
10
The SNIA Shared Storage
Model

The fact that there is a lack of any unified terminology for the description of storage
architectures has already become apparent at several points in previous chapters. There
are thus numerous components in a storage network which, although they do the same
thing, are called by different names. Conversely, there are many systems with the same
name, but fundamentally different functions.

A notable example is the term ‘data mover’ relating to server-free back-up (Section 7.8.1)
in storage networks. When this term is used it is always necessary to check whether the
component in question is one that functions in the sense of the 3rd-party SCSI Copy Com-
mand for, for example, a software component of back-up software on a special server, which
implements the server-free back-up without 3rd-party SCSI.

This example shows that the type of product being offered by a manufacturer and the
functions that the customer can ultimately expect from this product are often unclear.
This makes it difficult for customers to compare the products of individual manufacturers
and find out the differences between the alternatives on offer. There is no unified model
for this with clearly defined descriptive terminology.

For this reason, in 2001 the Technical Council of the Storage Networking Industry
Association (SNIA) introduced the so-called Shared Storage Model in order to unify the
terminology and descriptive models used by the storage network industry. Ultimately, the
SNIA wants to use the SNIA Shared Storage Model to establish a reference model, which
will have the same importance for storage architectures as the seven-tier OSI model has
for computer networks.

In this chapter, we would first like to introduce the disk-based Shared Storage Model
(Section 10.1) and then show, based upon examples (Section 10.2), how the model can be

Storage Networks Explained U. Troppens R. Erkens W. Müller
 2004 John Wiley & Sons, Ltd ISBN: 0-470-86182-7



310 THE SNIA SHARED STORAGE MODEL

used for the description of typical disk storage architectures. In Section 10.3 we introduce
the extension of the SNIA model to the description of tape functions. We then discuss
examples of tape-based back-up architectures (Section 10.4). Whilst describing the SNIA
Shared Storage Model we often refer to text positions in this book where the subject in
question is discussed in detail, which means that this chapter also serves as a summary
of the entire book.

10.1 THE MODEL

In this book we have spoken in detail about the advantages of the storage-centric architec-
ture in relation to the server-centric architecture. The SNIA sees its main task as being to
communicate this paradigm shift and to provide a forum for manufacturers and developers
so that they can work together to meet the challenges and solve the problems in this field.
In the long run, an additional reason for the development of the Shared Storage Model by
SNIA was the creation of a common basis for communication between the manufacturers
who use the SNIA as a platform for the exchange of ideas with other manufacturers.
Storage-centric IT architectures are called shared storage environments by the SNIA. We
will use both terms in the following.

First of all, we will describe the functional approach of the SNIA model (Section 10.1.1)
and the SNIA conventions for graphical representation (Section 10.1.2). We will then
consider the model (Section 10.1.3), its components (Section 10.1.4) and the layers
‘file/record layer’ and ‘block layer’ in detail (Section 10.1.5 to Section 10.1.8). Then
we will introduce the definitions and representation of concepts from the SNIA
model, such as access paths (Section 10.1.9), caching (Section 10.1.10), access control
(Section 10.1.11), clustering (Section 10.1.12), data (Section 10.1.13) and resource and
data sharing (Section 10.1.14). Finally, we will take a look at the service subsystem
(Section 10.1.15).

10.1.1 The functional approach

The SNIA Shared Storage Model first of all describes functions that have to be provided
in a storage-centric IT architecture. This includes, for example, the block layer or the
file/record layer. The SNIA model describes both the tasks of the individual functions
and also their interaction. Furthermore, it introduces components such as server (‘host
computer’) and storage networks (‘interconnection network’).

Due to the separation of functions and components, the SNIA Shared Storage Model
is suitable for the description of various architectures, specific products and concrete
installations. The fundamental structures, such as the functions and services of a shared
storage environment, are highlighted. In this manner, functional responsibilities can be



10.1 THE MODEL 311

assigned to individual components and the relationships between control and data flows in
the storage network worked out. At the same time, the preconditions for interoperability
between individual components and the type of interoperability can be identified. In
addition to providing a clear terminology for the elementary concepts, the model should
be simple to use and, at the same time, extensive enough to cover a large number of
possible storage network configurations.

The model itself describes, on the basis of examples, possible practicable storage archi-
tectures and their advantages and disadvantages. We will discuss these in Section 10.2
without evaluating them or showing any preference for specific architectures. Within the
model definition, however, only a few selected examples will be discussed in order to
highlight how the model can be applied for the description of storage-centred environments
and further used.

10.1.2 Graphical representations

The SNIA Shared Storage Model further defines how storage architectures can be graphi-
cally illustrated. Physical components are always represented as three-dimensional objects,
whilst functional units should be drawn in two-dimensional form. The model itself also
defines various colours for the representation of individual component classes. In the
black and white format of the book, we have imitated these using shades of grey. A
coloured version of the illustrations to this chapter can be found on our home page
http://www.storage-explained.com. Thick lines in the model represent the data transfer,
whereas thin lines represent the metadata flow between the components.

