
2
Intelligent Disk Subsystems

Hard disks and tapes are currently the most important media for the storage of data. When
storage networks are introduced, the existing small storage devices are replaced by a few
large storage systems (storage consolidation). For example, individual hard disks and small
disk stacks are replaced by large disk subsystems that can store between a few hundred
gigabytes and several ten terabytes of data, depending upon size. Furthermore, they have
the advantage that functions such as high availability, high performance, instant copies
and remote mirroring are available at a reasonable price even in the field of open systems
(Unix, Windows NT/2000, OS/400, Novell Netware, MacOS). The administration of a few
large storage systems is significantly simpler, and thus cheaper, than the administration
of many small disk stacks. However, the administrator must plan what he is doing more
precisely when working with large disk subsystems. This chapter describes the functions
of such modern disk subsystems.

This chapter begins with an overview of the internal structure of a disk subsystem
(Section 2.1). We then go on to consider the hard disks used inside the system and the
configuration options for the internal I/O channels (Section 2.2). The controller repre-
sents the control centre of a disk subsystem. Disk subsystems without controllers are
called JBODs (Just a Bunch of Disks); JBODs provide only an enclosure and a com-
mon power supply for several hard disks (Section 2.3). So-called RAID controllers bring
together several physical hard disks to form virtual hard disks that are faster and more
fault-tolerant than individual physical hard disks (Sections 2.4 and 2.5). Some RAID con-
trollers use a cache to further accelerate write and read access to the server (Server 2.6).
In addition, intelligent controllers provide services such as instant copy and remote mir-
roring (Section 2.7). The conclusion to this chapter summarizes the measures discussed
for increasing the fault-tolerance of intelligent disk subsystems (Section 2.8).

Storage Networks Explained U. Troppens R. Erkens W. Müller
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86182-7



14 INTELLIGENT DISK SYSTEMS

2.1 ARCHITECTURE OF INTELLIGENT DISK SUBSYSTEMS

In contrast to a file server, a disk subsystem can be visualized as a hard disk server.
Servers are connected to the connection port of the disk subsystem using standard I/O
techniques such as SCSI, Fibre Channel or iSCSI and can thus use the storage capacity that
the disk subsystem provides (Figure 2.1). The internal structure of the disk subsystem is
completely hidden from the server, which sees only the hard disks that the disk subsystem
provides to the server.

The connection ports are extended to the hard disks of the disk subsystem by means of
internal I/O channels (Figure 2.2). In most disk subsystems there is a controller between
the connection ports and the hard disks. The controller can significantly increase the data
availability and data access performance with the aid of a so-called RAID procedure
(RAID = Redundant Array of Independent Disks). Furthermore, some controllers realize
the copying services instant copy and remote mirroring and further additional services. The
controller uses a cache in an attempt to accelerate read and write accesses to the server.

All sizes of disk subsystems are available. Small disk subsystems have one to two
connections for servers or storage networks, six to eight hard disks and – depending

Figure 2.1 Servers are connected to a disk subsystem using standard I/O techniques.
The figure shows a server that is connected by SCSI. Two others are connected by Fibre
Channel SAN



2.1 ARCHITECTURE OF INTELLIGENT DISK SUBSYSTEMS 15

Figure 2.2 Servers are connected to the disk subsystems via the ports. Internally, the disk
subsystem consists of hard disks, a controller, a cache and internal I/O channels

upon disk capacity – a storage capacity of around 500 gigabytes. Large disk subsystems
have several ten ports for servers or storage networks, redundant controllers and several
internal I/O channels. Connection via a storage network means that a significantly greater
number of servers can access the disk subsystem. Large disk subsystems can store several
ten terabytes of data and – depending upon the manufacturer – weigh a few tons. The
dimensions of a large disk subsystem are comparable with those of a wardrobe.

Figure 2.2 shows a simplified schematic representation. The architecture of real disk
subsystems is more complex and varies greatly. Ultimately, however, it will always
include the components shown in Figure 2.2. The simplified representation in Figure 2.2
provides a sufficient basis for the further discussion in the book.

Regardless of storage networks, most disk subsystems have the advantage that free disk
space can be flexibly assigned to each server connected to the disk subsystem (storage
pooling). Figure 2.3 refers back once again to the example of Figure 1.2 on page 3.
In Figure 1.2 it is not possible to assign more storage to server 2, even though free
space is available on servers 1 and 3. In Figure 2.3 this is not a problem. All servers
are either directly connected to the disk subsystem or indirectly connected via a storage
network. In this configuration each server can be assigned free storage. Incidentally, free
storage capacity should be understood to mean both hard disks that have already been
installed and have not yet been used and also free slots for hard disks that have yet to
be installed.



16 INTELLIGENT DISK SYSTEMS

Figure 2.3 All servers share the storage capacity of a disk subsystem. Each server can be
assigned free storage more flexibly as required

2.2 HARD DISKS AND INTERNAL I/O CHANNELS

The controller of the disk subsystem must ultimately store all data on physical hard disks.
Standard hard disks that range in size from 18 GB to 250 GB are currently (2003) used
for this purpose. Since the maximum number hard disks that can be used is often limited,
the size of the hard disk used gives an indication of the maximum capacity of the overall
disk subsystem.

When selecting the size of the internal physical hard disks it is necessary to weigh the
requirements of maximum performance against those of the maximum capacity of the
overall system. With regard to performance it is often beneficial to use smaller hard disks
at the expense of the maximum capacity: given the same capacity, if more hard disks are
available in a disk subsystem, the data is distributed over several hard disks and thus the
overall load is spread over more arms and read/write heads and usually over more I/O
channels (Figure 2.4). For most applications, medium-sized hard disks are sufficient. Only
for applications with extremely high performance requirements should smaller hard disks



2.2 HARD DISKS AND INTERNAL I/O CHANNELS 17

Figure 2.4 If small internal hard disks are used, the load is distributed over more hard disks
and thus over more read and write heads. On the other hand, the maximum storage capacity
is reduced, since in both disk subsystems only 16 hard disks can be fitted

be considered. However, consideration should be given to the fact that more modern,
larger hard disks generally have shorter seek times and larger caches, so it is necessary
to carefully weigh up which hard disks will offer the highest performance for a certain
load profile in each individual case.

Standard I/O techniques such as SCSI and Fibre Channel, to an increasing degree
SATA (Serial ATA) and sometimes also SSA (Serial Storage Architecture) are very often
used for the internal I/O channels between connection ports and controller and between
controller and internal hard disks. Sometimes, however, proprietary – i.e. manufacturer-
specific – I/O technologies are used. Regardless of the I/O technology used, the I/O
channels can be designed with built-in redundancy in order to increase the fault-tolerance
of the disk subsystem. The following cases can be differentiated here:

• Active
In active cabling the individual physical hard disks are only connected via one I/O
channel (Figure 2.5, left). If this access path fails, then it is no longer possible to
access the data.

• Active/passive
In active/passive cabling the individual hard disks are connected via two I/O channels
(Figure 2.5, right). In normal operation the controller communicates with the hard disks
via the first I/O channel and the second I/O channel is not used. In the event of the
failure of the first I/O channel, the disk subsystem switches from the first to the second
I/O channel.



