
AJAX SECURITY

B I L LY H O F F M A N
B R Y A N S U L L I V A N

Brute Force Vulnerability Discovery

Project1 7/12/07 9:14 AM Page 1

FREE
CHAPTER

Books Available
December

2007

This manuscript has been provided by Pearson Education at this
early stage to create awareness for this upcoming book. It has not
been copyedited or proofread yet; we trust that you will judge this
book on technical merit, not on grammatical and punctuation errors

that will be fixed at a later stage.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic,

mechanical, photocopying, recording, or otherwise, without the prior
consent of the publisher.

All Pearson Education books are available at a discount for corporate
bulk purchases. For information on bulk discounts, please call (800)

428-5531.

DRAFT MANUSCRIPT

Books Available

 December 2007

About the Authors

BILLY HOFFMAN is the lead security researcher for S.P.I. Dynamics,
Inc. where he focuses on automated discovery of Web application
vulnerabilities and crawling technologies. He has been a guest speaker
at several high-level security and IT conferences and is well-known for
his expertise in Ajax security. Billy wrote TinyDisk and is the creator of
Stripe Snoop. In addition, Billy is involved in the Web Application
Security Consortium (WASC) and spends his time contributing to OSS
projects, writing articles, and giving presentations under the handle
Acidus.

BRYAN SULLIVAN has been a professional software developer and
development manager since graduating from Georgia Tech in 1995. For
the last four years, he has been working in the application security sector
of the software industry at S.P.I. Dynamics, Inc. While at SPI, he helped
create the DevInspect® product, which analyzes Web applications for
security vulnerabilities. He was involved in the creation of the Application
Vulnerability Description Language (AVDL) and has three patents on
security assessment and remediation methodologies pending review.

Chapter 6
Transparency in Ajax
Applications

Myth: Ajax applications are black box systems,
just like regular Web applications.

When most people use a microwave oven, they have no idea how it
actually works. They only know that if they put food in and turn the oven
on, the food will get hot in a few minutes. By contrast, a toaster is fairly
easy to understand. When you’re using a toaster, you can just look inside
the slots to see the elements getting hot and toasting the bread.

A traditional Web application is like a microwave oven. Most users
don’t know how Web applications work and don’t even care to know how
they work. Furthermore, most users have no way to find out how a given
application works even if they did care. Beyond the fundamentals, such
as use of HTTP as a request protocol, there is no guaranteed way to
determine the inner workings of a Web site. By contrast, an Ajax Web
application is more like a toaster. While the average user may not be
aware that the logic of the Ajax application is more exposed than that of
the standard Web page, it is a simple matter for an advanced user (or an
attacker) to “look inside the toaster slots” and gain knowledge about the
internal workings of the application.

Black boxes vs. White boxes

Web applications (and microwave ovens) are examples of “black box”
systems. From the user’s perspective, input goes into the system, and
then output comes out of the system. The application logic that processes
the input and returns the output is abstracted from the user and is
invisible to him.

Figure 6-1
The inner workings of a black box system are unknown to the user

For example, consider a weather forecast Web site. A user enters his
ZIP code into the application, and the application then tells him if the
forecast calls for rain or sun. But how did the application gather that data?
It may be that the application performs real-time analysis of current
weather radar readings, or it may be that every morning a programmer
watches the local television forecast and copies that into the system.
Since the end user does not have access to the source code of the
application, there is really no way for him to know.

Security Note
There are in fact some situations in which an end user
may be able to obtain the application’s source code.
These situations mostly arise from improper
configuration of the Web server or insecure source code
control techniques, such as storing backup files on
production systems. Please review Chapter 3 for more
information on these types of vulnerabilities.

“White box” systems behave in the opposite manner. Input goes into
the system and output comes out of the system as before, but in this case
the internal mechanisms (in the form of source code) are visible to the
user.

Figure 6-2
The user can see the inner workings of a white box system

Any interpreted script-based application, such as a batch file, macro,
or (more to the point) a JavaScript application, can be considered a white
box system. As we discussed in the previous chapter, JavaScript must be
sent from the server to the client in its original, unencrypted source code
form. It is a simple matter for a user to open this source code and see
exactly what the application is doing.

It is true that Ajax applications are not completely white box systems since there is still a
large portion of the application that executes on the server. However, they are much
more transparent than traditional Web applications, and this transparency provides
opportunities for hackers, as we will demonstrate over the course of the chapter.

It is possible to obfuscate JavaScript, but this is different than
encryption. Encrypted code is impossible to read until the correct key is
used to decrypt it, at which point it is readable by anyone. Encrypted code
cannot be executed until it is decrypted. On the other hand, obfuscated
code is still executable as-is. All the obfuscation process accomplishes is
to make the code more difficult to read by a human. The key phrases
here are that obfuscation makes code “more difficult” for a human to read,
while encryption makes it “impossible”, or at least virtually impossible.
Someone with enough time and patience could still reverse-engineer the
obfuscated code. As we saw in Chapter 2, Eve created a program to de-

obfuscate JavaScript. In actuality, the authors created this tool, and it only
took a few days. For this reason, obfuscation should be considered more
of a speed bump than a roadblock for a hacker: it may slow a determined
attacker down but it will not stop him.

