
85

Chapter 7 C H A P T E R S E V E N

Beautiful Tests
Alberto Savoia

MOST PROGRAMMERS HAVE HAD THE EXPERIENCE OF LOOKING AT A PIECE OF CODE and thinking it was

not only functional but also beautiful. Code is typically considered beautiful if it does what

it’s supposed to do with unique elegance and economy.

But what about the tests for that beautiful code—especially the kind of tests that develop-

ers write, or should write, while they are working on the code? In this chapter, I am going

to focus on tests, because tests can be beautiful themselves. More importantly, they can

play a key role in helping you create more beautiful code.

As we will see, a combination of things makes tests beautiful. Unlike code, I can’t bring

myself to consider any single test beautiful—at least not in the same way I can look at, say,

a sorting routine and call it beautiful. The reason is that testing, by its very nature, is a

combinatorial and exploratory problem. Every if statement in the code requires at least

two tests (one test for when the condition evaluates to true and one when it evaluates to

false). An if statement with multiple conditions, such as:

if (a || b || c)

,ch07.9134 Page 85 Wednesday, June 13, 2007 12:45 PM

86 C H A P T E R S E V E N

could require, in theory, up to eight tests—one for each possible combination of the values

of a, b, and c. Throw in control loops, multiple input parameters, dependencies on external

code, different hardware and software platforms, etc., and the number and types of tests

needed increases considerably.

Any nontrivial code, beautiful or not, needs not one, but a team of tests, where each test

should be focused on checking a specific aspect of the code, similar to the way different

players on a sports team are responsible for different tasks and different areas of the play-

ing field.

Now that we have determined that we should evaluate tests in groups, we need to deter-

mine what characteristics would make a group of tests beautiful—an adjective rarely

applied to them.

Generally speaking, the main purpose of tests is to instill, reinforce, or reconfirm our con-

fidence that the code works properly and efficiently. Therefore, to me, the most beautiful

tests are those that help me maximize my confidence that the code does, and will continue

to do, what it’s supposed to. Because different types of tests are needed to verify different

properties of the code, the basic criteria for beauty vary. This chapter explores three ways

tests can be beautiful:

Tests that are beautiful for their simplicity

With a few lines of test code, I can document and verify the target code’s basic behav-

ior. By automatically running those tests with every build, I can ensure that the

intended behavior is preserved as the code evolves. This chapter uses the JUnit testing

framework for examples of basic tests that take minutes to write and keep paying divi-

dends for the life of the project.

Tests that are beautiful because they reveal ways to make code more elegant, maintainable, and

testable

In other words, tests that help make code more beautiful. The process of writing tests

often helps you realize not only logical problems, but also structural and design issues

with your implementation. In this chapter, I demonstrate how, while trying to write

tests, I have discovered a way to make my code more robust, readable, and well

structured.

Tests that are beautiful for their breadth and depth

Very thorough and exhaustive tests boost the developer’s confidence that the code

functions as expected, not only in some basic or handpicked cases, but in all cases. This

chapter shows how I write and run this category of tests using the concept of test

theories.

Because most developers are already familiar with basic testing techniques, such as smoke

testing and boundary testing, I will spend most of the time on highly effective types of

tests and testing techniques that are seldom discussed and rarely practiced.

,ch07.9134 Page 86 Wednesday, June 13, 2007 12:45 PM

B E A U T I F U L T E S T S 87

That Pesky Binary Search
To demonstrate various testing techniques while keeping this chapter reasonably short, I

need an example that’s simple to describe and that can be implemented in a few lines of

code. At the same time, the example must be juicy enough to provide some interesting

testing challenges. Ideally, this example should have a long history of buggy implementa-

tions, demonstrating the need for thorough testing. And, last but not least, it would be

great if this example itself could be considered beautiful code.

It’s hard to talk about beautiful code without thinking about Jon Bentley’s classic book

Programming Pearls (Addison-Wesley). As I was rereading the book, I hit the beautiful code

example I was looking for: a binary search.

As a quick refresher, a binary search is a simple and effective algorithm (but, as we’ll see,

tricky to implement correctly) to determine whether a presorted array of numbers

x[0..n-1] contains a target element t. If the array contains t, the program returns its

position in the array; otherwise, it returns -1.

Here’s how Jon Bentley described the algorithm to the students:

Binary search solves the problem by keeping track of the range within the array that

holds t (if t is anywhere in the array). Initially, the range is the entire array. The range is

shrunk by comparing its middle element to t and discarding half the range. The process

continues until t is discovered in the array or until the range in which it must lie is

known to be empty.

He adds:

Most programmers think that with the above description in hand, writing the code is

easy. They are wrong. The only way to believe this is by putting down this column right

now and writing the code yourself. Try it.

I second Bentley’s suggestion. If you have never implemented binary search, or haven’t

done so in a few years, I suggest you try that yourself before going forward; it will give you

greater appreciation for what follows.