10.1.3 An elementary overview

The SNIA Shared Storage Model first of all defines four elementary parts of a shared
storage environment (Figure 10.1):

1. File/record layer
The file/record layer is made up of database and file system.

2. Block layer
The block layer encompasses the storage devices and the block aggregation. The SNIA
Shared Storage Model uses the term ‘aggregation’ instead of the often ambiguously
used term ‘storage virtualization’. In Chapter 5, however, we used the term ‘storage
virtualization’ to mean the same thing as ‘aggregation’ in the SNIA model, in order
to avoid ambiguity.

3. Services subsystem
The functions for the management of the other components are defined in the ser-
vices subsystem.



312 THE SNIA SHARED STORAGE MODEL

S
er

vi
ce

s 
S

ub
sy

st
em

Figure 10.1 The main components of the SNIA Shared Storage Model are the file/record
layer, the block layer and the services subsystem. Applications are viewed as users of
the model

4. Applications
Applications are not discussed further by the model. They will be viewed as users of
the model in the widest sense.

10.1.4 The components

The SNIA Shared Storage Model defines the following components:

• Interconnection network
The interconnection network represents the storage network, i.e. the infrastructure, that
connects the individual elements of a shared storage environment with one another.
The interconnection network can be used exclusively for storage access, but it can
also be used for other communication services. Our definition of a storage network
(Section 1.2) is thus narrower than the definition of the interconnection network in the
SNIA model.

The network must always provide a high-performance and easily scaleable connection
for the shared storage environment. In this context, the structure of the interconnec-
tion network – for example redundant data paths between two components to increase
fault-tolerance – remains just as open as the network techniques used. It is therefore a
prerequisite of the model that the components of the shared storage environment are
connected over a network without any definite communication protocols or transmission
techniques being specified.



10.1 THE MODEL 313

In actual architectures or installations, Fibre Channel, Fast Ethernet, Gigabit Ethernet,
InfiniBand and many other transmission techniques are used (Chapter 3). Communica-
tion protocols such as SCSI, Fibre Channel FCP, TCP/IP, RDMA, CIFS or NFS are
based upon these.

• Host computer
Host computer is the term used for computer systems that draw at least some of
their storage from the shared storage environment. According to SNIA, these systems
were often omitted from classical descriptive approaches and not viewed as part of
the environment. The SNIA shared storage model, however, views these systems as
part of the entire shared storage environment because storage-related functions can be
implemented on them.

Host computers are connected to the storage network via host bus adapters or network
cards, which are operated by means of their own drivers and software. Drivers and
software are thus taken into account in the SNIA Shared Storage Model. Host computers
can be operated fully independently of one another or they can work on the resources
of the storage network in a compound, for example, a cluster (Section 6.4.1).

• Physical storage resource
All further elements that are connected to the storage network and are not host com-
puters are known by the term ‘physical storage resource’. This includes simple hard
disk drives, disk arrays, disk subsystems and controllers plus tape drives and tape
libraries. Physical storage resources are protected against failures by means of redun-
dant data paths (Section 6.3.1), replication functions such as snapshots and mirroring
(Section 2.7) and RAID (Section 2.5).

• Storage device
A storage device is a special physical storage resource that stores data.

• Logical storage resource
The term ‘logical storage resource’ is used to mean services or abstract compositions
of physical storage resources, storage management functions or a combination of these.
Typical examples are volumes, files and data movers.

• Storage management functions
The term ‘storage management function’ is used to mean the class of services that
monitor and check (Chapter 8) the shared storage environment or implement logical
storage resources. These functions are typically implemented by software on physical
storage resources or host computers.

10.1.5 The layers

The SNIA Shared Storage Model defines four layers (Figure 10.2):

I. Storage devices

II. Block aggregation layer



314 THE SNIA SHARED STORAGE MODEL

Figure 10.2 The SNIA Shared Storage Model defines four layers

III. File/record layer

IIIb. Database

IIIa. File system

IV Applications

Applications are viewed as users of the model and are thus not described in the model.
They are, however, implemented as a layer in order to illustrate the point in the model to
which they are linked. In the following we’ll consider the file/record layer (Section 10.1.6),
the block layer (Section 10.1.7) and the combination of both (Section 10.1.8) in detail.

10.1.6 The file/record layer

The file/record layer maps database records and files on the block-oriented volume of
the storage devices. Files are made up of several bytes and are therefore viewed as byte
vectors in the SNIA model. Typically, file systems or database management systems take
over these functions. They operate directories of the files or records, check the access,
allocate storage space and cache the data (Chapter 4). The file/record layer thus works on
volumes that are provided to it from the block layer below. Volumes themselves consist
of several arranged blocks, so-called block vectors. Database systems map one or more
records, so-called tuple of records, onto volumes via tables and table spaces:

Tuple of records −→ tables −→ table spaces −→ volumes

In the same way, file systems map bytes onto volumes by means of files:

Bytes −→ files −→ volumes



10.1 THE MODEL 315

Figure 10.3 The functions of the file/record layer can be implemented exclusively on the
host or distributed over a client and a server component

Some database systems can also work with files, i.e. byte vectors. In this case, block
vectors are grouped into byte vectors by means of a file system – an additional abstraction
level. Since an additional abstraction level costs performance, only smaller databases work
in a file-oriented manner. In large databases the additional mapping layer of byte to block
vectors is dispensed with for performance reasons.