In general, white box systems are easier to attack than black box
systems because their source code is more transparent. Remember that
attackers thrive on information. A large percentage of the time that a
hacker spends attacking a Web site is not actually spent sending
malicious requests, but rather analyzing it to determine how it works. If
the application freely provides details of its implementation, this task is
greatly simplified. Let’s continue the weather forecasting Web site
example and evaluate it from an application logic transparency point of
view.

Example: MyLocalWeatherForecast.com
First, let’s look at a standard, non-Ajax version of

MyLocalWeatherForecast.com:

Figure 6-3
A standard, non-Ajax weather forecasting Web site

There’s not much to see just from the rendered browser output,
except that the server-side application code appears to be written in PHP,
since the filename of the Web page ends in “.php”. The next logical step

an attacker would make would be to view the page source, so we will do
the same.

<html>
 <head>
 <title>Weather Forecast</title>
 </head>
 <body>
 <form action="/weatherforecast.php" method="POST">
 <div>
 Enter your ZIP code:
 <input name="ZipCode" type="text" value=30346 />
 <input id="Button1" type="submit" value="Get Forecast" />
 </div>
 </form>
 </body>
</html>

There’s not much to see from the page source code either. We can
tell that the page uses the HTTP POST method to post the user input
back to itself for processing. As a final test, we will attach a network traffic
analyzer (also known as a “sniffer”) and examine the raw response data
from the server.

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
Date: Sat, 16 Dec 2006 18:23:12 GMT
Connection: close
Content-type: text/html
X-Powered-By: PHP/5.1.4

<html>
 <head>
 <title>Weather Forecast</title>
 </head>
 <body>
 <form action="/weatherforecast.php" method="POST">
 <div>
 Enter your ZIP code:
 <input name="ZipCode" type="text" value=30346 />
 <input id="Button1" type="submit" value="Get Forecast" />

 The weather for December 17, 2006 for 30346 will be sunny.
 </div>

 </form>
 </body>
</html>

The HTTP request headers give us a little more information to work
with. The header X-Powered-By: PHP/5.1.4 confirms that the
application is indeed using PHP for its server-side code, and additionally
we now know which version of PHP is being used (5.1.4). We can also
see from the Server: Microsoft-IIS/5.1 header that Microsoft
Internet Information Server (IIS) version 5.1 is being used as the Web
server. Also, this implicitly tells us that Microsoft Windows XP
Professional is being used as the server’s operating system, since IIS 5.1
only runs on XP Professional.

So far, we have collected a modest amount of information regarding
the weather forecast site. We know what programming language is used
to develop the site, and the particular version of that language. We know
which Web server and operating system are being used. These tidbits of
data seem innocent enough – after all, what difference could it make to a
hacker if he knew that a Web application was running on IIS versus
Tomcat? The answer is simple: time. Once the hacker knows that a
particular technology is being used, he can focus his efforts on cracking
that piece of the application and avoid wasting time by attacking
technologies he now knows to be unused. For example, knowing that XP
Professional is being used as the operating system allows him to omit
attacks that could only succeed against Solaris or Linux operating
systems, and to concentrate on making attacks that are known to work
against Windows. And if he doesn’t know any Windows-specific attacks
(or IIS-specific attacks, or PHP-specific attacks, etc,) it is a simple matter
to find examples on the Internet.

Security Note
Disable HTTP response headers that reveal
implementation or configuration details of your Web
applications. The Server and X-Powered-By headers
both reveal too much information to potential attackers
and should be disabled. The process for disabling these
headers varies among different Web servers and
application frameworks; for example, Apache users can
disable the Server header with a configuration setting,
while IIS users can use the RemoveServerHeader feature
of Microsoft’s UrlScan Security Tool. This feature has
also been integrated natively into IIS since version 6.

For maximum security, also remap your application’s file
extensions to custom types. It does little good to remove
the X-Powered-By: ASP.NET header if your Web
pages end in .aspx extensions. Hiding application
details like these doesn’t guarantee that your Web site
won’t be hacked, but it will make the attacker work that
much harder to do it, and he might just give up and
attack someone else.

Example: MyLocalWeatherForecast.com “Ajaxified”
Now that we have seen how much of the internal workings of a “black

box” system can be uncovered, let’s examine the same weather
forecasting application after it has been converted to Ajax.

Figure 6-4
The Ajax-based weather forecast site

The new Web site looks the same as the old when viewed in the
browser. We can still see that PHP is being used because of the file
extension, but there is no new information yet. However, when we view
the page source...