Binary search is a great example because it’s so simple and yet it’s so easy to implement

incorrectly. In Programming Pearls, Jon Bentley shares how, over the years, he asked hun-

dreds of professional programmers to implement binary search after providing them with

a description of the basic algorithm. He gave them a very generous two hours to write it,

and even allowed them to use the high-level language of their choice (including

pseudocode). Surprisingly, only about 10 percent of the professional programmers imple-

mented binary search correctly.

More surprisingly, in his Sorting and Searching,* Donald Knuth points out that even though

the first binary search was published in 1946, it took 12 more years for the first binary

search without bugs to be published.

* The Art of Computer Programming, Vol. 3: Sorting and Searching, Second Edition, Addison-Wesley, 1998.

,ch07.9134 Page 87 Wednesday, June 13, 2007 12:45 PM

88 C H A P T E R S E V E N

But most surprising of all is that even Jon Bentley’s official and proven algorithm, which (I

must assume) has been implemented and adapted thousands of times, turns out to have a

problem that can manifest itself when the array is big enough and the algorithm is imple-

mented in a language with fixed-precision arithmetic.

In Java, the bug manifests itself by throwing an ArrayIndexOutOfBoundsException, whereas in

C, you get an array index out of bounds with unpredictable results. You can read more

about this latest bug in Joshua Bloch’s blog: http://googleresearch.blogspot.com/2006/06/extra-

extra-read-all-about-it-nearly.html.

Here is a Java implementation with the infamous bug:

public static int buggyBinarySearch(int[] a, int target) {
 int low = 0;
 int high = a.length - 1;

 while (low <= high) {
 int mid = (low + high) / 2;
 int midVal = a[mid];

 if (midVal < target)
 low = mid + 1;
 else if (midVal > target)
 high = mid - 1;
 else
 return mid;
 }
 return -1;
}

The bug is in the following line:

 int mid = (low + high) / 2;

If the sum of low and high is greater than Integer.MAX_VALUE (which is 231 – 1 in Java), it

overflows into a negative number and, of course, stays negative when divided by 2—ouch!

The recommended solution is to change the calculation of the midpoint to prevent integer

overflow. One way to do it is by subtracting instead of adding:

int mid = low + ((high - low) / 2);

Or, if you want to show off your knowledge of bit shift operators, the blog (and the official

Sun Microsystems bug report*) suggests using the unsigned bit shift, which is probably

faster but may be obscure to most Java developers (including me):

int mid = (low + high) >>> 1;

Considering how simple the idea behind binary search is, and the sheer number and col-

lective brain power of the people that have worked on it over the years, it’s a great

example of why even the simplest code needs testing—and lots of it. Joshua Bloch

expressed this beautifully in his blog about this bug:

* http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=5045582.

,ch07.9134 Page 88 Wednesday, June 13, 2007 12:45 PM

B E A U T I F U L T E S T S 89

The general lesson that I take away from this bug is humility: It is hard to write even the

smallest piece of code correctly, and our whole world runs on big, complex pieces of

code.

Here is the implementation of binary search I want to test. In theory, the fix to the way

the mid is calculated should resolve the final bug in a pesky piece of code that has eluded

some of the best programmers for a few decades:

public static int binarySearch(int[] a, int target) {
 int low = 0;
 int high = a.length - 1;

 while (low <= high) {
 int mid = (low + high) >>> 1;
 int midVal = a[mid];

 if (midVal < target)
 low = mid + 1;
 else if (midVal > target)
 high = mid - 1;
 else
 return mid;
 }
 return -1;
}

This version of binarySearch looks right, but there might still be problems with it. Perhaps

not bugs, but things that can and should be changed. The changes will make the code not

only more robust, but more readable, maintainable, and testable. Let’s see whether we can

discover some interesting and unexpected opportunities for improvement as we test it.

Introducing JUnit
When speaking of beautiful tests, it’s hard not to think of the JUnit testing framework.

Because I’m using Java, deciding to build my beautiful tests around JUnit was a very easy

decision. But before I do that, in case you are not already familiar with JUnit, let me say a

few words about it.

JUnit is the brainchild of Kent Beck and Erich Gamma, who created it to help Java devel-

opers write and run automated and self-verifying tests. It has the simple, but ambitious,

objective of making it easy for software developers to do what they should have done all

along: test their own code.

Unfortunately, we still have a long way to go before the majority of developers are test-

infected (i.e., have experimented with developer testing and decided to make it a regular

and important part of their development practices). However, since its introduction, JUnit

(helped considerably by eXtreme Programming and other Agile methodologies, where

developer involvement in testing is nonnegotiable) has gotten more programmers to write

,ch07.9134 Page 89 Wednesday, June 13, 2007 12:45 PM

90 C H A P T E R S E V E N

tests than anything else.* Martin Fowler summed up JUnit’s impact as follows: “Never in

the field of software development was so much owed by so many to so few lines of code.”