18 INTELLIGENT DISK SYSTEMS

Figure 2.5 In active cabling all hard disks are connected by a just one I/O channel. In
active/passive cabling all hard disks are additionally connected by a second I/O channel. If
the primary I/O channel fails, the disk subsystem switches to the second I/O channel

• Active/active (no load sharing)
In this cabling method the controller uses both I/O channels in normal operation
(Figure 2.6, left). The hard disks are divided into two groups: in normal operation
the first group is addressed via the first I/O channel and the second via the second I/O
channel. If one I/O channel fails, both groups are addressed via the other I/O channel.

• Active/active (load sharing)
In this approach all hard disks are addressed via both I/O channels in normal operation
(Figure 2.6, right). The controller divides the load dynamically between the two I/O
channels so that the available hardware can be optimally utilized. If one I/O channel
fails, then the communication goes through the other channel only.

Active cabling is the simplest and thus also the cheapest to realize but offers no protec-
tion against failure. Active/passive cabling is the minimum needed to protect against fail-
ure, whereas active/active cabling with load sharing best utilizes the underlying hardware.



2.3 JBOD: JUST A BUNCH OF DISKS 19

Figure 2.6 Active/active cabling (no load sharing) uses both I/O channels at the same time.
However, each disk is addressed via one I/O channel only, switching to the other channel in
the event of a fault. In active/active cabling (load sharing) hard disks are addressed via both
I/O channels

2.3 JBOD: JUST A BUNCH OF DISKS

If we compare disk subsystems with regard to their controllers we can differentiate
between three levels of complexity: (1) no controller; (2) RAID controller (Sections 2.4
and 2.5); and (3) intelligent controller with additional services such as instant copy and
remote mirroring (Section 2.7).

If the disk subsystem has no internal controller, it is only an enclosure full of disks (Just
a Bunch of Disks, JBOD). In this instance, the hard disks are permanently fitted into the
enclosure and the connections for I/O channels and power supply are taken outwards at a
single point. Therefore, a JBOD is simpler to manage than a few loose hard disks. Typical
JBOD disk subsystems have space for 8 or 16 hard disks. A connected server recognizes
all these hard disks as independent disks. Therefore, 16 device addresses are required
for a JBOD disk subsystem incorporating 16 hard disks. In some I/O techniques such as
SCSI and Fibre Channel arbitrated loop (Section 3.3.6), this can lead to a bottleneck at
device addresses.



20 INTELLIGENT DISK SYSTEMS

In contrast to intelligent disk subsystems, a JBOD disk subsystem in particular is
not capable of supporting RAID or other forms of virtualization. If required, however,
these can be realized outside the JBOD disk subsystem, for example, as software in
the server (Section 5.1) or as an independent virtualization entity in the storage network
(Section 5.6.3).

2.4 STORAGE VIRTUALIZATION USING RAID

A disk subsystem with a RAID controller offers greater functional scope than a JBOD
disk subsystem. RAID was originally developed at a time when hard disks were still very
expensive and less reliable than they are today. RAID was originally called ‘Redundant
Array of Inexpensive Disks’. Today RAID stands for ‘Redundant Array of Independent
Disks’. Disk subsystems that support RAID are sometimes also called RAID arrays.

RAID has two main goals: to increase performance by striping and to increase fault-
tolerance by redundancy. Striping distributes the data over several hard disks and thus
distributes the load over more hardware. Redundancy means that additional information
is stored so that the operation of the application itself can continue in the event of the
failure of a hard disk. You cannot increase the performance of an individual hard disk any
more than you can improve its fault-tolerance. Individual physical hard disks are slow
and have a limited life-cycle. However, through a suitable combination of physical hard
disks it is possible to significantly increase the fault-tolerance and performance of the
system as a whole.

The bundle of physical hard disks brought together by the RAID controller are also
known as virtual hard disks. A server that is connected to a RAID system sees only
the virtual hard disk; the fact that the RAID controller actually distributes the data over
several physical hard disks is completely hidden to the server (Figure 2.7). This is only
visible to the administrator from outside.

A RAID controller can distribute the data that a server writes to the virtual hard disk
amongst the individual physical hard disks in various manners. These different procedures
are known as RAID levels. Section 2.5 explains various RAID levels in detail.

One factor common to almost all RAID levels is that they store redundant information.
If a physical hard disk fails, its data can be reconstructed from the hard disks that remain
intact. The defective hard disk can even be replaced by a new one during operation if a
disk subsystem has the appropriate hardware. Then the RAID controller reconstructs the
data of the exchanged hard disk. This process remains hidden to the server apart from a
possible reduction in performance: the server can continue to work uninterrupted on the
virtual hard disk.

Modern RAID controllers initiate this process automatically. This requires the definition
of so-called hot spare disks (Figure 2.8). The hot spare disks are not used in normal
operation. If a disk fails, the RAID controller immediately begins to copy the data of the
remaining intact disk onto a hot spare disk. After the replacement of the defective disk,
this is included in the pool of hot spare disks. Modern RAID controllers can manage a



2.4 STORAGE VIRTUALIZATION USING RAID 21

Figure 2.7 The RAID controller combines several physical hard disks to create a virtual hard
disk. The server sees only a single virtual hard disk. The controller hides the assignment of
the virtual hard disk to the individual physical hard disks

common pool of hot spare disks for several virtual RAID disks. Hot spare disks can be
defined for all RAID levels that offer redundancy.

The recreation of the data from a defective hard disk takes place at the same time as
write and read operations of the server to the virtual hard disk, so that from the point of
view of the server, performance reductions at least can be observed. Modern hard disks
come with self-diagnosis programs that report an increase in write and read errors to the
system administrator in plenty of time: ‘Caution! I am about to depart this life. Please
replace me with a new disk. Thank you!’ To this end, the individual hard disks store the
data with a redundant code such as the Hamming code. The Hamming code permits the
correct recreation of the data, even if individual bits are changed on the hard disk. If the
system is looked after properly you can assume that the installed physical hard disks will
hold out for a while. Therefore, for the benefit of higher performance, it is generally an
acceptable risk to give access by the server a higher priority than the recreation of the
data of an exchanged physical hard disk.

A further side-effect of the bringing together of several physical hard disks to form a
virtual hard disk is the higher capacity of the virtual hard disks. As a result, less device
addresses are used up in the I/O channel and thus the administration of the server is also
simplified, because less hard disks (drive letters or volumes) need to be used.



22 INTELLIGENT DISK SYSTEMS

Figure 2.8 Hot spare disk: the disk subsystem provides the server with two virtual disks for
which a common hot spare disk is available (1). Due to the redundant data storage the server
can continue to process data even though a physical disk has failed, at the expense of a
reduction in performance (2). The RAID controller recreates the data from the defective disk
on the hot spare disk (3). After the defective disk has been replaced a hot spare disk is once
again available (4)

2.5 DIFFERENT RAID LEVELS IN DETAIL

RAID has developed since its original definition in 1987. Due to technical progress
some RAID levels are now practically meaningless, whilst others have been modified or
added at a later date. This section introduces the RAID levels that are currently the most



2.5 DIFFERENT RAID LEVELS IN DETAIL 23

significant in practice. We will not introduce RAID levels that represent manufacturer-
specific variants and variants that only deviate slightly from the basic forms mentioned
in the following.