<html>
 <head>
 <script type="text/javascript">

 var httpRequest = getHttpRequest();

 function getRadarReading() {
 // access the web service to get the radar reading
 var zipCode = document.getElementById('ZipCode').value;
 httpRequest.open("GET",
 "weatherservice.asmx?op=GetRadarReading&zipCode=" + zipCode,
 true);
 httpRequest.onreadystatechange = handleReadingRetrieved;
 httpRequest.send(null);
 }

 function handleReadingRetrieved() {
 if (httpRequest.readyState == 4) {
 if (httpRequest.status == 200) {
 var radarData = httpRequest.responseText;
 // process the XML retrieved from the web service
 var xmldoc = parseXML(radarData);
 var weatherData =
 xmldoc.getElementsByTagName("WeatherData")[0];
 var cloudDensity = weatherData.getElementsByTagName
 ("CloudDensity")[0].firstChild.data;
 getForecast(cloudDensity);
 }
 }
 }

 function getForecast(cloudDensity) {
 httpRequest.open("GET",
 "forecast.php?cloudDensity=" + cloudDensity,
 true);
 httpRequest.onreadystatechange = handleForecastRetrieved;
 httpRequest.send(null);
 }

 function handleForecastRetrieved() {
 if (httpRequest.readyState == 4) {
 if (httpRequest.status == 200) {
 var chanceOfRain = httpRequest.responseText;
 var displayText;
 if (chanceOfRain >= 25) {

 displayText = “The forecast calls for rain.”;
 } else {
 displayText = “The forecast calls for sunny skies.”;
 }

 document.getElementById(‘Forecast’).innerHTML = displayText;
 }
 }
 }

 function parseXML(text) {
 if (typeof DOMParser != "undefined") {
 return (new DOMParser()).parseFromString(text,
 "application/xml");
 }
 else if (typeof ActiveXObject != "undefined") {
 var doc = new ActiveXObject("MSXML2.DOMDocument");

 doc.loadXML(text);
 return doc;
 }
 }

 </script>
</head>
</html>

Aha! Now we know exactly how the weather forecast is calculated.
First, the function getRadarReading makes an asynchronous call to a
Web service to obtain the current radar data for the given ZIP code. The
radar data XML returned from the Web service is parsed apart (in the
handleReadingRetrieved function) to find the “cloud density” reading. A
second asynchronous call (getForecast) passes the cloud density value
back to the server. Based on this cloud density reading, the server
determines tomorrow’s chance of rain. Finally, the client displays the
result to the user and suggests whether he should take an umbrella to
work.

Just from viewing the client-side source code, we now have a much
better understanding of the internal workings of the application. Let’s go
one step further and “sniff” some of the network traffic.

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
Date: Sat, 16 Dec 2006 18:54:31 GMT
Connection: close
Content-type: text/html
X-Powered-By: PHP/5.1.4

<html>
 <head>
 <script type="text/javascript">
…
</html>

Sniffing the initial response from the main page didn’t tell us anything
that we didn’t already know. We will leave the sniffer attached while we
make an asynchronous request to the radar reading Web service. The
server responds as follows:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.1
Date: Sat, 16 Dec 2006 19:01:43 GMT
X-Powered-By: ASP.NET
X-AspNet-Version: 2.0.50727
Cache-Control: private, max-age=0
Content-Type: text/xml; charset=utf-8
Content-Length: 301

<?xml version="1.0" encoding="utf-8"?>
<WeatherData>
 <Latitude>33.76</Latitude>
 <Longitude>-84.4</Longitude>
 <CloudDensity>0</CloudDensity>
 <Temperature>54.2</Temperature>
 <Windchill>54.2</Windchill>
 <Humidity>0.83</Humidity>
 <DewPoint>49.0</DewPoint>
 <Visibility>4.0</Visibility>
</WeatherData>

This response gives us some new information about the Web service.
We can tell from the X-Powered-By header that it uses ASP.NET, which
might help an attacker as described earlier. More interestingly, we can
also see from the response that much more data than just the cloud
density reading is being retrieved. The current temperature, wind chill,
humidity, and other weather data are being sent to the client. The client-
side code is discarding these additional values, but they are still plainly
visible to anyone with a network traffic analyzer.

Comparison Conclusions
Comparing the amount of information gathered on

MyLocalWeatherForecast.com before and after its conversion to Ajax, we
can see that the new Ajax-enabled site discloses everything that the old
site did, as well as some additional items.
Information Disclosed Non-Ajax Ajax

Source code language Yes Yes
Web server Yes Yes
Server operating system Yes Yes
Additional subcomponents No Yes
Method signatures No Yes
Parameter data types No Yes

Table 6-1: Information disclosure in Ajax vs. Non-Ajax applications

The Web Application as an API

The effect of MyLocalWeatherForecast.com’s shift to Ajax is that the
client-side portion of the application (and by extension, the user) has
more visibility into the server-side components. Before, the system
functioned as a black box. Now, the box is becoming clearer; the
processes are becoming more transparent.

Figure 6-5
Client visibility of (non-Ajax) MyLocalWeatherForecast.com

Figure 6-5 shows the visibility of the old
MyLocalWeatherForecast.com site. In a sense,
MyLocalWeatherForecast.com is just an elaborate application
programming interface (API). In the non-Ajax model, there is only one
publicly exposed method in the API, “Get weather forecast”.

Figure 6-6
Client visibility of Ajax MyLocalWeatherForecast.com

Figure 6-6 shows the visibility of the new, Ajax-enabled
MyLocalWeatherForecast.com. Not only did our API get a lot bigger
(three methods instead of one), but its granularity increased as well.
Instead of one, big “do it” function, we can see the individual subroutines
that combine to calculate the result output. Furthermore, in many “real
world” scenarios, the JavaScript client-side code is not defined in each
individual page on an as-needed basis. Instead, all of the client-side
JavaScript functions used on any page are collected into a single,
monolithic script library which is then referenced by each page that uses
it.