JUnit is intentionally simple. Simple to learn. Simple to use. This was a key design crite-

rion. Kent Beck and Erich Gamma took great pains to make sure that JUnit was so easy to

learn and use that programmers would actually use it. In their own words:

So, the number one goal is to write a framework within which we have some glimmer

of hope that developers will actually write tests. The framework has to use familiar

tools, so that there is little new to learn. It has to require no more work than absolutely

necessary to write a new test. It has to eliminate duplicate effort.†

The official getting-started documentation for JUnit (the JUnit Cookbook) fits in less than

two pages: http://junit.sourceforge.net/doc/cookbook/cookbook.htm.

Here’s the key extract from the cookbook (from the 4.x version of JUnit):

When you need to test something, here is what you do:

1. Annotate a method with @org.junit.Test

2. When you want to check a value, import org.junit.Assert.* statically, call

assertTrue(), and pass a Boolean that is true if the test succeeds

For example, to test that the sum of two Moneys with the same currency contains a

value that is the sum of the values of the two Moneys, write:

@Test
public void simpleAdd() {
 Money m12CHF= new Money(12, "CHF");
 Money m14CHF= new Money(14, "CHF");
 Money expected= new Money(26, "CHF");
 Money result= m12CHF.add(m14CHF);
 assertTrue(expected.equals(result));
}

If you have any familiarity with Java, those two instructions and the simple example are

all you need to get started. That’s also all you need to understand the tests I will be writ-

ing. Beautifully simple, isn’t it? So, let’s get going.

Nailing Binary Search
Given its history, I am not going to be fooled by the apparent simplicity of binary search,

or by the obviousness of the fix, especially because I’ve never used the unsigned bit shift

operator (i.e., >>>) in any other code. I am going to test this fixed version of binary search

as if I had never heard of it before, nor implemented it before. I am not going to trust any-

one’s word, or tests, or proofs, that this time it will really work. I want to be confident that

it works as it should through my own testing. I want to nail it.

* Another indication of JUnit’s success and influence is that today there are JUnit-inspired frame-
works for most modern programming languages, as well as many JUnit extensions.

† “JUnit: A Cook’s Tour,” Kent Beck and Erich Gamma: http://junit.sourceforge.net/doc/cookstour/
cookstour.htm.

,ch07.9134 Page 90 Wednesday, June 13, 2007 12:45 PM

B E A U T I F U L T E S T S 91

Here’s my initial testing strategy (or team of tests):

• Start with smoke tests.

• Add some boundary value tests.

• Continue with various thorough and exhaustive types of tests.

• Finally, add some performance tests.

Testing is rarely a linear process. Instead of showing you the finished set of tests, I am

going to walk you through my thought processes while I am working on the tests.

Smoking Allowed (and Encouraged)

Let’s get started with the smoke tests. These are designed to make sure that the code does

the right thing when used in the most basic manner. They are the first line of defense and

the first tests that should be written, because if an implementation does not pass the

smoke tests, further testing is a waste of time. I often write the smoke tests before I write

the code; this is called test-driven development (or TDD).

Here’s my smoke test for binary search:

import static org.junit.Assert.*;
import org.junit.Test;

public class BinarySearchSmokeTest {

@Test
public void smokeTestsForBinarySearch() {

 int[] arrayWith42 = new int[] { 1, 4, 42, 55, 67, 87, 100, 245 };
 assertEquals(2, Util.binarySearch(arrayWith42, 42));
 assertEquals(-1, Util.binarySearch(arrayWith42, 43));

 }

}

As you can tell, this test is really, really, basic. Not a huge confidence builder by itself, but

still beautiful because it’s a very fast and efficient first step toward more thorough tests.

Because this smoke test executes extremely fast (in less than 1/100th of a second on my

system), you might ask why I didn’t include a few more tests. The answer is that part of

the beauty of smoke tests is that they can continue to pay dividends after the bulk of the

development is done. To reconfirm my confidence in the code—call it “confidence mainte-

nance”—I like to combine all smoke tests into a suite that I run every time I do a new

build (which might be dozens of times a day), and I want this smoke test suite to run

fast—ideally in a minute or two. If you have thousands of classes, and thousands of smoke

tests, it’s essential to keep each one to a bare minimum.