2.5.1 RAID 0: block-by-block striping

RAID 0 distributes the data that the server writes to the virtual hard disk onto one physical
hard disk after another block-by-block (block-by-block striping). Figure 2.9 shows a RAID
array with four physical hard disks. In Figure 2.9 the server writes the blocks A, B, C, D,
E, etc. onto the virtual hard disk one after the other. The RAID controller distributes the
sequence of blocks onto the individual physical hard disks: it writes the first block, A, to
the first physical hard disk, the second block, B, to the second physical hard disk, block
C to the third and block D to the fourth. Then it begins to write to the first physical hard
disk once again, writing block E to the first disk, block F to the second, and so on.

RAID 0 increases the performance of the virtual hard disk as follows: the individual
hard disks can exchange data with the RAID controller via the I/O channel significantly
more quickly than they can write to or read from the rotating disk. In Figure 2.9 the
RAID controller sends the first block, block A, to the first hard disk. This takes some
time to write the block to the disk. Whilst the first disk is writing the first block to the
physical hard disk, the RAID controller is already sending the second block, block B,

Figure 2.9 RAID 0 (striping): as in all RAID levels, the server sees only the virtual hard disk.
The RAID controller distributes the write operations of the server amongst several physical
hard disks. Parallel writing means that the performance of the virtual hard disk is higher than
that of the individual physical hard disks



24 INTELLIGENT DISK SYSTEMS

to the second hard disk and block C to the third hard disk. In the meantime the first
two physical hard disks are still engaged in depositing their respective blocks onto the
physical hard disk. If the RAID controller now sends block E to the first hard disk, then
this has written block A at least partially, if not entirely, to the physical hard disk.

In the example, the throughput can thus be approximately quadrupled: individual hard
disks currently (2003) achieve a throughput of around 50 MByte/s. The four physical
hard disks achieve a total throughput of around 4 × 50 MByte/s ≈ 200 MByte/s. Current
I/O techniques such as SCSI or Fibre Channel achieve a throughput of 160 MByte/s
or 200 MByte/s. If the RAID array consisted of just three physical hard disks the total
throughput of the hard disks would be the limiting factor. If, on the other hand, the RAID
array consisted of five physical hard disks the I/O path would be the limiting factor. With
five or more hard disks, therefore, performance increases are only possible if the hard
disks are connected to different I/O paths so that the load can be striped not only over
several physical hard disks, but also over several I/O paths.

RAID 0 increases the performance of the virtual hard disk, but not its fault-tolerance.
If a physical hard disk is lost, all the data on the virtual hard disk is lost. To be precise,
therefore, the ‘R’ for ‘Redundant’ in RAID is incorrect in the case of RAID 0, with
‘RAID 0’ standing instead for ‘zero redundancy’.

2.5.2 RAID 1: block-by-block mirroring

In contrast to RAID 0, in RAID 1 fault-tolerance is of primary importance. The basic
form of RAID 1 brings together two physical hard disks to form a virtual hard disk by
mirroring the data on the two physical hard disks. If the server writes a block to the virtual
hard disk, the RAID controller writes this block to both physical hard disks (Figure 2.10).
The individual copies are also called mirrors. Normally, two or sometimes three copies
of the data are kept (three-way mirror).

In a normal operation with pure RAID 1, performance increases are only possible in
read operations. After all, when reading the data the load can be divided between the
two disks. However, this gain is very low in comparison to RAID 0. When writing with
RAID 1 it tends to be the case that reductions in performance may even have to be taken
into account. This is because the RAID controller has to send the data to both hard disks.
This disadvantage can be disregarded for an individual write operation, since the capacity
of the I/O channel is significantly higher than the maximum write speed of the two hard
disks put together. However, the I/O channel is under twice the load, which hinders other
data traffic using the I/O channel at the same time.

2.5.3 RAID 0+1/RAID 10: striping and mirroring combined

The problem with RAID 0 and RAID 1 is that they increase either performance (RAID 0)
or fault-tolerance (RAID 1). However, it would be nice to have both performance and



2.5 DIFFERENT RAID LEVELS IN DETAIL 25

Figure 2.10 RAID 1 (mirroring): as in all RAID levels, the server sees only the virtual hard
disk. The RAID controller duplicates each of the server’s write operations onto two physical
hard disks. After the failure of one physical hard disk the data can still be read from the
other disk

fault-tolerance. This is where RAID 0+1 and RAID 10 come into play. These two RAID
levels combine the ideas of RAID 0 and RAID 1.

RAID 0+1 and RAID 10 each represent a two-stage virtualization hierarchy. Figure 2.11
shows the principle behind RAID 0+1 (mirrored stripes). In the example, eight physical
hard disks are used. The RAID controller initially brings together each four physical hard
disks to form a total of two virtual hard disks that are only visible within the RAID controller
by means of RAID 0 (striping). In the second level, it consolidates these two virtual hard
disks into a single virtual hard disk by means of RAID 1 (mirroring); only this virtual hard
disk is visible to the server.

In RAID 10 (striped mirrors) the sequence of RAID 0 (striping) and RAID 1 (mirroring)
is reversed in relation to RAID 0+1 (mirrored stripes). Figure 2.12 shows the principle
underlying RAID 10 based again on eight physical hard disks. In RAID 10 the RAID
controller initially brings together the physical hard disks in pairs by means of RAID 1
(mirroring) to form a total of four virtual hard disks that are only visible within the RAID
controller. In the second stage, the RAID controller consolidates these four virtual hard
disks into a virtual hard disk by means of RAID 0 (striping). Here too, only this last
virtual hard disk is visible to the server.

In both RAID 0+1 and RAID 10 the server sees only a single hard disk, which is
larger, faster and more fault-tolerant than a physical hard disk. We now have to ask the
question: which of the two RAID levels, RAID 0+1 or RAID 10, is preferable?



26 INTELLIGENT DISK SYSTEMS

The question can be answered by considering that when using RAID 0 the failure
of a hard disk leads to the loss of the entire virtual hard disk. In the example relating
to RAID 0+1 (Figure 2.11) the failure of a physical hard disk is thus equivalent to the
effective failure of four physical hard disks (Figure 2.13). If one of the other four physical
hard disks is lost, then the data is lost. In principle it is sometimes possible to reconstruct
the data from the remaining disks, but the RAID controllers available on the market
cannot do this particularly well.