<script src=”ajaxlibrary.js”></script>

This architecture makes it easier for the site developers to maintain
the code, since they now only have to make changes in a single place. It
can save bandwidth as well, since a browser will download the entire
library only once and then cache it for later use. Of course, the downside
of this is that the entire API can now be exposed after only a single
request from a user. The user basically asks the server, “Tell me
everything you can do,” and the server answers with a list of actions. As a
result, a potential hacker can now see a much larger attack surface, and
additionally his task of analyzing the application is made much easier as
well. The flow of data through the system is more evident, and data types
and method signatures are also visible.

Data Types and Method Signatures

Knowing the arguments’ data types can be especially useful to an
attacker. For example, if an attacker finds that a given parameter is an
unsigned, 16-bit integer, he knows that valid values for that parameter
range from 0 to 65,535 (216-1). However, the attacker is not constrained to
send only valid values. And since the method arguments are sent as
strings over the wire, the attacker is not even constrained to send valid
data types. He may send a negative value, or a value greater than
65,535, to try to overflow or underflow the value. He may send a non-
numeric value just to try to cause the server to generate an error
message. Error messages returned from a Web server often contain
sensitive information such as stack traces and lines of source code.
Nothing makes analyzing an application easier than having its server-side
source code!

It may be useful just to know which pieces of data are used to
calculate results. For example, in MyLocalWeatherForecast.com, the
forecast is determined solely from the current cloud density and not from
any of the other current weather variables such as temperature or dew
point. The usefulness of this information can vary from application to
application. Knowing that the current humidity does not factor into the
weather forecast at MyLocalWeatherForecast.com may not help a hacker
penetrate the site, but knowing that a person’s employment history does
not factor into a loan application decision at an online bank may.

Specific Security Mistakes

Beyond just the general danger of revealing application logic to potential
attackers, there are specific mistakes that programmers make when
writing client-side code that can open their applications to attack.

Improper Authorization

Let’s return to MyLocalWeatherForecast.com.
MyLocalWeatherForecast.com has an administration page, where site
administrators can check usage statistics. The site requires administrative
authorization rights in order to access this page, so that site users and
other prying eyes will be prevented from viewing the sensitive content.

Since the site already used Ajax to retrieve the weather forecast data,
the programmers continued this model and used Ajax to retrieve the
administrative data: they added client-side JavaScript code that pulls the
usage statistics from the server.

Figure 6-7
Intended usage of the Ajax administration functionality

Unfortunately, while the developers at MyLocalWeatherForecast.com
were diligent about restricting access to the administration page
(admin.php), they neglected to restrict access to the server API that
provides the actual data to that page. While an attacker would be blocked
from accessing admin.php, there is nothing to prevent him from calling
the GetUsageStatistics function directly.

Figure 6-8
Hacking the administration functionality by directly accessing the client-side
JavaScript function

There is no reason for the hacker to try to gain access to admin.php.
He can dispense with the usual, tedious authorization bypass attacks like
hijacking a legitimate user’s session or guessing a username and
password through brute force. Instead, he can simply ask the server for
the administrative data without having to go to the administrative page,
just like Eve did in her attack on HighTechVacations.net in Chapter 2. The
programmers at MyLocalWeatherForecast.com never intended the
GetUsageStatistics function to be called from any page besides
admin.php. They might not have even realized that it could be called from
any other page. Nevertheless, their application has been hacked and they
are to blame.

Security Note
In this case, it was easy for the attacker to discover the
GetUsageStatistics function and call it because it
was defined in a shared library referenced by both the
main user page weatherforecast.php and the
administration page admin.php. However, even if
GetUsageStatistics were to be removed from the
shared library and defined only in admin.php, this would
not change the fact that an attacker could still call the
server method directly if he ever found out about its
existence. Hiding the method is not a substitute for
appropriate authorization.This is called relying on
“security through obscurity” and is a dangerous
approach to take. The problems with depending on
obscurity will be discussed later in this chapter.

Some of the worst cases of improperly authorized API methods come
from sites that were once standard Web applications but were later
converted to Ajax-enabled applications. You must take care when
“Ajaxifying” applications in order to avoid accidentally exposing sensitive
or trusted server-side functionality. In one real world example of this, the
developers of a Web framework made all of their user management
functionality available through Ajax calls. But just like our fictional
developers at MyLocalWeatherForecast.com, they neglected to add
authorization to the server code. As a result, any attacker could easily
add new users to the system, remove existing users, or change users’
passwords at will.

Security Note
When converting an existing application to Ajax,
remember to add authorization checking code to newly
exposed methods. Functionality that was intended to be
accessed only from certain pages will now be available
everywhere. As a result, you can no longer rely on the
authorization mechanisms of the page code. Each public
method must now check a user’s authorization.

Overly Granular Server API

The lack of proper authentication in the previous section is really just a
specific case of a much broader and more dangerous problem: the overly
granular server API. This problem occurs when programmers expose a
server API and assume that the only consumers of that API will be the
pages of their applications, and that those pages will always use that API
in exactly the way that the programmers intended. The truth is, an
attacker can easily manipulate the intended control flow of any client-side
script code. Let’s revisit the online music store example from Chapter 1:

function purchaseSong(username, password, songId) {

 // Note that the functions checkCredentials, getSongPrice,
 // getAccountBalance, debitAccount, and downloadSong all
make Ajax
 // requests back to the server. Their code is omitted
for brevity.