,ch07.9134 Page 91 Wednesday, June 13, 2007 12:45 PM

92 C H A P T E R S E V E N

Pushing the Boundaries

As the name implies, boundary testing is designed to explore and validate what happens

when the code has to deal with extremes and corner cases. In the case of binary search,

the two parameters are the array and the target value. Let’s think of some boundary cases

for each of these parameters.*

The first set of interesting corner cases that come to mind has to do with the size of the

array being searched. I begin with the following basic boundary tests:

int[] testArray;

@Test
public void searchEmptyArray() {
 testArray = new int[] {};
 assertEquals(-1, Util.binarySearch(testArray, 42));
}

@Test
public void searchArrayOfSizeOne() {
 testArray = new int[] { 42 };
 assertEquals(0, Util.binarySearch(testArray, 42));
 assertEquals(-1, Util.binarySearch(testArray, 43));
}

It’s pretty clear that an empty array is a good boundary case, and so is an array of size 1

because it’s the smallest nonempty array. Both of these tests are beautiful because they

increase my confidence that the right thing happens at the lower boundary of array size.

But I also want to test the search with a very large array, and this is where it gets interest-

ing (especially with the hindsight knowledge that the bug manifests itself only on arrays

with over one billion elements).

My first thought is to create an array large enough to ensure that the integer-overflow bug

has been fixed, but I immediately recognize a testability issue: my laptop does not have

enough resources to create an array that large in memory. But I know that there are sys-

tems that do have many gigabytes of memory and keep large arrays in memory. I want to

make sure, one way or another, that the mid integer does not overflow in those cases.

What can I do?

I know that by the time I am done with some of the other tests I have in mind, I will have

enough tests to give me confidence that the basic algorithm and implementation works

provided that the midpoint is calculated correctly and does not overflow into a negative number. So,

here’s a summary of my reasoning, leading to a possible testing strategy for enormous

arrays:

* The specification for binary search says that the array must be sorted prior to making this call, and
that if it is not sorted, the results are undefined. We are also assuming that a null array parameter
should throw a NullPointerException. Because most readers should already be familiar with basic
boundary testing techniques, I am going to skip some of those obvious tests.

,ch07.9134 Page 92 Wednesday, June 13, 2007 12:45 PM

B E A U T I F U L T E S T S 93

1. I cannot test binarySearch directly with arrays large enough to verify that the overflow

bug in the calculation of mid does not occur anymore.

2. However, I can write enough tests to give me confidence that my binarySearch

implementation works correctly on smaller arrays.

3. I can also test the way mid is calculated when very large values are used, without

getting arrays involved.

4. So, if I can gain enough confidence through testing that:

• My implementation of the basic binarySearch algorithm is sound as long as mid is

calculated correctly, and

• The way the midpoint is calculated is correct

then I can have confidence that binarySearch will do the right thing on very large

arrays.

So the not-so-obvious, but beautiful, testing strategy is to isolate and test the pesky, over-

flow-prone calculation independently.

One possibility is to create a new method:

static int calculateMidpoint(int low, int high) {
 return (low + high) >>> 1;
}

then change the following line in the code from:

int mid = (low + high) >>> 1;

to:

int mid = calculateMidpoint(low, high);

and then test the heck out of the calculateMidpoint method to make sure it always does

the right thing.

I can already hear a few of you screaming about adding the overhead of a method call in

an algorithm designed for maximum speed. But there’s no need to cry foul. Here’s why I

believe this change to the code is not only acceptable, but the right thing to do:

1. These days, I can trust compiler optimization to do the right thing and inline the

method for me, so there is no performance penalty.

2. The change makes the code more readable. I checked with several other Java

programmers, and most of them were not familiar with the unsigned bit shift

operator, or were not 100 percent sure how it worked. For them, seeing

calculateMidpoint(low, high) is more obvious than seeing (low + high) >>> 1.

3. The change makes the code more testable.

This is actually a good example of how the very act of creating a test for your code will

improve its design or legibility. In other words, testing can help you make your code more

beautiful.

,ch07.9134 Page 93 Wednesday, June 13, 2007 12:45 PM

94 C H A P T E R S E V E N

Here is a sample boundary test for the new calculateMidpoint method:

@Test
public void calculateMidpointWithBoundaryValues() {
 assertEquals(0, calculateMidpoint (0, 1));
 assertEquals(1, calculateMidpoint (0, 2));
 assertEquals(1200000000, calculateMidpoint (1100000000, 1300000000));
 assertEquals(Integer.MAX_VALUE - 2,
 calculateMidpoint (Integer.MAX_VALUE-2, Integer.MAX_VALUE-1));
 assertEquals(Integer.MAX_VALUE - 1,
 calculateMidpoint (Integer.MAX_VALUE-1, Integer.MAX_VALUE));
}

I run the tests, and they pass. Good. I am now confident that calculating mid using the

unfamiliar operator does what it’s supposed to do within the range of array sizes I want to

handle with this implementation of binary search.