The functions of the file/record layers can be implemented at various points (Figure 10.3,
Section 5.6):

• Exclusively on the host
In this case, the file/record layer is implemented entirely on the host. Databases and
the host-based file systems work in this way.

• Both in the client and also on a server component
The file/record layer can also be implemented in a distributed manner. In this case the
functions are distributed over a client and a server component. The client component
is realized on a host computer, whereas the server component can be realized on the
following devices:

• NAS/file server
A NAS/file server is a specialized host computer usually with a locally connected,
dedicated storage device (Section 4.2.2).



316 THE SNIA SHARED STORAGE MODEL

• NAS head
A host computer that offers the file serving services, but which has access to external
storage connected via a storage network. NAS heads correspond with the devices
called NAS gateways in our book (Section 4.2.2).

In this case, client and server components work over network file systems such as NFS
or CIFS (Section 4.2).

10.1.7 The block layer

The block layer differentiates between block aggregation and the block-based storage
devices. The block aggregation in the SNIA model corresponds to our definition of the
virtualization on block level (Section 5.5). SNIA thus uses the term ‘block aggrega-
tion’ to mean the aggregation of physical blocks or block vectors into logical blocks or
block vectors.

To this end, the block layer maps the physical blocks of the disk storage devices onto
logical blocks and makes these available to the higher layers in the form of volumes
(block vectors). This either occurs via a direct (1 : 1) mapping, or the physical blocks are
first aggregated into logical blocks, which are then passed on to the upper layers in the
form of volumes (Figure 10.4). In the case of SCSI, the storage devices of the storage
device layer exist in the form of one or more so-called logical units (LU).

Further tasks of the block layer are the labelling of the logical units using so-called
logical unit numbers (LUNs), caching and – increasingly in the future – access control.
Block aggregation can be used for various purposes, for example:

• Volume/space management
The typical task of a volume manager is to aggregate several small block vectors to
form one large block vector. On SCSI level this means aggregating several logical units

Figure 10.4 The block aggregation layer aggregates physical blocks or block vectors into
logical blocks or block vectors



10.1 THE MODEL 317

to form a large volume, which is passed on to the upper layers such as the file/record
layer (Section 4.1.4).

• Striping
In striping, physical blocks of different storage devices are aggregated to one volume.
This increases the I/O throughput of the read and write operations, since the load is
distributed over several physical storage devices (Section 2.5.1).

• Redundancy
In order to protect against failures of physical data carriers, RAID (Section 2.5) and
remote mirroring (Section 2.7.2) are used. Snapshots (instant copies) can also be used
for the redundant storage of data (Section 2.7.1).

The block aggregation functions of the block layer can be realized at different points of
the shared storage environment (Section 5.6):

• On the host
Block aggregation on the host is encountered in the form of a logical volume manager
software, in device drivers and in host bus adapters.

• On a component of the storage network
The functions of the block layer can also be realized in connection devices of the
storage network or in specialized servers in the network.

• In the storage device
Most commonly, the block layer functions are implemented in the storage devices
themselves, for example, in the form of RAID or volume manager functionality.

In general, various block aggregation functions can be combined at different points of the
shared storage environment. In practical use, RAID may, for example, be used in the disk
subsystem with additional mirroring from one disk subsystem to another via the volume
manager on the host computer (Section 4.1.4). In this setup, RAID protects against the
failure of physical disks of the disk subsystem, whilst the mirroring by means of the
volume manager on the host protects against the complete failure of a disk subsystem.
Furthermore, the performance of read operations is increased in this set-up, since the
volume manager can read from both sides of the mirror (Section 2.5.2).

10.1.8 Combination of the block and file/record layers

Figure 10.5 shows how block and file/record layer can be combined and represented in
the SNIA shared storage model:

• Direct attachment
The left-hand column in the figure shows storage connected directly to the server, as
is normally the case in a server-centric IT architecture (Section 1.1).



318 THE SNIA SHARED STORAGE MODEL

H
os

t w
ith

 L
og

ic
al

 V
ol

um
e 

M
an

ag
er

Lo
gi

ca
l V

ol
um

e 
M

an
ag

er

Figure 10.5 Block and file/record layer can be combined in different ways

• Storage network attachment
In the second column we see how a disk array is normally connected via a storage
network in a storage-centric IT architecture, so that it can be accessed by several host
computers (Section 1.2).

• NAS head (NAS gateway)
The third column illustrates how a NAS head is integrated into a storage network
between SAN storage and a host computer connected via LAN.

• NAS server
The right-hand column shows the function of a NAS server with its own dedicated
storage in the SNIA Shared Storage Model.