In the case of RAID 10, on the other hand, after the failure of an individual physical
hard disk, the additional failure of a further physical hard disk – with the exception of the

Figure 2.11 RAID 0+1 (mirrored stripes): as in all RAID levels, the server sees only the virtual
hard disk. Internally, the RAID controller realizes the virtual disk in two stages: in the first stage
it brings together every four physical hard disks into one virtual hard disk that is only visible
within the RAID controller by means of RAID 0 (striping). In the second stage it consolidates
these two virtual hard disks by means of RAID 1 (mirroring) to form the hard disk that is visible
to the server



2.5 DIFFERENT RAID LEVELS IN DETAIL 27

Figure 2.12 RAID 10 (striped mirrors): as in all RAID levels, the server sees only the virtual
hard disk. Here too, we proceed in two stages. The sequence of striping and mirroring is
reversed in relation to RAID 0+1. In the first stage the controller links every two physical hard
disks by means of RAID 1 (mirroring) to a virtual hard disk, which it unifies by means of RAID 0
(striping) in the second stage to form the hard disk that is visible to the server

corresponding mirror – can be withstood (Figure 2.14). RAID 10 thus has a significantly
higher fault-tolerance than RAID 0+1. In addition, the cost of restoring the RAID system
after the failure of a hard disk is much lower in the case of RAID 10 than RAID 0+1. In
RAID 10 only one physical hard disk has to be recreated. In RAID 0+1, on the other hand,
a virtual hard disk must be recreated that is made up of four physical disks. However, the
cost of recreating the defective hard disk can be significantly reduced because a physical
hard disk is exchanged as a preventative measure when the number of read errors start to
increase. In this case it is sufficient to copy the data from the old disk to the new.

However, things look different if the performance of RAID 0+1 is compared with the
performance of RAID 10. In Section 5.1 we discuss a case study in which the use of
RAID 0+1 is advantageous.



28 INTELLIGENT DISK SYSTEMS

Figure 2.13 The consequences of the failure of a physical hard disk in RAID 0+1 (mirrored
stripes) are relatively high in comparison to RAID 10 (striped mirrors). The failure of a physical
hard disk brings about the failure of the corresponding internal RAID 0 disk, so that in effect
half of the physical hard disks have failed. The restoration of the data from the failed disk
is expensive

With regard to RAID 0+1 and RAID 10 it should be borne in mind that the two RAID
procedures are often confused. Therefore the answer ‘We use RAID 10!’ or ‘We use
RAID 0+1’ does not always provide the necessary clarity. In discussions it is better to
ask if mirroring takes place first and the mirror is then striped or if striping takes place
first and the stripes are then mirrored.

2.5.4 RAID 4 and RAID 5: parity instead of mirroring

RAID 10 provides excellent performance at a high level of fault-tolerance. The problem
with this is that mirroring using RAID 1 means that all data is written to the physical
hard disk twice. RAID 10 thus doubles the required storage capacity.



2.5 DIFFERENT RAID LEVELS IN DETAIL 29

Figure 2.14 In RAID 10 (striped mirrors) the consequences of the failure of a physical hard
disk are not as serious as in RAID 0+1 (mirrored stripes). All virtual hard disks remain intact.
The restoration of the data from the failed hard disk is simple

The idea of RAID 4 and RAID 5 is to replace all mirror disks of RAID 10 with a single
parity hard disk. Figure 2.15 shows the principle of RAID 4 based upon five physical
hard disks. The server again writes the blocks A, B, C, D, E, etc. to the virtual hard
disk sequentially. The RAID controller stripes the data blocks over the first four physical
hard disks. Instead of mirroring all data onto the further four physical hard disks, as in
RAID 10, the RAID controller calculates a parity block for every four blocks and writes
this onto the fifth physical hard disk. For example, the RAID controller calculates the
parity block PABCD for the blocks A, B, C and D. If one of the four data disks fails, the
RAID controller can reconstruct the data of the defective disks using the three other data
disks and the parity disk. In comparison to the examples in Figures 2.11 (RAID 0+1) and
2.12 (RAID 10), RAID 4 saves three physical hard disks. As in all other RAID levels,
the server again sees only the virtual disk, as if it were a single physical hard disk.



30 INTELLIGENT DISK SYSTEMS

Figure 2.15 RAID 4 (parity disk) is designed to reduce the storage requirement of RAID 0+1
and RAID 10. In the example, the data blocks are distributed over four physical hard disks
by means of RAID 0 (striping). Instead of mirroring all data once again, only a parity block is
stored for each four blocks

From a mathematical point of view the parity block is calculated with the aid of the
logical XOR operator (Exclusive OR). In the example from Figure 2.15, for example, the
equation PABCD = A XOR B XOR C XOR D applies.

The space saving offered by RAID 4 and RAID 5, which remains to be discussed,
comes at a price in relation to RAID 10. Changing a data block changes the value of
the associated parity block. This means that each write operation to the virtual hard disk
requires (1) the physical writing of the data block, (2) the recalculation of the parity block
and (3) the physical writing of the newly calculated parity block. This extra cost for write
operations in RAID 4 and RAID 5 is called the write penalty of RAID 4 or the write
penalty of RAID 5.

The cost for the recalculation of the parity block is relatively low due to the mathemat-
ical properties of the XOR operator. If the block A is overwritten by block Ã and �

is the difference between the old and new data block, then � = A XOR Ã. The new
parity block P̃ can now simply be calculated from the old parity block P and �, i.e.
P̃ = P XOR �. Proof of this property can be found in Appendix A. Therefore, if PABCD

is the parity block for the data blocks A, B, C and D, then after the data block A has been
changed, the new parity block can be calculated without knowing the remaining blocks



2.5 DIFFERENT RAID LEVELS IN DETAIL 31

B, C and D. However, the old block A must be read in before overwriting the physical hard
disk in the controller, so that this can calculate the difference �.

When processing write commands for RAID 4 and RAID 5 arrays, RAID controllers use
the above-mentioned mathematical properties of the XOR operation for the recalculation
of the parity block. Figure 2.16 shows a server that changes block D on the virtual hard
disk. The RAID controller reads the data block and the associated parity block from the
disk in question into its cache. Then it uses the XOR operation to calculate the difference
between the old and the new parity block, i.e. � = D XOR D̃, and from this the new
parity block P̃ABCD by means of P̃ABCD = PABCD XOR �. Therefore it is not necessary
to read in all four associated data blocks to recalculate the parity block. To conclude the
write operation to the virtual hard disk, the RAID controller writes the new data block
and the recalculated parity block onto the physical hard disks in question.

Good RAID 4 and RAID 5 implementations are capable of reducing the write penalty
even further for certain load profiles. For example, if large data quantities are written

Figure 2.16 Write penalty of RAID 4 and RAID 5: the server writes a changed data block (1).
The RAID controller reads in the old data block and the associated old parity block (2) and
calculates the new parity block (3). Finally it writes the new data block and the new parity
block onto the physical hard disk in question (4)



32 INTELLIGENT DISK SYSTEMS

sequentially, then the RAID controller can calculate the parity blocks from the data flow
without reading the old parity block from the disk. If, for example, the blocks E, F, G and
H in Figure 2.15 are written in one go, then the controller can calculate the parity block
PEFGH from them and overwrite this without having previously read in the old value.
Likewise, a RAID controller with a suitably large cache can hold frequently changed
parity blocks in the cache after writing to the disk, so that the next time one of the data
blocks in question is changed there is no need to read in the parity block. In both cases
the I/O load is now lower than in the case of RAID 10. In the example only five physical
blocks now need to be written instead of eight as is the case with RAID 10.