The other set of boundary cases has to do with the position of the target number. I can

think of three obvious boundary cases for the target item location: first item in the list, last

item in the list, and right smack in the middle of the list. So, I write a simple test to check

these cases:

@Test
public void testBoundaryCasesForItemLocation() {
 testArray = new int[] { -324, -3, -1, 0, 42, 99, 101 };
 assertEquals(0, Util.binarySearch(testArray, -324)); // first position
 assertEquals(3, Util.binarySearch(testArray, 0)); // middle position
 assertEquals(6, Util.binarySearch(testArray, 101)); // last position
}

Note that in this test I used some negative numbers and 0, both in the array and for the

target number. It had occurred to me, while reading the tests I had already written, that I

had used only positive numbers. Since that’s not part of the specification, I should intro-

duce negative numbers and 0 in my tests. Which leads me to the following piece of testing

wisdom:

The best way to think of more test cases is to start writing some test cases.

Now that I started to think about positive/negative numbers and 0, I realize that it would

be good to have a couple of tests that use the minimum and maximum integer values.

public void testForMinAndMaxInteger() {
 testArray = new int[] {
 Integer.MIN_VALUE, -324, -3, -1, 0, 42, 99, 101, Integer.MAX_VALUE
 };
 assertEquals(0, Util.binarySearch(testArray, Integer.MIN_VALUE));
 assertEquals(8, Util.binarySearch(testArray, Integer.MAX_VALUE));
}

So far, all the boundary cases I thought of passed, and I am starting to feel pretty confi-

dent. But then I think of the 90 percent of professional programmers in Jon Bentley’s class

who implemented binary search and thought they had it right but didn’t, and my confi-

dence begins to wane a little bit. Did I make any unwarranted assumptions about the

inputs? I did not think about negative numbers and 0 until this last test case. What other

,ch07.9134 Page 94 Wednesday, June 13, 2007 12:45 PM

B E A U T I F U L T E S T S 95

unwarranted assumptions have I made? Because I handcrafted the tests, perhaps I sub-

consciously created cases that would work and missed ones that would fail.

This is a known problem with programmers testing their own code. If they can’t think of

some scenarios when implementing the code, it’s likely that they will not be able to think

of them when they switch context and try to break the code. Truly beautiful testing

requires a developer to make an extra effort, think outside the box, explore weird scenar-

ios, look for weaknesses, and try to break things.

So, what haven’t I thought of? My smoke test and boundary tests do not feel sufficient. Is

my test set representative enough that I can, through some form of induction,* claim the

code will work in all instances? The words of Joshua Bloch echo in my mind: “…It is hard

to write even the smallest piece of code correctly.”

What kind of tests would make me feel confident enough that my implementation will do

the right thing with all sorts of inputs—not just the ones I handcrafted?

Random Acts of Testing

So far I’ve written traditional, tried-and-true types of tests. I used a few concrete examples

to test the search code against my expectations of what the correct behavior should be in

those cases. Those tests all pass, so I have some level of confidence in my code. But I also

realize that my tests are very specific and cover only a very small subset of all the possible

inputs. What I would like, and what would help me sleep at night knowing my code has

been thoroughly covered, is a way of testing over a much broader set of inputs. For this to

happen I need two things:

1. A way to generate a large and diverse set of inputs

2. A set of generalized assertions that will work on any input

Let’s tackle the first requirement.

What I need here is a way to generate arrays of integers of all shapes and sizes. The only

requirement I am going to make is that the resulting arrays are sorted, because that’s a

precondition. Other than that, anything goes. Here’s my initial implementation of the

generator:†

public int[] generateRandomSortedArray(int maxArraySize, int maxValue) {
 int arraySize = 1 + rand.nextInt(maxArraySize);
 int[] randomArray = new int[arraySize];
 for (int i = 0; i < arraySize; i++) {
 randomArray[i] = rand.nextInt(maxValue);
 }
 Arrays.sort(randomArray);
 return randomArray;
}

* By induction, I mean deriving general principles from particular facts or instances.

† I say initial implementation because I quickly realized that I needed to populate the array with
negative as well as positive numbers, and changed the generator accordingly.

,ch07.9134 Page 95 Wednesday, June 13, 2007 12:45 PM

96 C H A P T E R S E V E N

For my generator, I take advantage of java.util’s random-number generator and Arrays

utilities. The latter once contained the very same binary-search bug Joshua Bloch men-

tioned in his blog, but it’s fixed in the version of Java I am using. Because I already cov-

ered the handling of empty arrays to my satisfaction in my other tests, I use a minimum

array size here of 1. The generator is parameterized because I might want to create differ-

ent sets of tests as I go along: some with small arrays containing big numbers, some with

big arrays and small numbers, and so on.

Now I have to come up with some general statements about the desired behavior of the

binary search that can be expressed as assertions. By “general,” I mean statements that

must hold true for any input array and target value. My colleagues Marat Boshernitsan

and David Saff call these theories. The idea is that we have a theory of how the code should

behave, and the more we test the theory, the more confident we can be that what we

theorize is actually true. In the following example, I am going to apply a much simplified

version of Saff and Boshernitsan’s theories.

