applet into the Portal and takes care
of the Single Sign-On

• Provide a global session container that allows you to store session-persistent data

• A high level API for all common GUI elements like menus, entry forms, and tabular lists

• A configurable workflow handler that allows you to define workflow events without
programming

• A messaging infrastructure for common tasks like sending SMTP mail, file upload and
download, and data entry verification

Generally, we should say that you want to opt for the language where your developers, and more
importantly, your support staff, feel most proficient. If you have neither sufficient ABAP nor Java
skills, then the steeper learning curve required by Java would speak strongly for ABAP. In cases
where you are indifferent towards ABAP or Java, the pendulum will swing unambiguously to favor
ABAP, due to its higher stability, easier debugging and maintenance facilities, and better
readability.

ABAP and Java Compared
As we reach the end of our paper, let us compare the respective benefits of ABAP and Java with
respect to Portal development. The predominant criteria to decide for any development
framework can certainly not be driven from the viewpoint of Portal development only.
Deployment, maintenance, change management, and security will make big arguments that
depend strongly on the individual operating environment and existing IT infrastructure. There are
definitely many more areas to compare, but that is not the argument here, so we will look at a
short selection of arguments from a Portal developer’s view only.

ABAP Merits
• ABAP introduced a fully transparent source-code just-in-time compiler.

• ABAP has an unmatched deployment and version management service, the TMS.

• ABAP allows easy source code debugging (also in production environment).

• ABAP integrates the Data Dictionary into the Development Environment.

• Current BSP versions have more elaborate intrinsic data entry validation methods.

• Currently there are far more ABAP developers with in-depth business process know-how on
the market than for any other development environment.

Java Merits
• Java introduced standard algorithms and data-structures through the Design Pattern school.

• Java has an abundance of independent and open source libraries.

• Java provides more features for sophisticated Web effects.

• Modern schools and universities favor Java, and hence the Java community is growing with
high speed.

Copyright © 2005 by Klee Associates, Inc. Page 29

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

Conclusion
It is clear that SAP has a strategic direction they wish to pursue with Java, and the J2EE stack
has got plenty to offer in terms of open-ness and flexibility to the SAP world.

ABAP will continue to rule the back-end, and Java the front-end. Our recommendation would be
to use the BSP development in 80% of “general” Portal development and Java in select, justified
cases, in that 20% of the development that is hugely complex on the front-end (depending on
resources of course). The SAP NetWeaver Developer Studio (Eclipse) is not mature enough to
compete with the ABAP Workbench directly, and still has some way to go. SAP is also supporting
J2EE with the new Unbreakable Java (also known as “Always On Java”) project that promises to
put the Java language on top of the unbreakable ABAP engine. With the very “object orientated”
approach SAP is taking with ABAP in the future, the “mindset” change from ABAP to Java will
hopefully not be too great, and future developers can mix and match the two languages as need
be.

After Hours Chat Room
The idea for this article came during some interesting chat room discussions on several Java and
Portal issues. The following is a summarized transcript of those discussion showing the most
interesting arguments and disputes.

Axel: “Lynton, you are akin to new breed of dedicated Java developers, those who know Java
and the development environment by heart. You told me that you however became a great fan of
SAP's ABAP development environment. I for my part come from the more traditional tribe of
PASCAL and ABAP IV development. Why is it so intriguing with Java from your personal view?”
Lynton: “With Java the possibilities are endless...the ability to code mobile devices, Web
Services and even robots that can potentially see, hear and even move is just awesome.”
“Personally I like the fact that Java is so broad in scope that if you ever got bored of writing Web
applications you could quite easily pursue a totally different route in Java like mobile or even
game programming. I also like the fact that Java is very focussed around UML, design patterns
and layered programming...I feel these concepts are vital to grasp in any developer's mind. All in
all getting your hands dirty with programming languages like Java and .NET can be fun...period!”
Axel: “When you speak of endless possibilities: isn't that rather an argument for .NET. I imagine
just getting simple RS232 or RS438 devices connected via Java. Finding an appropriate driver
others those written for a Solaris machine are simply a nightmare!”
Lynton: “I do agree with you that the amount of money and global backing Microsoft are getting
there is just no way that a framework like .NET will fail. From what I've seen it takes a .NET
developer far less time to develop an application than it would a Java developer. This, however,
may not always be the case. For example, the other day I was playing around on SAP WAS 6.40
and the “drag & drop” features of ‘WebDynpro controls’ is definitely a step in the right direction!
So when I speak of “endless possibilities”, yes, I do feel that .NET has a larger array of EASY TO
USE device drivers / adapters etc to allow a developer to integrate into many of today's modern
applications and devices. But I will remain strong on my personal views that .NET is great for
complex front-end applications while Java is at it strongest in the highly transactional backend
systems. I feel, for example, that the JCA, JMS standards provided by Java are unmatched in the
.NET world. Why do big companies like SAP, Oracle, IBM, Nokia, etc. choose J2EE over .NET?
Why are about 95 percent of EAI middleware products J2EE compliant? So in conclusion I think
when I talk of these ‘endless possibilities’ you also need to look at what area of IT you are dealing
with...if you want your Nokia cell phone to send a message into SAP I would probably choose the
Java route, if you wanted me to make a hugely complex frontend application connected to
numerous devices I would probably take the .NET route.....use the language that will handle the
current problem best.... even mix and match if you need to. With the way Web Services are going