 // first authenticate the user
 var authenticated = checkCredentials(username, password);

 if (authenticated == false) {
 alert('The username or password is incorrect.');
 return;
 }

 // get the price of the song
 var songPrice = getSongPrice(songId);

 // make sure the user has enough money in his account
 if (getAccountBalance(username) < songPrice) {
 alert('You do not have enough money in your account.');
 return;
 }

 // debit the user's account
 debitAccount(username, songPrice);

 // start downloading the song to the client machine
 downloadSong(songId);
}

The intended control flow of this code is fairly straightforward: first the
application checks the user’s username and password, then it retrieves
the price of the selected song and makes sure the user has enough
money in his account to purchase it. Next, the user’s account is debited
for the appropriate amount, and finally the song is downloaded to his
computer. All of this works fine for a legitimate user. But let’s think like our
hacker Eve would, and attach a JavaScript debugger to the page to see
what kind of havoc we can wreak.

We will start with the debugger Firebug for Firefox. Firebug will display
the raw HTML, DOM object values, and any currently loaded script
source code for the current page. It will also allow the user to place
breakpoints on lines of script, as we do in Figure 6-9:

Figure 6-9
Attaching a breakpoint to JavaScript with Firebug

You can see that a breakpoint has been hit just before the call to the
checkCredentials function. Let’s step over this line, allow the client to
call checkCredentials, and examine the return value.

Figure 6-10
Examining the return value from checkCredentials

Unfortunately, the username and password that we provided do not
appear to be valid. The value of the authenticated variable as returned
from checkCredentials is false, and if we allow execution of this code to
proceed as-is, the page will alert us that the credentials are invalid and
then return from the purchaseSong function. However, as a hacker, this
does us absolutely no good. Before we proceed, let’s use Firebug to alter
the value of authenticated from false to true:

Figure 6-11
The attacker has modified the value of the authenticated variable from false to
true

By editing the value of the variable, we have modified the intended
control flow of the application. If we were to let the code continue
execution at this point, it would assume (incorrectly) that we have a valid
username and password, and proceed to retrieve the price of the selected
song. However, while we have the black hat on, why should we stop at
just bypassing authentication? We can use this exact same technique to
modify the returned value of the song price, from $.99 to $.01 or free. Or,
we could cut out the middleman and just use the Console window in
Firebug to call the downloadSong function directly.

In this example, all of the required steps of the transaction – checking
the user’s credentials, ensuring that he had enough money in his account,
debiting the account and downloading the song – should have been
enforced to be performed as one single, atomic action. Instead of
exposing all of these steps as individual methods in the server API, the
programmers should have written a single purchaseSong method that
would execute on the server, and that would enforce the individual steps
to be called in the correct order with the correct parameter values. The
exposure of overly-granular server APIs is one of the most critical security
issues facing Ajax applications today. It bears repeating: never assume
that client-side code will be executed the way you intend or even that it
will be executed at all.

Sensitive Data Revealed to Users

Programmers often hardcode string values into their applications. This
practice is usually frowned upon due to localization issues – for example,
it is harder to translate an application into Spanish or Japanese if there
are English words and sentences hardcoded throughout the source code.
However, depending on the string values, there could be security
implications as well. If the programmer has hardcoded a database
connection string or authentication credentials into the application, then
anyone with access to the source code now has credentials to the
corresponding database or secure area of the application.

Programmers also frequently misuse sensitive strings by processing
discount codes on the client. Let’s say that the music store in our previous
example wanted to reward its best customers by offering them a 50-
percent-off discount. The music store emails these customers a special
code that they can enter on the order form to receive the discount. In
order to improve response time and save processing power on the Web

server, the programmers implemented the discount logic in the client-side
code rather than the server-side code.

 <script type="text/javascript">

 function processDiscountCode(discountCode) {
 if (discountCode == "HALF-OFF-MUSIC") {
 // redirect request to the secret discount order page
 window.location = "SecretDiscountOrderForm.html";
 }
 }
 </script>

The programmers must not have been expecting anyone to view the
page source of the order form, because if they had, they would have
realized that their “secret” discount code is plainly visible for anyone to
find. Now everyone can have their music for half price.

In some cases, the sensitive string doesn’t even have to be a string.
Some numeric values should be kept just as secret as connection strings
or login credentials. Most e-commerce Web sites would not want a user
to know the profit the company is making on each item in the catalog.
Most companies would not want their employees’ salaries published in
the employee directory on the company intranet.

It is dangerous to hardcode sensitive information even into server-side
code, but in client-side code it is absolutely fatal. With just five seconds
worth of effort, even the most unskilled “n00b” hacker can learn enough
information to gain unauthorized access to sensitive areas and resources
of your application. The ease with which this vulnerability can be exploited
really highlights it as a critical danger. It is possible to extract hardcoded
values from desktop applications using disassembly tools like IDA Pro or
.NET Reflector, or by attaching a debugger and stepping through the
compiled code. But this approach requires at least a modest level of time
and ability, and again it only works for desktop applications. There is no
guaranteed way to be able to extract data from server-side Web
application code; this is usually only possible through some other
configuration error such as an overly detailed error message or a publicly
accessible backup file. With client-side JavaScript, though, all the attacker
needs to do is click the “View Source” option in his Web browser. From a
hacker’s point of view, this is as easy as it gets.