Let’s try to come up with some theories for binarySearch. Here we go:

For all instances of testArray and target, where testArray is a sorted array of integers

and is not null, and target is an integer, the following must always be true of

binarySearch:

Theory 1:* If binarySearch(testArray, target) returns –1, then testArray does not contain

target.

Theory 2: If binarySearch(testArray, target) returns n, and n is greater than or equal to 0,

then testArray contains target at position n.

Here’s my code for testing these two theories:

public class BinarySearchTestTheories {

Random rand;

@Before
public void initialize() {
 rand = new Random();
}

@Test
public void testTheories() {

 int maxArraySize = 1000;
 int maxValue = 1000;
 int experiments = 1000;

* In practice I would use, and recommend using, descriptive names for the theories, such as: binary-
SearchReturnsMinusOneImpliesArrayDoesNotContainElement, but I found that for this chapter, the rea-
soning is easier to follow if I use Theory1, Theory2, etc.

,ch07.9134 Page 96 Wednesday, June 13, 2007 12:45 PM

B E A U T I F U L T E S T S 97

 int[] testArray;
 int target;
 int returnValue;

 while (experiments-- > 0) {
 testArray = generateRandomSortedArray(maxArraySize, maxValue);
 if (rand.nextBoolean()) {
 target = testArray[rand.nextInt(testArray.length)];
 } else {
 target = rand.nextInt();
 }
 returnValue = Util.binarySearch(testArray, target);
 assertTheory1(testArray, target, returnValue);
 assertTheory2(testArray, target, returnValue);
 }
}

public void assertTheory1(int[] testArray, int target, int returnValue) {
 if (returnValue == -1)
 assertFalse(arrayContainsTarget(testArray, target));
}

public void assertTheory2(int[] testArray, int target, int returnValue) {
 if (returnValue >= 0)
 assertEquals(target, testArray[returnValue]);
}

public boolean arrayContainsTarget(int[] testArray, int target) {
 for (int i = 0; i < testArray.length; i++)
 if (testArray[i] == target)
 return true;
 return false;
}

In the main test method, testTheories, I decide how many experiments I want to run in

order to confirm the theories, and use that as my loop counter. Inside the loop, the

random-array generator I just wrote gives me a sorted array. I want to test both successful

and unsuccessful searches, so I use Java’s random number generator again to “toss a coin”

(through the rand.nextBoolean() code). Based on the virtual coin toss, I decide whether I

am going to pick a target number that I know is in the array or one that’s unlikely to be in

the array. Finally, I call binarySearch, store the return value, and invoke the methods for

the theories I have so far.

Notice that, in order to implement the tests for my theories, I had to write a test helper

method, arrayContainsTarget, that gives me an alternative way of checking whether

testArray contains the target element. This is a common practice for this type of testing.

Even though the implementation of this helper method provides functionality similar to

binarySearch, it’s a much simpler (albeit much slower) search implementation. I have

confidence that the helper does the right thing, so I can use it to test an implementation I

am much less sure about.

,ch07.9134 Page 97 Wednesday, June 13, 2007 12:45 PM

98 C H A P T E R S E V E N

I start by running 1,000 experiments on arrays of size up to 1,000. The tests take a fraction

of a second, and everything passes. Good. Time to explore a little more (remember that

testing is an exploratory activity).

I change the experiment and maxArraySize values to 10,000, then 100,000. The tests now

take closer to a minute, and my CPU maxes out. I feel like I am giving the code a really

good workout.

My confidence is building, but one of my beliefs is: If all your tests pass, chances are that your

tests are not good enough. What other properties should I test now that I have this frame-

work?

I think for a bit and notice that my two theories are both of the form:

If something is true about the return value of binarySearch, then something else must be

true about the testArray and the target.

In other words, I have logic of the form p implies q (or, p ➝ q, using logic notation), which

means I am only testing half of what I should be testing. I should also have tests of the

form q ➝ p:*

If something is true about the testArray and the target, then something else must be

true about the return value.

This is a bit tricky, but important, so let me clarify with some specifics. The tests for Theory

1 verify that when the return value is –1, the target element is not in the array. But they

don’t verify that when the target element is not in the array, the return value is –1. In

other words: if I only had this one theory with which to test, an implementation that returned

–1 sometimes, but not every time it should, would still pass all my tests. A similar problem

exists with Theory 2.

I can demonstrate this with mutation testing, a technique for testing the tests invented by Jeff

Offut. The basic idea is to mutate the code under tests with some known bugs. If the tests

you have still pass despite the bug in the code, then the tests are probably not as thorough

as they need to be.