10.1.9 Access paths

Read and write operations of a component on a storage device are called access paths
in the SNIA Shared Storage Model. An access path is descriptively defined as the list



10.1 THE MODEL 319

Figure 10.6 In the SNIA Shared Storage Model, applications can access the storage devices
via eight possible access paths

of components that are run through by read and write operations to the storage devices
and responses to them. If we exclude cyclical access paths, then a total of eight possible
access paths from applications to the storage devices can be identified in the SNIA Shared
Storage Model (Figure 10.6):

1. Direct access to a storage device.

2. Direct access to a storage device via a block aggregation function.

3. Indirect access via a database system.

4. Indirect access via a database system based upon a block aggregation function.

5. Indirect access via a database system based upon a file system.

6. Indirect access via a database system based upon a file system, which is itself based
upon a block aggregation function.

7. Indirect access via a file system.

8. Indirect access via a file system based upon a block aggregation function.

10.1.10 Caching

Caching is the method of shortening the access path of an application – i.e. the number
of the components to be passed through – to frequently used data on a storage device.
To this end, the data accesses to the slower storage devices are buffered in a faster cache
storage. Most components of a shared storage environment can have a cache. The cache
can be implemented within the file/record layer, within the block layer or in both.



320 THE SNIA SHARED STORAGE MODEL

In practice, several caches working simultaneously on different levels and components
are generally used. For example, a read cache in the file system may be combined with a
write cache on a disk array and a read cache with pre-fetching on a hard disk (Figure 10.7).
In addition, a so-called cache-server (Section 5.7.2), which temporarily stores data for
other components on a dedicated basis in order to reduce the need for network capacity
or to accelerate access to slower storage, can also be integrated into the storage network.

However, the interaction between several cache storages on several components means
that consideration must be given to the consistency of data. The more components that
use cache storage, the more dependencies arise between the functions of individual com-
ponents. A classic example is the use of a snapshot function on a component in the block
layer, whilst another component stores the data in question to cache in the file/record
layer. In this case, the content of the cache within the file/record layer, which we will
assume to be consistent, and the content of a volume on a disk array that is a compo-
nent of the block layer can be different. The content of the volume on the array is thus
inconsistent. Now, if a snapshot is taken of the volume within the disk array, a virtual

H
os

t w
ith

 L
og

ic
al

 V
ol

um
e 

M
an

ag
er

Lo
gi

ca
l V

ol
um

e 
M

an
ag

er

Figure 10.7 Caching functions can be implemented at different levels and at different
components of a shared storage environment



10.1 THE MODEL 321

copy is obtained of an inconsistent state of the data. The copy is thus unusable. Therefore,
before the snapshot is made within the block layer, the cache in the file/record layer on
the physical volume must be destaged, so that it can receive a consistent copy later.

10.1.11 Access control

Access control is the name for the technique that arranges the access to data of the shared
storage environment. The term access control should thus be clearly differentiated from
the term access path, since the mere existence of an access path does not include the right
to access. Access control has the following main objectives:

• Authentication
Authentication establishes the identity of the source of an access.

• Authorization
Authorization grants or refuses actions to resources.

• Data protection
Data protection guarantees that data may only be viewed by authorized persons.

All access control mechanisms ultimately use a form of secure channel between the data
on the storage device and the source of an access. In its simplest form, this can be a check
to establish whether a certain host is permitted to have access to a specific storage device.

Access control can, however, also be achieved by complicated cryptographic proce-
dures, which are secure against the most common external attacks. When establishing
a control mechanism it is always necessary to trade off the necessary protection and
efficiency against complexity and performance sacrifices.

In server-centric IT architectures, storage devices are protected by the guidelines on
the host computers and by simple physical measures. In a storage network, the storage
devices, the network and the network components themselves must be protected against
unauthorized access, since in theory they can be accessed from all host computers. Access
control becomes increasingly important in a shared storage environment as the number
of components used, the diversity of heterogeneous hosts and the distance between the
individual devices rise.

Access controls can be established at the following points of a shared storage environment:

• On the host
In shared storage environments, access controls comparable with those in server-centric
environments can be established at host level. The disadvantage of this approach is,
however, that the access rights have to be set on all host computers. Mechanisms
that reduce the amount of work by the use of central instances for the allocation and
distribution of rights must be suitably protected against unauthorized access. Database
systems and file systems can be protected in this manner. Suitable mechanisms for
the block layer are currently being planned. The use of encryption technology for the
host’s network protocol stack is in conflict with performance requirements. Suitable



322 THE SNIA SHARED STORAGE MODEL

offload engines, which process the protocol stack on the host bus adapter themselves,
are available for some protocols.

• In the storage network
Security within the storage network is achieved in Fibre Channel SANs by zoning and
virtual storage networks (Virtual SAN (VSAN), Section 3.4.2) and in Ethernet-based
storage networks by so-called virtual LANs (VLAN). This is always understood to be
the subdivision of a network into virtual subnetworks, which permit communication
between a number of host ports and certain storage device ports. These guidelines can,
however, also be defined on finer structures than ports.

• On the storage device
The normal access control procedure on SAN storage devices is the so-called LUN
masking, in which the LUNs that are visible to a host are restricted. Thus, the computer
sees only those LUNs that have been assigned to it by the storage device (Section 2.7.3).