Comments and Documentation Included in Client-Side Code

The dangers of using code comments in client code have already been
discussed briefly in Chapter 5, but it is worthwhile to mention them again
here in the context of code transparency. Any code comments or
documentation added to client side code will be accessible by the end
user, just like the rest of the source code. When a programmer explains
the logic of a particularly complicated function in source documentation,
he is not only making it easier for his colleagues to understand, but also
his attackers.

In general, any practice that increases code transparency should be
minimized. On the other hand, it is important for programmers to
document their code so that other people can maintain and extend it. The
best solution is to allow (or force?) programmers to document their code
appropriately during development, but not to deploy this code. Instead, a
copy should be made with the documentation comments stripped out.
This comment-less version of the code should be deployed to the
production Web server. This approach is similar to the best practice
concerning debug code. It is unreasonable and unproductive to prohibit
programmers from creating debug versions of their applications, but these
versions should never be deployed to a production environment. Instead,
a mirrored version of the application minus the debug information is
created for deployment. This is the perfect approach to follow for client-
side code documentation as well.

 This approach does require vigilance from the developers. They must
remember to never directly modify the production code, and to always
create the comment-less copy before deploying the application. This may
seem like a fragile process that is prone to human error. To a certain
extent this is true, but we are caught between the rock of security
vulnerabilities (documented code being visible to attackers) and the hard
place of un-maintainable code (no documentation whatsoever). A good
way to mitigate this risk is to write a tool (or purchase one from a third
party) that automatically strips out code comments. Run this tool as part
of your deployment process so that it is not forgotten.

Security Note
Include comments and documentation in client-side
code just as with server-side code, but never deploy this
code. Instead, always create a comment-less mirrored
version of the code to deploy.

Data Transformation Performed on the Client

Virtually every Web application has to handle the issue of transforming
raw data into HTML. Any data retrieved from a database, XML document,
binary file, or any other storage location must first be formatted into a
human-readable structure before being displayed to a user. In traditional
Web applications, this transformation is performed on the server, along
with all the other HTML generation. However, Ajax applications are often
designed in such a way that this data transformation is performed on the
client instead of the server.

In some Ajax applications, the responses received from the partial
update requests contain HTML ready to be inserted into the page DOM,
and the client is not required to perform any data processing. Applications
that use the ASP.NET AJAX UpdatePanel control work this way. In the
majority of cases, though, the responses from the partial updates contain
raw data in XML or JSON format that needs to be transformed into HTML
before being inserted into the page DOM. There are many good reasons
to design an Ajax application to work in this manner. Data transformation
is computationally expensive. If we can get the client to do some of the
“heavy lifting” of the application logic, we could improve the overall
performance and scalability of the application by reducing the stress on
the server. The downside to this approach is that performing data
transformation on the client can greatly increase the impact of any code
injection vulnerabilities such as SQL injection and XPath injection.

Code injection attacks can be very tedious to perform. SQL injection
attacks in particular are notoriously frustrating. One of the goals of a
typical SQL injection attack is to “break out” of the table referenced by the
query and retrieve data from other tables. For example, assume that a
SQL query executed on the server is as follows:

SELECT * FROM [Customer] WHERE CustomerId = <user input>

An attacker will try to inject his own SQL into this query in order to select
data from tables other than the Customer table, such as the OrderHistory
table or the CreditCard table. The usual method to accomplish this is to
inject a UNION SELECT clause into the query statement (the injected code
is shown in italics):

SELECT * FROM [Customer] WHERE CustomerId = x;
UNION SELECT * FROM [CreditCard]

The problem with this is that the results of UNION SELECT clauses
must have exactly the same number and type of columns as the results of
the original SELECT statement. The command shown in the example
above will fail unless the Customer and CreditCard tables have identical
data schemas. UNION SELECT SQL injection attacks also rely heavily on
verbose error messages being returned from the server. If the application
developers have taken the proper precautions to prevent this, then the
attacker is forced to attempt blind SQL injection attacks (covered in depth
in Chapter 3) which are even more tedious than UNION SELECTs.

However, when the query results are transformed into HTML on the
client instead of the server, neither of these slow, inefficient techniques is
necessary. A simple appended SELECT clause is all that is required to
extract all the data from the database. Consider our previous SQL query
example:

SELECT * FROM [Customer] WHERE CustomerId = <user input>

If we pass a valid value like ‘gabriel’ for the CustomerId, the server will
return an XML fragment that would then be parsed and inserted into the
page DOM.

<data>
 <customer>
 <customerid>gabriel</customerid>
 <lastname>Krahulik</lastname>
 <firstname>Mike</firstname>
 <phone>707-555-2745</phone>
 </customer>
</data>

Now, let’s try to SQL inject the database to retrieve the CreditCard
table data simply by injecting a SELECT clause (the injected code is shown
in italics).

SELECT * FROM [Customer] WHERE CustomerId = x;
SELECT * FROM [CreditCard]

If the results of this query are directly serialized and returned to the client,
it is likely that the results will contain the data from the injected SELECT
clause.