Let me mutate binarySearch in some drastic and arbitrary way. I’ll try do this: if target is

greater than 424242 and target is not contained in the array, instead of returning –1, I am

going to return –42. How’s that for software vandalism? See the tail end of the following

code:

* Of course, either p, q, or both, could be negated (e.g., ~p ➝ ~q, or p ➝ ~q). I am arbitrarily using p
and q as stand-ins for any predicate about the return value and the array parameter, respectively.
What’s important here is to recognize that when you are programming, you typically think in
terms of p ➝ q (if p is true, then q must happen—the so-called happy path: the normal, most com-
mon usage of the code). When you are testing, however, you must force yourself to think both
backward (q ➝ ?, or if q is true what must be true about p?), and in negative terms (if p is not true
[i.e., ~p], what must be true about q?).

,ch07.9134 Page 98 Wednesday, June 13, 2007 12:45 PM

B E A U T I F U L T E S T S 99

public static int binarySearch(int[] a, int target) {
 int low = 0;
 int high = a.length - 1;

 while (low <= high) {
 int mid = (low + high) / 2;
 int midVal = a[mid];

 if (midVal < target)
 low = mid + 1;
 else if (midVal > target)
 high = mid - 1;
 else
 return mid;
 }
 if (target <= 424242)
 return -1;
 else
 return -42;
}

Hopefully, you’ll agree that this is a pretty big mutation: the code returns an unexpected

and unspecified value if the target is a number greater than 424242 and is not contained

in the array. And yet, all the tests we have written so far pass with flying colors.

We definitely need to add at least a couple more theories to make the tests tighter and

catch this category of mutations:

Theory 3: If testArray does not contain target, then it must return -1.

Theory 4: If testArray contains target at position n, then binarySearch(testArray, target)

must return n.

These theories are tested as follows:

public void assertTheory3(int[] testArray, int target, int returnValue) {
 if (!arrayContainsTarget(testArray, target))
 assertEquals(-1, returnValue);
}

public void assertTheory4(int[] testArray, int target, int returnValue) {
 assertEquals(getTargetPosition(testArray, target), returnValue);
}

public int getTargetPosition(int[] testArray, int target) {
 for (int i = 0; i < testArray.length; i++)
 if (testArray[i] == target)
 return i;
 return -1;
}

Notice that I had to create another helper method, getTargetPosition, which has exactly

the same behavior as binarySearch (but I am confident that it works properly, with the

huge downside that it requires up to n instead of log2 n comparisons). Because

,ch07.9134 Page 99 Wednesday, June 13, 2007 12:45 PM

100 C H A P T E R S E V E N

getTargetPosition is very similar to arrayContainsTarget, and code duplication is bad, I

rewrite the latter as follows:

public boolean arrayContainsTarget(int[] testArray, int target) {
 return getTargetPosition(testArray, target) >= 0;
}

I run these tests again with my random-array generator, and now the return -42 mutation

is caught immediately. Good, that helps my confidence. I remove the intentional bug and

run the tests again. I expect them to pass, but they don’t. Some tests for Theory 4 are not

passing. JUnit is failing with messages of the form:

expected:<n> but was:<n + 1>

Theory 4 says that:

If testArray contains target at position n, then binarySearch(testArray, target) must

return n.

So, in some cases, the search routine is returning a location that’s off by one. How’s that

possible?

I need a bit more data. JUnit’s assertions can accept a message of type String as the first

parameter, so I change Theory 4’s assertEqual to include some text that will give me more

information when it fails:

public void assertTheory4(int[] testArray, int target, int returnValue) {
 String testDataInfo = "Theory 4 - Array=" +
 printArray(testArray)
 + " target="
 + target;
 assertEquals(testDataInfo, getTargetPosition(testArray, target), returnValue);
}

Now, whenever Theory 4 fails to hold, JUnit will show me the contents of the array as

well as the target value. I run the tests again (with small values of maxArraySize and

maxValue to make the output easier to read) and get the following:

java.lang.AssertionError: Theory 4 - Array=[2, 11, 36, 66, 104, 108, 108, 108, 122,
155, 159, 161, 191] target=108 expected:<5> but was:<6>

I see what’s happening. Theory 4 does not take into account duplicate values, and I hadn’t

thought of that. There are three instances of the number 108. I guess I need to find out

what the specification is for handling duplicate values, and fix either the code or my the-

ory and tests. But I’ll leave this as an exercise to the reader (I always wanted to say that!)

because I am running out of space, and I want to say a few words about performance tests

before we wrap up this chapter.

,ch07.9134 Page 100 Wednesday, June 13, 2007 12:45 PM

B E A U T I F U L T E S T S 101

Performance Anxiety

The tests we’ve already run based on these theories put a pretty tight net around the

implementation. It’s going to be tough to pass all these tests and still have a buggy imple-

mentation. But there is something we overlooked. All the tests we have are good tests for

search, but what we are testing is specifically a binary search. We need a set of tests for

binary-ness. We need to see whether the number of comparisons our implementation per-

forms matches the expectations of a maximum of log2 n comparisons. How can we go

about this?