10.1.12 Clustering

A cluster is defined in the SNIA Shared Storage Model as a combination of resources
with the objective of increasing scalability, availability and management within the shared
storage environment (Section 6.4.1). The individual nodes of the cluster can share their
resources via distributed volume managers (multi-node LVM) and cluster file systems
(Figure 10.8, Section 4.3).

10.1.13 Storage, data and information

The SNIA Shared Storage Model differentiates strictly between storage, data and infor-
mation. Storage is space – so-called containers – provided by storage units, on which the
data is stored. The bytes stored in containers on the storage units are called data. Infor-
mation is the meaning – the semantics – of the data. The SNIA Shared Storage Model
names the following examples in which data–container relationships arise (Table 10.1).

10.1.14 Resource and data sharing

In a shared storage environment, in which the storage devices are connected to the host
via a storage network, every host can access every storage device and the data stored
upon it (Section 1.2). This sharing is called resource sharing or data sharing in the SNIA
model, depending upon the level at which the sharing takes place (Figure 10.9).

If exclusively the storage systems – and not their data content – are shared, then we
talk of resource sharing. This is found in the physical resources, such as disk subsystems
and tape libraries, but also within the network.



10.1 THE MODEL 323

Figure 10.8 Nodes of a cluster share resources via distributed volume managers or cluster
file systems

Table 10.1 Data–container relationships

Relationship Role Remark

User Data Inputs via keyboard
Application Container Input buffer
User Data Input buffer file
File system Container Byte vector
File system Data A file
Volume manager Container Blocks of a volume
Volume manager Data Mirrored stripe set
Disk array Container Blocks of a logical unit

Data sharing denotes the sharing of data between different hosts. Data sharing is signif-
icantly more difficult to implement, since the shared data must always be kept consistent,
particularly when distributed caching is used.

Heterogeneous environments also require additional conversion steps in order to con-
vert the data into a format that the host can understand. Protocols such as NFS or



324 THE SNIA SHARED STORAGE MODEL

Figure 10.9 In resource sharing, hosts share the physical resources – in this case a disk
array – which make a volume available to each host. In data sharing, hosts access the same
data – in this case the NAS server and its data

CIFS are used in the more frequently used data sharing within the file/record layers
(Section 4.2).

For data sharing in the block layer, server clusters with shared disk file systems or
parallel databases are used (Section 4.3, Section 6.2.3).

10.1.15 The service subsystem

Up to now we have concerned ourselves with the concepts within the layers of the SNIA
Shared Storage Model. Let us now consider the service subsystem (Figure 10.10). Within
the service subsystem we find the management tasks which occur in a shared storage
environment and which we have, for the most part, already discussed in Chapter 8.



10.1 THE MODEL 325

S
er

vi
ce

s 
S

ub
sy

st
em

Figure 10.10 In the services subsystem, the SNIA defines the management tasks in a shared
storage environment

In this connection, the SNIA Technical Council mention:

• discovery and monitoring

• resource management

• configuration

• security

• billing (charge-back)

• redundancy management, for example, by network back-up

• high availability

• capacity planning.

The individual subjects are not yet dealt with in more detail in the SNIA Shared Storage
Model, since the required definitions, specifications and interfaces are still being devel-
oped (Section 8.7.3). At this point we expressly refer once again to the check list in the
Appendix B, which reflects a cross-section of the questions that crop up here.



326 THE SNIA SHARED STORAGE MODEL

10.2 EXAMPLES OF DISK-BASED STORAGE
ARCHITECTURES

In this section we will present a few examples of typical storage architectures and their
properties, advantages and disadvantages, as they are represented by the SNIA in the
Shared Storage Model. First of all, we will discuss block-based architectures, such as the
direct connection of storage to the host (Section 10.2.1), connection via a storage net-
work (Section 10.2.2), symmetric and asymmetric storage virtualization in the network
(Section 10.2.3 and Section 10.2.4) and a multi-site architecture such as is used for data
replication between several locations (Section 10.2.5). We then move on to the file/record
layer and consider the graphical representation of a file server (Section 10.2.6), a NAS
head (Section 10.2.7), the use of metadata controllers for asymmetric file level virtual-
ization (Section 10.2.8) and an object-based storage device (OSD), in which the position
data of the files and their access rights is moved to a separate device, a solution that
combines file sharing with increased performance due to direct file access and central
metadata management of the files (Section 10.2.9).

10.2.1 Direct attached block storage

Figure 10.11 shows the direct connection from storage to the host in a server-centric
architecture. The following properties are characteristic of this structure:

• No connection devices, such as switches or hubs, are needed.

• The host generally communicates with the storage device via a protocol on block
level.

• Block aggregation functions are possible both in the disk subsystem and on the
host.

10.2.2 Storage network attached block storage

The connection from storage to host via a storage network can be represented in the
Shared Storage Model as shown in Figure 10.12. In this case:

• Several hosts share several storage devices.

• Block-oriented protocols are generally used.

• Block aggregation can be used in the host, in the network and in the storage
device.