RAID 4 saves all parity blocks onto a single physical hard disk. For the example in
Figure 2.15 this means that the write operations for the data blocks are distributed over
four physical hard disks. However, the parity disk has to handle the same number of write
operations all on its own. Therefore, the parity disk become the performance bottleneck
of RAID 4 if there are a high number of write operations.

To get around this performance bottleneck, RAID 5 distributes the parity blocks over
all hard disks. Figure 2.17 illustrates the procedure. As in RAID 4, the RAID controller
writes the parity block PABCD for the blocks A, B, C and D onto the fifth physical hard

Figure 2.17 RAID 5 (striped parity): in RAID 4 each write access by the server is associated
with a write operation to the parity disk for the comparison of parity information. RAID 5
distributes the load of the parity disk over all physical hard disks



2.5 DIFFERENT RAID LEVELS IN DETAIL 33

disk. Unlike RAID 4, however, in RAID 5 the parity block PEFGH moves to the fourth
physical hard disk for the next four blocks E, F, G, H.

RAID 4 and RAID 5 distribute the data blocks over many physical hard disks. There-
fore, the read performance of RAID 4 and RAID 5 is as good as that of RAID 0 and almost
as good as that of RAID 10. As discussed, the write performance of RAID 4 and RAID 5
suffers from the write penalty; in RAID 4 there is an additional bottleneck caused by the
parity disk. Therefore, RAID 4 is seldom used in practice because RAID 5 accomplishes
more than RAID 4 with the same technical resources (see also Section 2.5.6).

RAID 4 and RAID 5 can withstand the failure of a physical hard disk. The use of
parity blocks means that the data on the defective hard disk can be restored with the aid
of the other hard disk. In contrast to RAID 10, the failure of a second physical hard disk
always leads to data loss. Some RAID 5 variants get around this by simply keeping a
second parity disk so that the data is doubly protected.

In RAID 4 and RAID 5 the restoration of a defective physical hard disk is significantly
more expensive than is the case for RAID 1 and RAID 10. In the latter two RAID levels
only the mirror of the defective disk needs to be copied to the replaced disk. In RAID 4
and RAID 5, on the other hand, the RAID controller has to read the data from all disks,
use this to recalculate the lost data blocks and parity blocks, and then write these blocks
to the replacement disk. As in RAID 0+1 this high cost can be avoided by replacing a
physical hard disk as a precaution as soon as the rate of read errors increases. If this is
done, it is sufficient to copy the data from the hard disk to be replaced onto the new
hard disk.

If the fifth physical hard disk has to be restored in the examples from Figure 2.15
(RAID 4) and Figure 2.17 (RAID 5), the RAID controller must first read the blocks
A, B, C and D from the physical hard disks, recalculate the parity block PABCD and
then write to the exchanged physical hard disk. If a data block has to be restored, only
the calculation rule changes. If, in the example, the third physical hard disk is to be
recreated, the controller would first have to read in the blocks A, B, D and PABCD, use
these to reconstruct block C and write this to the replaced disk.

2.5.5 RAID 2 and RAID 3

When introducing the RAID levels we are sometimes asked: ‘and what about RAID 2
and RAID 3?’. The early work on RAID began at a time when disks were not yet very
reliable: bit errors were possible that could lead to a written ‘one’ being read as ‘zero’
or a written ‘zero’ being read as ‘one’. In RAID 2 the Hamming code is used, so that
redundant information is stored in addition to the actual data. This additional data permits
the recognition of read errors and to some degree also makes it possible to correct them.
Today, comparable functions are performed by the controller of each individual hard disk,
which means that RAID 2 no longer has any practical significance.

Like RAID 4 or RAID 5, RAID 3 stores parity data. RAID 3 distributes the data of a
block amongst all the disks of the RAID 3 system so that, in contrast to RAID 4 or RAID
5, all disks are involved in every read or write access. RAID 3 only permits the reading



34 INTELLIGENT DISK SYSTEMS

and writing of whole blocks, thus dispensing with the write penalty that occurs in RAID
4 and RAID 5. The writing of individual blocks of a parity group is thus not possible.
In addition, in RAID 3 the rotation of the individual hard disks is synchronized so that
the data of a block can truly be written simultaneously. RAID 3 was for a long time
called the recommended RAID level for sequential write and read profiles such as data
mining and video processing. Current hard disks come with a large cache of their own,
which means that they can temporarily store the data of an entire track, and they have
significantly higher rotation speeds than the hard disks of the past. As a result of these
innovations, other RAID levels are now suitable for sequential load profiles, meaning that
RAID 3 is becoming less and less important.

2.5.6 A comparison of the RAID levels

The various RAID levels raise the question of which RAID level should be used when.
Table 2.1 compares the criteria of fault-tolerance, write performance, read performance
and space requirement for the individual RAID levels. The evaluation of the criteria can
be found in the discussion in the previous sections.

CAUTION PLEASE: The comparison of the various RAID levels discussed in this
section is only applicable to the theoretical basic forms of the RAID level in question.
In practice, manufacturers of disk subsystems have design options in

• the selection of the internal physical hard disks;

• the I/O technique used for the communication within the disk subsystem;

• the use of several I/O channels;

• the realization of the RAID controller;

• the size of the cache; and

• the cache algorithms themselves.

The performance data of the specific disk subsystem must be considered very carefully
for each individual case. For example, in the previous chapter measures were discussed

Table 2.1 The table compares the theoretical basic forms of the various RAID levels. In
practice there are very marked differences in the quality of the implementation of RAID
controllers

RAID level Fault-tolerance Read performance Write performance Space requirement

RAID 0 none good very good minimal
RAID 1 high poor poor high
RAID 10 very high very good good high
RAID 4 high good very very poor low
RAID 5 high good very poor low



2.6 CACHING: ACCELERATION OF HARD DISK ACCESS 35

that greatly reduce the write penalty of RAID 4 and RAID 5. Specific RAID controllers
may implement these measures, but they do not have to.

Subject to the above warning, RAID 0 is the choice for applications for which the
maximum write performance is more important than protection against the failure of a
disk. Examples are the storage of multimedia data for film and video production and the
recording of physical experiments in which the entire series of measurements has no value
if all measured values cannot be recorded. In this case it is more beneficial to record all
of the measured data on a RAID 0 array first and then copy it after the experiment, for
example on a RAID 5 array. In databases, RAID 0 is used as a fast store for segments in
which intermediate results for complex requests are to be temporarily stored. However, as
a rule hard disks tend to fail at the most inconvenient moment so database administrators
only use RAID 0 if it is absolutely necessary, even for temporary data.

With RAID 1, performance and capacity are limited because only two physical hard
disks are used. RAID 1 is therefore a good choice for small databases for which the
configuration of a virtual RAID 5 or RAID 10 disk would be too large. A further important
field of application for RAID 1 is in combination with RAID 0.

RAID 10 is used in situations where high write performance and high fault-tolerance
are called for. For a long time it was recommended that database log files be stored on
RAID 10. Databases record all changes in log files so this application has a high write
component. After a system crash the restarting of the database can only be guaranteed if all
log files are fully available. Manufacturers of storage systems disagree as to whether this
recommendation is still valid as there are now fast RAID 4 and RAID 5 implementations.