<data>
 <creditcard>
 <lastname>Holkins</lastname>
 <firstname>Jerry</firstname>
 <ccnumber>1234567812345678</ccnumber>
 <expirationDate>09-07-2010</expirationDate>
 </creditcard>
 <creditcard>
 …
</data>

At this point, the client-side logic that displays the returned data may
fail since the data is not in the expected format. But this is irrelevant
because the attacker has already won. Even if the stolen data is not
displayed in the page, it was included with the server’s response, and any
competent hacker will be using a local proxy or packet sniffing tool so that
he can examine the raw contents of the HTTP messages being
exchanged.

Using this simplified SQL injection technique, an attacker can extract
out the entire contents of the backend database with just a few simple
requests. A hack that before would require thousands of requests over a
matter of hours or days might now take only a few seconds. This not only
makes the hacker’s job easier, it also improves his chances of success
since there is less likelihood that he will be caught by an intrusion
detection system. Making 20 requests to the system is much less
suspicious than making 20,000 requests to the system.

This simplified code injection technique is by no means limited to only
SQL injection. If the server code is using an XPath query to retrieve data
from an XML document, it may be possible for an attacker to inject his
own malicious XPath clause into the query. Consider the following XPath
query:

/Customer[CustomerId = <user input>]

An attacker could XPath inject this query as follows (the injected code is
shown in italics):

/Customer[CustomerId = x] | /*

The | character is the equivalent of a SQL JOIN statement in XPath, and
the /* clause instructs the query to return all of the data in the root node of

the XML document tree. The data returned from this query will be all
customers with a customer ID of “x” (probably an empty list) combined
with the complete document. With a single request, the attacker has
stolen the complete contents of the backend XML.

While the injectable query code (whether SQL or XPath) is the main
culprit in this vulnerability, the fact that the raw query results are being
returned to the client is definitely a contributing factor. This design
antipattern is typically only found in Ajax applications and occasionally in
Web services. The reason for this is that Web applications (Ajax or
otherwise) are rarely intended to display the results of arbitrary user
queries.

Queries are usually meant to return a specific, predetermined set of
data to be displayed or acted on. In our earlier example, the SQL query
was intended to return the ID, first name, last name, and phone number
of the given customer. In traditional Web applications, these values are
typically retrieved by element or column name from the query result set
and written into the page HTML. Any attempt to inject a simplified
“;SELECT” attack clause into a traditional Web application query may
succeed; but since the raw results are never returned to the client and the
server simply discards any unexpected values, there is no way for the
attacker to exploit the vulnerability. This is illustrated in Figure 6-12.

Figure 6-12
A traditional Web application using server-side data transformation will not
return the attacker’s desired data

Compare these results with the results of an injection attack against
an Ajax application that performs client-side data transformation (as
shown in Figure 6-13), and you will see that it is much easier for an
attacker to extract data from the Ajax application.

Figure 6-13
An Ajax application using client-side data transformation does return the
attacker’s desired data

Common implementation examples of this antipattern include:

 Use of the FOR XML clause in Microsoft SQL Server
 Returning .NET System.Data.DataSet objects to the client
 Addressing query result elements by numeric index rather than

name
 Returning raw XPath/XQuery results

The solution to this problem is to implement a query output validation
routine. Just as we validate all input to the query to ensure that it matches
a predetermined format, we should also validate all output from the query
to ensure that only the desired data elements are being returned to the
client.

It is important to note that the choice of XML as the message format is
irrelevant to the vulnerability. Whether we choose XML, JSON, comma-
separated values, or any other format to send data to the client, the
vulnerability can still be exploited unless we validate both the incoming
query parameters and the outgoing results.

Security through Obscurity

Admittedly, the root problem in all of the specific design and
implementation mistakes we’ve mentioned is not the increased
transparency caused by Ajax. In MyLocalWeatherForecast.com, the real
problem was the lack of proper authorization on the server. The
programmers assumed that since the only pages calling the
administrative functions already required authorization, then no further

authorization was necessary. If they had implemented additional
authorization checking in the server code, then the attacks would not
have been successful. But while the transparency of the client code did
not cause the vulnerability, it did contribute to the vulnerability by
advertising the existence of the functionality. Similarly, it does an attacker
little good to learn the data types of the server API method parameters if
those parameters are properly validated on the server. But the increased
transparency makes it more likely that any mistakes in the validation code
will be found and exploited.

It may sound like we’re advocating an approach of “security through
obscurity”, but in fact this is the complete opposite of the truth. It is
generally a poor idea to assume that if your application is difficult to
understand or reverse-engineer, then it will be safe from attack. The
biggest problem with this approach is that it relies on the attacker’s lack of
persistence in carrying out an attack. There is no roadblock that obscurity
can throw up against an attacker that cannot be overcome with enough
time and patience. Some roadblocks are bigger than others; for example,
2048-bit asymmetric key encryption is going to present quite a challenge
to a would-be hacker. But again, with enough time and patience (and
cleverness) these problems are not insurmountable. The attacker may
decide that the payout is worth the effort, or he may just see the defense
as a challenge and tackle the problem that much harder.