10.2 EXAMPLES OF DISK-BASED STORAGE ARCHITECTURES 327

H
os

t w
ith

 L
og

ic
al

 V
ol

um
e 

M
an

ag
er

Lo
gi

ca
l V

ol
um

e 
M

an
ag

er

Lo
gi

ca
l V

ol
um

e 
M

an
ag

er

Figure 10.11 In direct attachment, hosts are connected to storage devices directly without
connection devices such as switches or hubs. Joint use of data or resources is not possible
without additional software

10.2.3 Block storage aggregation in a storage device:
SAN appliance

Block aggregation can also be implemented in a specialized device or server of the storage
network in the data path between hosts and storage devices, as in the symmetric storage
virtualization (Figure 10.13, Section 5.7.1). In this approach:

• Several hosts and storage devices are connected via a storage network.

• A device or a dedicated server – a so-called SAN appliance – is placed in the data path
between hosts and storage devices to perform block aggregation, and data and metadata
traffic flows through this.



328 THE SNIA SHARED STORAGE MODEL

Figure 10.12 In storage connected via a storage network, several hosts share the storage
devices, which are accessed via block-oriented protocols

10.2.4 Network attached block storage with metadata
server: asymmetric block services

The asymmetric block services architecture is identical to the asymmetric storage virtu-
alization approach (Figure 10.14, Section 5.7.2):

• Several hosts and storage devices are connected over a storage network.

• Host and storage devices communicate with each other over a protocol on block level.

• The data flows directly between hosts and storage devices.

• A metadata server outside the data path holds the information regarding the position
of the data on the storage devices and maps between logical and physical blocks.



10.2 EXAMPLES OF DISK-BASED STORAGE ARCHITECTURES 329

Figure 10.13 In block aggregation on a specialized device or server in the storage network,
a SAN appliance maps between logical and physical blocks in the data path in the same way
as symmetric virtualization

10.2.5 Multi-site block storage

Figure 10.15 shows how data replication between two locations can be implemented by
means of WAN techniques. The data can be replicated on different layers of the model
using different protocols:

• between volume managers on the host;

• between specialized devices in the storage network; or

• between storage systems, for example disk subsystems.



330 THE SNIA SHARED STORAGE MODEL

Figure 10.14 In an asymmetric block services architecture a metadata server outside the
data path performs the mapping of logical to physical blocks, whilst the data flows directly
between hosts and storage devices

If the two locations use different network types or protocols, additional converters can be
installed for translation.

10.2.6 File server

A file server (Section 4.2) can be represented as shown in Figure 10.16. The following
points are characteristic of a file server:

• the combination of server and normally local, dedicated storage;

• file sharing protocols for the host access;



10.2 EXAMPLES OF DISK-BASED STORAGE ARCHITECTURES 331

Figure 10.15 Data replication between two locations by means of WAN technology can take
place at host level between volume managers, at network level between specialized devices,
or at storage device level between disk arrays

• normally the use of a network, for example, a LAN, that is not specialized to the
storage traffic;

• optionally, a private storage network can also be used for the control of the dedi-
cated storage.

10.2.7 File server controller: NAS heads

In contrast to file servers, NAS heads (Figure 10.17, Section 4.2.2) have the follow-
ing properties:



332 THE SNIA SHARED STORAGE MODEL

Figure 10.16 A file server makes storage available to the hosts via a LAN by means of file
sharing protocols

• They separate storage devices from the controller on the file/record layer, via which
the hosts access.

• Hosts and NAS heads communicate over a file-oriented protocol.

• The hosts use a network for this that is generally not designed for pure storage traffic,
for example a LAN.

• When communicating downwards to the storage devices, the NAS head uses a block-
oriented protocol.

NAS heads have the advantage over file servers that they can share the storage systems
with other hosts that access them directly. This makes it possible for both file and block
services to be offered by the same physical resources at the same time. In this manner,
IT architectures can be designed more flexibly, which in turn has a positive effect upon
scalability.



10.2 EXAMPLES OF DISK-BASED STORAGE ARCHITECTURES 333

Figure 10.17 A NAS head separates the storage devices from the hosts and thereby
achieves better scalability and a more efficient use of resources

10.2.8 Asymmetric file services: NAS/file server metadata
manager

A file server metadata manager (Figure 10.18) works in the same way as asymmetric
storage virtualization on file level (Section 5.7.2):

• Hosts and storage devices are connected via a storage network.

• A metadata manager positioned outside the data path stores all file position data, i.e.
metadata, and makes this available to the hosts upon request.

• Hosts and metadata manager communicate over an expanded file-oriented protocol.

• The actual user data then flows directly between hosts and storage devices by means
of a block-oriented protocol.

This approach offers the advantages of fast, direct communication between host and
storage devices, whilst at the same time offering the advantages of data sharing on



334 THE SNIA SHARED STORAGE MODEL

Figure 10.18 A file server metadata manager holds all position data of the files on the
storage devices and makes this available to the hosts upon request. Then the hosts can
exchange their useful data with the storage devices directly over the storage network. In
addition, a metadata manager can offer classical file sharing services in a LAN

file level. In addition, in this solution the classic file sharing services can be offered
in a LAN over the metadata manager.