RAID 4 and RAID 5 save disk space at the expense of a poorer write performance.
For a long time the rule of thumb was to use RAID 5 where the ratio of read operations
to write operations is 70 : 30. At this point we wish to repeat that there are now storage
systems on the market with excellent write performance that store the data internally using
RAID 4 or RAID 5.

2.6 CACHING: ACCELERATION OF HARD DISK ACCESS

In all fields of computer systems, caches are used to speed up slow operations by operating
them from the cache. Specifically in the field of disk subsystems, caches are designed to
accelerate write and read accesses to physical hard disks. In this connection we can
differentiate between two types of cache: (1) cache on the hard disk (Section 2.6.1)
and (2) cache in the RAID controller. The cache in the RAID controller is subdivided
into write cache (Section 2.6.2) and read cache (Section 2.6.3).

2.6.1 Cache on the hard disk

Each individual hard disk comes with a very small cache. This is necessary because the
transfer rate of the I/O channel to the disk controller is significantly higher than the speed



36 INTELLIGENT DISK SYSTEMS

at which the disk controller can write to or read from the physical hard disk. If a server
or a RAID controller writes a block to a physical hard disk, the disk controller stores this
in its cache. The disk controller can thus write the block to the physical hard disk in its
own time whilst the I/O channel can be used for data traffic to the other hard disk. Many
RAID levels use precisely this state of affairs to increase the performance of the virtual
hard disk.

Read access is accelerated in a similar manner. If a server or an intermediate RAID
controller wishes to read a block, it sends the address of the requested block to the hard
disk controller. The I/O channel can be used for other data traffic while the hard disk
controller copies the complete block from the physical hard disk into its cache at a slower
data rate. The hard disk controller transfers the block from its cache to the RAID controller
or to the server at the higher data rate of the I/O channel.

2.6.2 Write cache in the controller of the disk subsystem

In addition to the cache of the individual hard drives many disk subsystems come with
their own cache, which in some models is gigabytes in size. As a result it can buffer much
greater data quantities than the cache on the hard disk. The write cache should have a
battery back-up and ideally be mirrored. The battery back-up is necessary to allow the
data in the write cache to survive a power cut. A write cache with battery back-up can
significantly reduce the write penalty of RAID 4 and RAID 5, particularly for sequential
write access (cf. Section 2.5.4 ‘RAID 4 and RAID 5: parity instead of mirroring’), and
smooth out load peaks.

Many applications do not write data at a continuous rate, but in batches. If a server
sends several data blocks to the disk subsystem, the controller initially buffers all blocks
into a write cache with a battery back-up and immediately reports back to the server that
all data has been securely written to the drive. The disk subsystem then copies the data
from the write cache to the slower physical hard disk in order to make space for the next
write peak.

2.6.3 Read cache in the RAID controller

The acceleration of read operations is difficult in comparison to the acceleration of write
operations using cache. To speed up read access by the server, the disk subsystem’s
controller must copy the relevant data blocks from the slower physical hard disk to the
fast cache before the server requests the data in question.

The problem with this is that it is very difficult for the disk subsystem’s controller to
work out in advance what data the server will ask for next. The controller in the disk
subsystem knows neither the structure of the information stored in the data blocks nor the
access pattern that an application will follow when accessing the data. Consequently, the
controller can only analyse past data access and use this to extrapolate which data blocks
the server will access next. In sequential read processes this prediction is comparatively



2.7 INTELLIGENT DISK SUBSYSTEMS 37

simple, in the case of random access it is almost impossible. As a rule of thumb, good
RAID controllers manage to provide around 40% of the requested blocks from the read
cache in mixed read profiles.

The disk subsystem’s controller cannot further increase the ratio of read access provided
from the cache (pre-fetch hit rate), because it does not have the necessary application
knowledge. Therefore, it is often worthwhile realizing a further cache within applications.
For example, after opening a file, file systems can load all blocks of the file into the main
memory; the file system knows the structures that the files are stored in. File systems
can thus achieve a prefetch hit rate of 100%. However, it is impossible to know whether
the expense for the storage of the blocks is worthwhile in an individual case, since the
application may not actually request further blocks of the file.

2.7 INTELLIGENT DISK SUBSYSTEMS

Intelligent disk subsystems represent the third level of complexity for controllers after
JBODs and RAID arrays. The controllers of intelligent disk subsystems offer additional
functions over and above those offered by RAID. In the disk subsystems that are currently
available on the market these functions are usually instant copies (Section 2.7.1), remote
mirroring (Section 2.7.2) and LUN masking (Section 2.7.3).

2.7.1 Instant copies

Instant copies can practically copy data sets of several terabytes within a disk subsystem
in a few seconds. Virtual copying means that disk subsystems fool the attached servers
into believing that they are capable of copying such large data quantities in such a short
space of time. The actual copying process takes significantly longer. However, the same
server, or a second server, can access the practically copied data after a few seconds
(Figure 2.18).

Instant copies are used, for example, for the generation of test data, for the back-
up of data and for the generation of data copies for data mining. Based upon the case
study in Section 1.3 it was shown that when copying data using instant copies, attention
should be paid to the consistency of the copied data. Sections 7.8.5 and 7.10.3 discuss in
detail the interaction of applications and storage systems for the generation of consistent
instant copies.

There are numerous alternative implementations for instant copies. One thing that all
implementations have in common is that the pretence of being able to copy data in a
matter of seconds costs resources. All realizations of instant copies require controller
computing time and cache and place a load on internal I/O channels and hard disks. The
different implementations of instant copy force the performance down at different times.
However, it is not possible to choose the most favourable implementation alternative
depending upon the application used because real disk subsystems only ever realize one
implementation alternative of instant copy.



38 INTELLIGENT DISK SYSTEMS

Figure 2.18 Instant copies can practically copy several terabytes of data within a disk
subsystem in a few seconds: server 1 works on the original data (1). The original data is
practically copied in a few seconds (2). Then server 2 can work with the data copy, whilst
server 1 continues to operate with the original data (3)

In the following, two implementation alternatives will be discussed that function in
very different ways. At one extreme the data is permanently mirrored (RAID 1 or
RAID 10). Upon the copy command both mirrors are separated: the separated mirrors
can then be used independently of the original. After the separation of the mirror the
production data is no longer protected against the failure of a hard disk. Therefore, to
increase data protection, three mirrors are often kept prior to the separation of the mirror
(three-way mirror), so that the production data is always mirrored after the separation of
the copy.

At the other extreme, no data at all is copied prior to the copy command, only after
the instant copy has been requested. To achieve this, the controller administers two data
areas, one for the original data and one for the data copy generated by means of instant
copy. The controller must ensure that during write and read access operations to original
data or data copies the blocks in question are written to or read from the data areas in
question. In some implementations it is permissible to write to the copy, in some it is
not. Some implementations copy just the blocks that have actually changed (partial copy),



2.7 INTELLIGENT DISK SUBSYSTEMS 39

others copy all blocks as a background process until a complete copy of the original data
has been generated (full copy).