My first thought is to use the system clock, but I quickly dismiss the idea because the clock

I have available does not have enough resolution for this particular challenge (binary

search is blazingly fast), and I can’t really control the execution environment. So, I use

another developer testing trick: I create an alternate implementation of binarySearch called

binarySearchComparisonsCount. This version of the code uses the same logic as the original,

but it keeps a count of the comparisons and returns that number instead of –1 or the tar-

get location.* Here’s that code:

public static int binarySearchComparisonCount(int[] a, int target) {
 int low = 0;
 int high = a.length - 1;

 int comparisonCount = 0;

 while (low <= high) {

 comparisonCount++;

 int mid = (low + high) >>> 1;
 int midVal = a[mid];

 if (midVal < target)
 low = mid + 1;
 else if (midVal > target)
 high = mid - 1;
 else
 return comparisonCount;
 }
 return comparisonCount;
}

Then I create another theory based on that code:

Theory 5: If the size of testArray is n, then binarySearchComparisonCount(testArray, target)

must return a number less than, or equal to, 1 + log2 n.

* Instead of modifying binarySearch to return the comparison count, a better, cleaner, and more
object-oriented design (suggested by David Saff) would be to create a CountingComparator class that
implements Java’s generalized Comparator interface and to modify binarySearch to take an instance
of that class as a third parameter. This would generalize binarySearch to work with types other than
integers, another example of how testing can lead to better design and more beautiful code.

,ch07.9134 Page 101 Wednesday, June 13, 2007 12:45 PM

102 C H A P T E R S E V E N

Here’s the code for the theory:

public void assertTheory5(int[] testArray, int target) {
 int numberOfComparisons =
 Util.binarySearchComparisonCount(testArray, target);
 assertTrue(numberOfComparisons <= 1 + log2(testArray.length));
}

I add this latest theory to my existing list inside the method testTheories, which now looks

like this:

...
 while (experiments-- > 0) {
 testArray = generateRandomSortedArray();
 if (rand.nextInt() % 2 == 0) {
 target = testArray[rand.nextInt(testArray.length)];
 } else {
 target = rand.nextInt();
 }
 returnValue = Util.binarySearch(testArray, target);
 assertTheory1(testArray, target, returnValue);
 assertTheory2(testArray, target, returnValue);
 assertTheory3(testArray, target, returnValue);
 assertTheory4(testArray, target, returnValue);
 assertTheory5(testArray, target);
 }
...

I run a few tests with a maxArraySize set of a few different values, and I find that Theory 5

seems to be holding strong.

Because it’s almost noon, I set the number of experiments to 1,000,000 and go to lunch

while my computer crunches away and tests each theory a million times.

When I get back, I see that all my tests pass. There are probably a couple more things that

I would want to test, but I have made great progress in boosting my confidence in this

implementation of binarySearch. Because different developers have different backgrounds,

styles, and levels of experience, you might have focused on different areas of the code. A

developer already familiar with the unsigned shift operator, for example, would not feel

the same need I had to test it.

In this section, I wanted to give you a flavor of performance testing and show you how

you could gain insight into and confidence in your code’s performance by combining code

instrumentation with test theories. I highly recommend you study Chapter 3, where Jon

Bentley gives this important topic the attention and beautiful treatment it deserves.

Conclusion
In this chapter, we have seen that even the best developers and the most beautiful code

can benefit from testing. We have also seen that writing test code can be every bit as cre-

ative and challenging as writing the target code. And, hopefully, I’ve shown you that tests

themselves can be considered beautiful in at least three different ways.

,ch07.9134 Page 102 Wednesday, June 13, 2007 12:45 PM

B E A U T I F U L T E S T S 103

Some tests are beautiful for their simplicity and efficiency. With a few lines of JUnit code,

run automatically with every build, you can document the code’s intended behavior and

boundaries, and ensure that both of them are preserved as the code evolves.

Other tests are beautiful because, in the process of writing them, they help you improve

the code they are meant to test in subtle but important ways. They may not discover

proper bugs or defects, but they bring to the surface problems with the design, testability,

or maintainability of the code; they help you make your code more beautiful.

Finally, some tests are beautiful for their breadth and thoroughness. They help you gain

confidence that the functionality and performance of the code match requirements and

expectations, not just on a few handpicked examples, but with a wide range of inputs and

conditions.

Developers who want to write beautiful code can learn something from artists. Painters

regularly put down their brushes, step away from the canvas, circle it, cock their heads,

squint, and look at it from different angles and under different lights. They need to

develop and integrate those perspectives in their quest for beauty. If your canvas is an IDE

and your medium is code, think of testing as your way of stepping away from the canvas

to look at your work with critical eyes and from different perspectives—it will make you a

better programmer and help you create more beautiful code.

,ch07.9134 Page 103 Wednesday, June 13, 2007 12:45 PM