10.2.9 Object-based storage device (OSD)

The SNIA Shared Storage Model defines the so-called object-based storage device (OSD).
The idea behind this architecture is to move the position data of the files and the access



10.2 EXAMPLES OF DISK-BASED STORAGE ARCHITECTURES 335

rights to a separate OSD. OSD offers the same advantages as a file sharing solution,
combined with increased performance due to direct access to the storage by the hosts,
and central metadata management of the files. The OSD approach functions as follows
(Figure 10.19):

• An OSD device exports a large number of byte vectors instead of the LUNs used in
block-oriented storage devices. Generally, a byte vector corresponds to a single file.

• A separate OSD metadata manager authenticates the hosts and manages and checks
the access rights to the byte vectors. It also provides appropriate interfaces for the
hosts.

• After authentication and clearance for access by the OSD metadata manager, the hosts
access the OSD device directly via a file-oriented protocol. This generally takes place
via a LAN, i.e. a network that is not specialized for storage traffic.

Figure 10.19 Object-based storage devices offer file sharing and facilitate direct I/O between
hosts and storage. A metadata manager authenticates the hosts and controls access



336 THE SNIA SHARED STORAGE MODEL

10.3 EXTENSION OF THE SNIA SHARED STORAGE
MODEL TO TAPE FUNCTIONS

The SNIA Shared Storage Model described previously concentrates upon the modelling
of disk-based storage architectures. In a supplement to the original model, the SNIA
Technical Council defines the necessary extensions for the description of tape functions
and back-up architectures.

The SNIA restricts itself to the description of tape functions in the Open Systems
environment, since the use of tapes in the mainframe environment is very difficult to model
and differs fundamentally from the Open Systems environment. In the Open Systems field,
tapes are used almost exclusively for back-up purposes, whereas in the field of mainframes
tapes are used much more diversely. Therefore, the extension of the SNIA model concerns
itself solely with the use of tape in back-up architectures.

Only the general use of tapes in shared storage environments is described in the model.
The SNIA does not go into more depth regarding the back-up applications themselves.
We have already discussed network back-up in Chapter 7. More detailed information on
tapes can be found in Section 9.2.1.

First of all, we want to look at the logical and physical structure of tapes from the
point of view of the SNIA Shared Storage Model (10.3.1). Then we will consider the
differences between disk and tape storage (10.3.2) and how the model is extended for the
description of the tape functions (10.3.3).

10.3.1 Logical and physical structure of tapes

Information is stored on tapes in so-called tape images, which are made up of the following
logical components (Figure 10.20):

Figure 10.20 Logically, a tape image is made up of tape extents and tape extent separators.
A tape header and trailer may optionally mark the start and end of a tape image respectively



10.3 EXTENSION OF THE SNIA SHARED STORAGE MODEL TO TAPE FUNCTIONS 337

• Tape extent
A tape extent is a sequence of blocks upon the tape. A tape extent is comparable
with a volume in disk storage. The IEEE Standard 1244 (Section 9.5) also uses the
term volume but it only allows volumes to reside exactly on one tape and not span
multiple tapes.

• Tape extent separator
The tape extent separator is a mark for the division of individual tape extents.

• Tape header
The tape header is an optional component that marks the start of a tape.

• Tape trailer
The tape trailer is similar to the tape header and marks the end of a tape. This, too, is
an optional component.

In the same way as logical volumes of a volume manager extend over several physical
disks, tape images can also be distributed over several physical tapes. Thus, there may
be precisely one logical tape image on a physical tape, several logical tape images on a
physical tape, or a logical tape image can be distributed over several physical tapes. So-
called tape image separators are used for the subdivision of the tape images (Figure 10.21).

10.3.2 Differences between disk and tape

At first glance, disks and tapes are both made up of blocks, which are put together
to form long sequences. In the case of disks these are called volumes, whilst in tapes
they are called extents. The difference lies in the way in which they are accessed, with

Figure 10.21 Physically, a tape image can take up on precisely one tape (1), several tape
images can share a tape (2), or a tape image can extend over several tapes (3). Tape image
separators separate the individual tape images



338 THE SNIA SHARED STORAGE MODEL

disks being designed for random access, whereas tapes can only be accessed sequentially.
Consequently, disks and tapes are also used for different purposes. In the Open Sys-
tems environment, tapes are used primarily for back-up or archiving purposes. This
is completely in contrast to their use in the mainframe environment, where file struc-
tures – so-called tape files – are found that are comparable to a file on a disk. There is no
definition of a tape file in the Open systems environment, since several files are generally
bundled to form a package, and processed in this form, during back-up and archiving.
This concept is, therefore, not required here.