In the following, the case differentiations of the controller will be investigated in more
detail based upon the example from Figure 2.18. We will first consider access by server 1
to the original data. Read operations are completely unproblematic; they are always served
from the area of the original data. Handling write operations is trickier. If a block is
changed for the first time since the generation of the instant copy, the controller must first
copy the old block to the data copy area so that server 2 can continue to access the old
data set. Only then may it write the changed block to the original data area. If a block
that has already been changed in this manner has to be written again, it must be written
to the original data area. The controller may not even back up the previous version of the
block to the data copy area because otherwise the correct version of the block would be
overwritten.

The case differentiations for access by server 2 to the data copy generated by means
of instant copy are somewhat simpler. In this case, write operations are unproblematic:
the controller always writes all blocks to the data copy area. On the other hand, for read
operations it has to establish whether the block in question has already been copied or
not. This determines whether it has to read the block from the original data area or read
it from the data copy area and forward it to the server.

2.7.2 Remote mirroring

Instant copies are excellently suited for the copying of data sets within disk subsystems.
However, they can only be used to a limited degree for data protection. Although data
copies generated using instant copy protect against application errors (accidental deletion
of a file system) and logical errors (errors in the database program), they do not protect
against the failure of a disk subsystem. Something as simple as a power failure can prevent
access to production data and data copies for several hours. A fire in the disk subsystem
would destroy original data and data copies. For data protection, therefore, the proximity
of production data and data copies is fatal.

Remote mirroring offers protection against such catastrophes. Modern disk subsystems
can now mirror their data, or part of their data, independently to a second disk subsystem,
which is a long way away. The entire remote mirroring operation is handled by the two
participating disk subsystems. Remote mirroring is invisible to application servers and
does not consume their resources. However, remote mirroring requires resources in the
two disk subsystems and in the I/O channel that connects the two disk subsystems together,
which means that reductions in performance can sometimes make their way through to
the application.

Figure 2.19 shows an application that is designed to achieve high availability using
remote mirroring. The application server and the disk subsystem, plus the associated
data, are installed in the primary data centre. The disk subsystem independently mirrors
the application data onto the second disk subsystem that is installed 50 kilometres away
in the back-up data centre by means of remote mirroring. Remote mirroring ensures that
the application data in the back-up data centre is always kept up-to-date with the time



40 INTELLIGENT DISK SYSTEMS

Figure 2.19 High availability with remote mirroring: (1) The application server stores its data
on a local disk subsystem. (2) The disk subsystem saves the data to several physical drives
by means of RAID. (3) The local disk subsystem uses remote mirroring to mirror the data onto
a second disk subsystem located in the back-up data centre. (4) Users use the application via
the LAN. (5) The stand-by server in the back-up data centre is used as a test system. The test
data is located on a further disk subsystem. (6) If the first disk subsystem fails, the application
is started up on the stand-by server using the data of the second disk subsystem. (7) Users
use the application via the WAN



2.7 INTELLIGENT DISK SUBSYSTEMS 41

interval for updating the second disk subsystem being configurable. If the disk subsystem
in the primary data centre fails, the back-up application server in the back-up data centre
can be started up using the data of the second disk subsystem and the operation of the
application can be continued. The I/O techniques required for the connection of the two
disk subsystems will be discussed in the next chapter.

We can differentiate between synchronous and asynchronous remote mirroring. In syn-
chronous remote mirroring the first disk subsystem sends the data to the second disk
subsystem first before it acknowledges a server’s write command. By contrast, asyn-
chronous remote mirroring acknowledges a write command immediately; only then does
it send the copy of the block to the second disk subsystem.

Figure 2.20 illustrates the data flow of synchronous remote mirroring. The server writes
block A to the first disk subsystem. This stores the block in its write cache and immediately
sends it to the second disk subsystem, which also initially stores the block in its write
cache. The first disk subsystem waits until the second reports that it has written the
block. The question of whether the block is still stored in the write cache of the second
disk subsystem or has already been written to the hard disk is irrelevant to the first disk
subsystem. It does not acknowledge to the server that the block has been written until it
has received confirmation from the second disk subsystem that this has written the block.

Synchronous remote mirroring has the advantage that the copy of the data held by the
second disk subsystem is always up-to-date. This means that if the first disk subsystem
fails, the application can continue working with the most recent data set by utilizing the
data on the second disk subsystem.

The disadvantage is that copying the data from the first disk subsystem to the second
and sending the write acknowledgement back from the second to the first increases the
response time of the first disk subsystem to the server. However, it is precisely this
response time that determines the throughput of applications such as databases and file
systems. An important factor for the response time is the signal transit time between the
two disk subsystems. After all, their communication is encoded in the form of physical
signals, which propagate at a certain speed. The propagation of the signals from one disk
subsystem to another simply costs time. As a rule of thumb, it is worth using synchronous
remote mirroring if the cable lengths from the server to the second disk subsystem via
the first are a maximum of 6–10 kilometres.

Acknowledge 'A' Acknowledge 'A'

Figure 2.20 In synchronous remote mirroring a disk subsystem does not acknowledge write
operations until it has saved a block itself and received write confirmation from the second
disk subsystem



42 INTELLIGENT DISK SYSTEMS

If we want to mirror the data over longer distances, then we have to switch to asyn-
chronous remote mirroring. Figure 2.21 illustrates the data flow in asynchronous remote
mirroring. In this approach the first disk subsystem acknowledges the receipt of data as
soon as it has been temporarily stored in the write cache. The first disk subsystem does not
send the copy of the data to the second disk subsystem until later. The write confirmation
of the second disk subsystem to the first is not important to the server that has written
the data.

The price of the rapid response time achieved using asynchronous remote mirroring is
obvious. In contrast to synchronous remote mirroring, in asynchronous remote mirroring
there is no guarantee that the data on the second disk subsystem is up-to-date. This is
precisely the case if the first disk subsystem has sent the write acknowledgement to the
server but the block has not yet been saved to the second disk subsystem.

If we wish to mirror data over long distances but do not want to use only asynchronous
remote mirroring it is necessary to use three disk subsystems (Figure 2.22). The first two
may be located just a few kilometres apart, so that synchronous remote mirroring can be
used between the two. In addition, the data of the second disk subsystem is mirrored onto
a third by means of asynchronous remote mirroring. However, this solution comes at a

Acknowledge 'A'

Acknowledge 'A'

Figure 2.21 In asynchronous remote mirroring one disk subsystem acknowledges a write
operation as soon as it has saved the block itself

Figure 2.22 The combination of synchronous and asynchronous remote mirroring means
that rapid response times can be achieved in combination with mirroring over long distances



2.7 INTELLIGENT DISK SUBSYSTEMS 43

price: for most applications the cost of data protection would exceed the costs that would
be incurred after data loss in the event of a catastrophe. This approach would therefore
only be considered for very important applications.

2.7.3 LUN masking

So-called LUN masking brings us to the third important function – after instant copy and
remote mirroring – that intelligent disk subsystems offer over and above that offered by

Figure 2.23 Chaos: each server works to its own virtual hard disk. Without LUN masking
each server sees all hard disks. A configuration error on server 1 can destroy the data on the
other two servers. The data is thus poorly protected



44 INTELLIGENT DISK SYSTEMS

RAID. LUN masking limits the access to the hard disks that the disk subsystem exports
to the connected server.