That being said, while it’s a bad idea to rely on security through
obscurity, a little extra obscurity never hurts. Obscuring application logic
raises the bar for an attacker, possibly stopping those without the skills or
the patience to de-obfuscate the code. It is best to look at obscurity as
one component of a complete defense and not a defense in and of itself.
Banks don’t advertise the routes and schedules that their armored cars
take, but this secrecy is not the only thing keeping the burglars out: the
banks also have steel vaults and armed guards to protect the money.
Take this approach to securing your Ajax applications. Some
advertisement of the application logic is necessary due to the
requirements of Ajax, but always attempt to minimize it, and keep some
(virtual) vaults and guards around in case someone figures it out.

Obfuscation
Code obfuscation is a good example of the tactic of obscuring

application logic. Obfuscation is a method of modifying source code in
such a way that it executes exactly the same but is much less readable to
a human user.

JavaScript code can’t be encrypted since the browser wouldn’t know
how to interpret it. The best that can be done to protect client-side script
code is to obfuscate it. For example,

alert(“Welcome to JavaScript!”);

might be changed to this:

a = "lcome to J";
b = "al";
c = "avaScript!\")";
d = "ert(\"We";
eval(b + d + a + c);

These two blocks of JavaScript are functionally identical, but the
second one is much more difficult to read. Substituting some Unicode
escape characters into the string values makes it even harder:

a = "\u006c\u0063\u006fme t\u006f J";
b = "\u0061\u006c";
c = "\u0061v\u0061Sc\u0072ipt\u0021\")";
d = "e\u0072t(\"We";
eval(b + d + a + c);

There are practically an endless number of techniques that can be
used to obfuscate JavaScript, several of which are described in the
“Validating JavaScript Source Code” section of Chapter Four. In addition,
there are some commercial tools available that will automate the
obfuscation process and make the final code much more difficult to read
than the samples given here. HTML Guardian™ by ProtWare is a good
example. It’s always a good idea to obfuscate sensitive code, but keep in
mind that obfuscation is not the same as encryption. An attacker will be
able to reverse engineer the original source code given enough time and
determination. Obfuscating code is a lot like tearing up a bank statement

– it doesn’t make the statement impossible to read, it just makes it harder
by requiring the reader to reassemble it first.

Security Recommendation
Don’t:
Don’t confuse obfuscation with encryption. If an attacker
really wants to read your obfuscated code, he will.
Do:
Do obfuscate important application logic code. Often this
simple step is enough to deter the “script kiddie” or
casual hacker who doesn’t have the patience or the
skills necessary to recreate the original. However,
always remember that everything that is sent to the
client, even obfuscated code, is readable.

Conclusions

In terms of security, the increased transparency of Ajax applications is
probably the most significant difference between Ajax and traditional Web
applications. Much of traditional Web application security relies on two
properties of server-side code; namely, that users can’t see it, and that
users can’t change it. Neither of these properties hold true for client-side
Ajax code. Any code downloaded to a user’s machine can be viewed by
the user. The application programmer can make this task more difficult,
but in the end, a dedicated attacker will always be able to read and
analyze the script executing on his machine. Furthermore, he can also
change the script to alter the control flow of the application. Prices can be
changed, authentication can be bypassed, and administrative functions
can be called by unauthorized users. The solution is to keep as much
business logic as possible on the server. Only server-side code is under
the control of the developers – client-side code is under the control of
attackers.

GET BEHIND THE SCENES
Start reading Ajax Security today

When you need to gain early
access to information on
cutting-edge technologies,
turn to the ROUGH CUTS
service from Safari Books
Online.

Our publishers have granted
a sneak peek into their
authoring process. With
ROUGH CUTS you’ll access
the book’s content as it is
being written.

You can choose to purchase
online access to the book
with unlimited viewing and
PDF downloads of each
revision, pre-purchase the
print book, or get the best of
both worlds – online access
immediately and the print
book later.

Any way you cut it, you will
receive the finished product
as soon as it is published,
whether as a pdf or as a
printed book.

PURCHASE this ROUGH CUT AT
ht tp://s af ar i. awprofessional.com/0321524 4 03

The hands-on, practical primer
for professionals who want to
prevent Ajax-related security
vulnerabilities

Ajax has the potential to
revolutionize the Internet as we
know it, but with this potential
comes equally dangerous new
security threats. Ajax Security
exposes the minefield of security
vulnerabilities inherent in the Ajax
framework and provides a guide

for developers to safely navigate through it and create a secure
application.

Each chapter begins with a myth about Ajax security which is
then debunked. Throughout the book, you will find case studies
of actual exploited Ajax vulnerabilities to illustrate key points.
The authors also include specific recommendations for securing
Ajax applications for each of the major Web programming
languages (.NET, Java, and PHP) as well as for the popular new
language, Ruby on Rails.

With this book, you will learn to

• Become familiar with security issue in the Web 2.0 world
• Create secure Mashup websites
• Identify vulnerabilities that may have crept in your code
• Keep new vulnerabilities out of your code

Geared towards software developers who want to create Ajax
Web applications that are secure from attack, Ajax Security
will also benefit QA testers and pen-testers who want to find
vulnerabilities in the Ajax applications that they test.

ISBN: 0-321-49193-9

	0321491939.Front.C.pdf
	0321491939.T.pdf
	0321491939.Back.C.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