Copyright © 2005 by Klee Associates, Inc. Page 30

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

it's not going to make too much difference it a .NET Web Service talks to a Java Web Service
which talks to a ABAP Web Service, all will be transparent to the calling application. Once again
I'm not too fussed about syntax or language, I just want to get the job done!!”
Axel: “Why do you like ABAP more than Java then?”
Lynton: “Having done ABAP for some time now, I have realised that the integrated SAP
environment is simply hard to beat. Seamlessly integrating into subsequent areas of SAP by
simply double clicking on table names, data elements, etc becomes very handy during complex
development. The debugging and transport systems of SAP are fantastic...something I feel many
ABAP developers take for granted in a BIG way!!”
“Adding onto this, the fact that I'm yet to see an SAP instance crash is also very comforting. I do,
however, prefer the new object orientated approach to ABAP than the traditional "top-down"
ABAP syntax. With regard to SAP Portal development I can honestly say that it takes me much
longer to develop a complex iView in Java than in ABAP / BSP. Java does have many
advantages - that's a given, but when it comes to stability and ease of development, ABAP
developed on top of WebAS is rock solid.”
Axel: “Do you think Java is easy to learn?”
Lynton: “In a nutshell: no! I feel the main difference between a language like ABAP and Java is
that ABAP hides the developer from most of the technical intricacies of the "underlying language".
On the other hand you need to be quite technically minded to handle the "bits and bytes" that the
Java language can throw at you. I think it also has a lot to do with how passionate the person is
and what drive and ambition they have inside them.”
Axel: “For me object programming is a way of thinking that existed ever since, at least the late
1960ties. Therefore I see the current hype on Java relatively critical, as it somehow obstructs the
clear view on business related object patterns but rather gives many developers a good excuse to
dig into technical and academic issues of object development. What do think? Is Java a step
forward or backwards...?”
Lynton: “I'm going to look at this question a little differently. Syntax aside, I do feel that the huge
array of current design patterns and "object developments" are actually too overwhelming for the
majority of developers out there. When has been the last time you even saw an ABAP program
that used a design pattern!! I often here people saying things like "that was probably developed
by some super hacker nerd who had too much time on his hands...“ Most developers stick with a
few ideas and "business patterns" that they are familiar with in order to get the job done. I do
think things have become somewhat "overly complex" in the modern programming world. But I'm
not going to sit on the fence here; I will say that Java has provided developers with a "common
syntax" and "object understanding" that can easily be moved to another language like C# or
VB.NET. I'm not overly concerned about what language you choose between Java and .NET
etc...For me it's more the paradigm shift in thinking in patterns and objects.”
“What I would like to see, however, is more focus on making languages like Java much more
"Model Driven" (as in the OMG's "Model Driven Architecture"). The dynamic nature of today's
world requires a "programming shift" that simply allows developers to manipulate a visual model
and see results immediately. SAP's WebDynpro methodology is definitely a step in the right
direction in this regard.”
Axel: “Indeed the renaissance of design patterns is something I found also very positive. While
caring for the new Java technology many developers came across learning about the positives of
reusing software components and sticking to general abstract terms. It also makes discussion
about algorithms much easier. But in order to rescue the honour of us old-time programmers I
want to mention that design patterns are certainly something that good programmers always
abided by - think of such master pieces like "Donald Knuth: The Art of Computer Programming"
or the sort version by the inventor of Pascal, Modula and the Mouse, "Niklas Wirth: Algorithm and
Data Structures." But this makes me mull over another question: Good programmers have always
been a rarity. Will Java produce finally more good programmers?”