A disk subsystem makes the storage capacity of its internal physical hard disks available
to servers by permitting access to individual physical hard disks, or to virtual hard disks
created using RAID, via the connection ports. Based upon the SCSI protocol, all hard
disks – physical and virtual – that are visible outside the disk subsystem are also known
as LUN (Logical Unit Number).

Without LUN masking every server would see all hard disks that the disk subsystem pro-
vides. Figure 2.23 shows a disk subsystem without LUN masking to which three servers
are connected. Each server sees all hard disks that the disk subsystem exports outwards.
As a result, considerably more hard disks are visible to each server than is necessary.

Figure 2.24 Order: each server works to its own virtual hard disk. With LUN masking, each
server sees only its own hard disks. A configuration error on server 1 can no longer destroy
the data of the two other servers. The data is now protected



2.8 AVAILABILITY OF DISK SUBSYSTEMS 45

In particular, on each server those hard disks that are required by applications that run
on a different server are visible. This means that the individual servers must be very
carefully configured. In Figure 2.23 an erroneous formatting of the disk LUN 3 of server
1 would destroy the data of the application that runs on server 3. In addition, some
operating systems are very greedy: when booting up they try to draw to them each hard
disk that is written with the signature (label) of a foreign operating system.

Without LUN masking, therefore, the use of the hard disk must be very carefully
configured in the operating systems of the participating servers. LUN masking brings
order to this chaos by assigning the hard disks that are externally visible to servers. As
a result, it limits the visibility of exported disks within the disk subsystem. Figure 2.24
shows how LUN masking brings order to the chaos of Figure 2.23. Each server now sees
only the hard disks that it actually requires. LUN masking thus acts as a filter between
the exported hard disks and the accessing servers.

It is now no longer possible to destroy data that belongs to applications that run on
another server. Configuration errors are still possible, but the consequences are no longer
so devastating. Furthermore, configuration errors can now be more quickly traced since
the information is bundled within the disk subsystem instead of being distributed over
all servers.

We differentiate between port-based LUN masking and server-based LUN masking.
Port-based LUN masking is the ‘poor man’s LUN masking’, it is found primarily in
low-end disk subsystems. In port-based LUN masking the filter only works using the
granularity of a port. This means that all servers connected to the disk subsystem via the
same port see the same disks.

Server-based LUN masking offers more flexibility. In this approach every server sees
only the hard disks assigned to it, regardless of which port it is connected via or which
other servers are connected via the same port.

2.8 AVAILABILITY OF DISK SUBSYSTEMS

Disk subsystems are assembled from standard components, which have a limited fault-
tolerance. In this chapter we have shown how these standard components are combined
in order to achieve a level of fault-tolerance for the entire disk subsystem that lies sig-
nificantly above the fault-tolerance of the individual components. Today, disk subsystems
can be constructed so that they can withstand the failure of any component without data
being lost or becoming inaccessible. We can also say that such disk subsystems have no
‘single point of failure’.

The following list describes the individual measures that can be taken to increase the
availability of data:

• The data is distributed over several hard disks using RAID processes and supple-
mented by further data for error correction. After the failure of a physical hard disk,
the data of the defective hard disk can be reconstructed from the remaining data and
the additional data.



46 INTELLIGENT DISK SYSTEMS

• Individual hard disks store the data using the so-called Hamming code. The Hamming
code allows data to be correctly restored even if individual bits are changed on the
hard disk. Self-diagnosis functions in the disk controller continuously monitor the rate
of bit errors and the physical variables (temperature sensors, spindle vibration sensors).
In the event of an increase in the error rate, hard disks can be replaced before data
is lost.

• Each internal physical hard disk can be connected to the controller via two internal I/O
channels. If one of the two channels fails, the other can still be used.

• The controller in the disk subsystem can be realized by several controller instances. If
one of the controller instances fails, one of the remaining instances takes over the tasks
of the defective instance.

• Other auxiliary components such as power supplies, batteries and fans can often be
duplicated so that the failure of one of the components is unimportant. When connect-
ing the power supply it should be ensured that the various power cables are at least
connected through various fuses. Ideally, the individual power cables would be supplied
via different external power networks; however, in practice this is seldom realizable.

• Server and disk subsystem are connected together via several I/O channels. If one of
the channels fails, the remaining ones can still be used.

• Instant copies can be used to protect against logical errors. For example, it would be
possible to create an instant copy of a database every hour. If a table is ‘accidentally’
deleted, then the database could revert to the last instant copy in which the database is
still complete.

• Remote mirroring protects against physical damage. If, for whatever reason, the original
data can no longer be accessed, operation can continue using the data copy that was
generated using remote mirroring.

This list shows that disk subsystems can guarantee the availability of data to a very high
degree. Despite everything it is in practice sometimes necessary to shut down and switch
off a disk subsystem. In such cases, it can be very tiresome to co-ordinate all project
groups to a common waiting window, especially if these are distributed over different
time zones.

Further important factors for the availability of an entire IT system are the availability
of the applications or the application server itself and the availability of the connection
between application servers and disk subsystems. Chapter 6 shows how multipathing can
improve the connection between servers and storage systems and how clustering can
increase the fault-tolerance of applications.

2.9 SUMMARY

Large disk subsystems have a storage capacity of several ten terabytes that is often shared
by several servers. The administration of a few large disk subsystems that are used by



2.9 SUMMARY 47

several servers is more flexible and cheaper than the administration of many individual
disks or many small disk stacks. Large disk subsystems are assembled from standard
components such as disks, RAM and CPU. Skillful combining of standard components
and additional software can make the disk subsystem as a whole significantly more high-
performance and more fault-tolerant than its individual components.

A server connected to a disk subsystem sees only the physical and virtual hard disks
that the disk subsystem exports via the connection ports and makes available to it by
LUN masking. The internal structure is completely hidden to the server. The controller is
the control centre of the disk subsystem. The sole advantage of disk subsystems without
a controller (JBODs) is that they are simpler to handle than the corresponding number
of separate disks without a common enclosure. RAID controllers offer clear advantages
over JBODs. They bring together several physical hard disks to form virtual hard disks
that can be significantly higher-performance, more fault-tolerant and larger than an indi-
vidual physical hard disk. In addition to RAID, intelligent controllers realize the copying
functions of instant copy and remote mirroring plus LUN masking. With instant copy,
data sets up to several terabytes in size can be practically copied within a disk subsystem
in a few seconds. Remote mirroring mirrors the data of one disk subsystem to another
without server resources being required for this.

Disk subsystems can thus take on many tasks that were previously performed within the
operating system. As a result, more and more functions are being moved from the oper-
ating system to the storage systems, meaning that intelligent storage systems are moving
into the centre of the IT architecture (storage-centric IT architecture). Storage systems
and servers are connected together by means of block-oriented I/O techniques such as
SCSI, Fibre Channel and iSCSI. These will be described in detail in the next chapter.