Copyright © 2005 by Klee Associates, Inc. Page 31

www.SAPtips.com

High Noon:
Why ABAP Performs Better in
Portal Development than Java

Lynton: “I think the number of good programmers will steadily increase over the years. Let's face
it, IT is here to stay and people are jumping onto the "IT bandwagon" every day...there are sure to
be a couple of good brains amongst them!! What is interesting to see is that people are almost
getting sucked into languages like Java and .NET. These languages are basically the "norm" at
Universities etc. New systems have also been developed in Java that could have been up and
running in a fraction of the time had they been written in languages like Lisp or Python. But we
can't choose to implement in these languages because you can't easily find programmers with
good enough experience in these languages. This is because they are too busy programming in
Java, .NET etc as it's hard to find jobs in Lisp, Python etc. Java is not known as a "hacker
language" (and we all know that hacker's have some of the smartest minds in the IT business),
BUT it seems that some of these “hackers” are having fun becoming somewhat “familiar” with the
Java language just to keep money in their pockets. So yes, I do think Java will produce more
good programmers in the future. We can look at this in a slightly different way as well. Designing
and making systems seems to be getting easier as the years go by. The OMG's “Model Driven
Architecture” is just one of many things that is set to make a programmer's life so much simpler in
the future. Who knows, maybe one day we will even be able to talk to our computers and tell
them what type of application we would like developed....then couldn't everyone be a good
developer?”

Axel Angeli, logosworld.com. Axel is a senior SAP and EAI advisor and principal of
logosworld.com, a German-based enterprise specializing in coaching SAP and EAI project teams
and advising IT management on implementation issues. Axel has been in the IT business since
1984, and throughout his career, he has always worked with cutting edge technologies. Axel's
SAP experience stems from the good old R/2 days, and he is an expert on SAP’s NetWeaver
technology and any kind of ABAP development. A speaker of several languages, Axel specializes
in coaching and leading large multi-national teams on complex projects with heterogeneous
platforms and international rollouts. Known for his intensive and successful trouble-shooting
experience, Axel has been nicknamed by his colleagues as the “Red Adair” of SAP projects. He
is the author of the best-selling tutorial “The SAP R/3 Guide to EDI, IDocs, ALE and Interfaces.”
Axel’s email address is ax el.angeli@logosworld.com

Lynton Grice is an application developer contracted to one of the big automotive companies in
South Africa. He has a passion for programming and new technologies and takes care of SAP
Portal development as well as other SAP EAI requirements. Coming from a typical Java school,
he is now just as familiar with ABAP. Lynton’s email address is
lynton.grice@netweaverguru.com

The information in our publications and on our Website is the copyrighted work of Klee Associates, Inc. and is owned by
Klee Associates, Inc.

NO WARRANTY: This documentation is delivered as is, and Klee Associates, Inc. makes no warranty as to its accuracy
or use. Any use of this documentation is at the risk of the user. Although we make every good faith effort to ensure
accuracy, this document may include technical or other inaccuracies or typographical errors. Klee Associates, Inc.
reserves the right to make changes without prior notice.

NO AFFILIATION: Klee Associates, Inc. and this publication are not affiliated with or endorsed by SAP AG. SAP AG
software referenced on this site is furnished under license agreements between SAP AG and its customers and can be
used only within the terms of such agreements. SAP AG and mySAP are registered trademarks of SAP AG.

All other company and product names used herein may be trademarks or registered trademarks of their respective
owners.

mailto:axel.angeli@logosworld.com
mailto:lynton.grice@netweaverguru.com

	Introduction
	J2EE Versus SAP Web AS
	A Sample Portal Application
	Finding the Right Technical Skills
	Language Complexity
	ABAP is Easier to Learn
	Syntax
	Database Access
	Connections.
	Libraries
	Single-Sign-On
	Session Handling
	Session Handling in JSP
	Persistence Session Handling in BSP

	Validation
	Easy Data Entry Validation in HTMLB
	Javascript is No Replacement for HTMLB

	Development Environment
	Transport and Version Management
	Post-Deployment Adaptation
	Debugging

	ABAP or Java, Which Is the Best?
	What Do We Expect from a Portal Development Environment
	ABAP and Java Compared
	ABAP Merits
	Java Merits

	Conclusion
	After Hours Chat Room