10.3.3 Extension of the model

The SNIA Shared Storage Model must take into account the differences in structure and
application between disk and tape and also the different purposes for which they are
used. To this end, the file/record layer is expanded horizontally. The block layer, which
produces the random access to the storage devices in the disk model, is exchanged for
a sequential access block layer for the sequential access to tapes. The model is further
supplemented by the following components (Figure 10.22):

• Tape media and tape devices
Tape media are the storage media upon which tape images are stored. A tape devices is
a special physical storage resource, which can process removable tape media. This
differentiation between media and devices is particularly important in the context

Figure 10.22 The extension of the SNIA model to tape functions expands the file/record
layer in the horizontal direction, exchanges the block layer for a sequential access block layer
and adds the required components of a tape architecture



10.4 EXAMPLES OF TAPE-BASED BACK-UP TECHNIQUES AND ARCHITECTURES 339

of removable media management (Chapter 9). The applicable standard, IEEE 1244,
denotes tape media as cartridge and tape device as drive.

• Tape applications
The SNIA model concentrates upon the use of tapes for back-up and archiving. Special
tape applications, for example, back-up software, are used for back-up. This software
can deal with the special properties of tapes.

• Tape format system
In the tape format system, files or records are compressed into tape extents and tape
images. Specifically in the Open Systems environment, the host generally takes over this
task. However, access to physical tape devices does not always have to go through the
tape format system. It can also run directly via the extent aggregation layer described
below or directly on the device.

• Extent aggregation layer
The extent aggregation layer works in the same way as the block aggregation layer
(Section 10.1.7), but with extents instead of blocks. However, in contrast to the ran-
dom access of the block aggregation layer, access to the physical devices takes place
sequentially. Like the access paths, the data flows between the individual components
are shown as arrows.

10.4 EXAMPLES OF TAPE-BASED BACK-UP TECHNIQUES
AND ARCHITECTURES

First of all, we want to examine four examples that illustrate back-up techniques. At the
forefront are the access paths and the interaction of the individual components with the
UNIX tool tar in the file back-up (Section 10.4.1), file system volume back-up using
dump (Section 10.4.2), the volume back-up using dd (Section 10.4.3) and the use of
virtual tapes (Section 10.4.4).

We then concentrate upon the data flow between the individual components of a back-
up architecture with the disk, first of all discussing the two classical approaches to back
up to tape: tape connected directly to the host (Section 10.4.5) and the data flow in a
back-up over LAN (Section 10.4.6). We then consider typical approaches for tape sharing
in a shared storage environment, such as tape library sharing (10.4.7) and tape library
partitioning (Section 10.4.8).

Next we see how tape virtualization by means of a virtual tape controller (Section 10.4.9)
and supplemented by a disk cache (Section 10.4.10) changes the data flow. In addition
to a virtual tape controller, a data mover can also be positioned in the storage network
to permit the realization of server-free back-up. As in LAN-free back-up, in addition
to the LAN and the back-up server this also frees up the host performing the back-up
(Section 10.4.11).



340 THE SNIA SHARED STORAGE MODEL

We will then look at two variants of the NDMP local back-up with local
(Section 10.4.12) and external (Section 10.4.13) storage. Finally, we will consider an
architecture in which the NDMP is used with a data mover for the realization of server-free
back-up (Section 10.4.14).

10.4.1 File back-up

The example shows how a file back-up using the UNIX tool tar functions (Figure 10.23):

1. Tar reads files from the file system.

2. Tar compresses the files in the integral tape format system.

3. It finally writes them to tape.

In the restore case the access paths are turned around:

1. Tar reads the file packages from tape.
T

ap
e 

F
or

m
at

 S
ys

te
m

Figure 10.23 Tar carries out a file back-up by reading data from the file system, then
compressing it in the integral tape format system and writing it to tape. In the restore case,
the access paths are reversed



10.4 EXAMPLES OF TAPE-BASED BACK-UP TECHNIQUES AND ARCHITECTURES 341

2. Tar extracts them by means of the integral tape format system.

3. It writes them into the file system.

10.4.2 File system volume back-up

Using the file system back-up tool dump it is possible to use the file system to back
up a logical volume – and thus the files contained within it – bypassing the file system
(Figure 10.24). The meta information of the file system is also backed up, so that it is
possible to restore individual files later. Dump, like tar, has an integral tape format system
for the compression and extraction of the files during back-up or restore.

Figure 10.24 With dump, files can be backed up directly from a logical volume, bypassing
the file system. As is the case for tar, an integral tape format system looks after the
compression and extraction during restore or back-up

10.4.3 Volume back-up

The program dd represents the simplest way of creating a copy of a logical volume and
writing it directly to tape (Figure 10.25). dd writes the information it has read to tape 1 : 1
without previously sending it through a tape format system. The restore can be represented
in a similar way by reversing the access paths.



342 THE SNIA SHARED STORAGE MODEL

Figure 10.25 The dd program creates a copy of a logical volume on tape without the use of
a tape format system

Figure 10.26 By the emulation of a virtual tape, the sequential access of the tar command
in the extent aggregation layer is diverted into the block aggregation layer of a disk-based
storage system, which permits random access



10.4 EXAMPLES OF TAPE-BASED BACK-UP TECHNIQUES AND ARCHITECTURES 343

10.4.4 File back-up to virtual tape

The concept of virtual tapes can also be described using the SNIA model. Figure 10.26
uses the example of the tar command to show how a disk-based storage system is used
to emulate a virtual tape. The sequential tape access of tar is diverted via the tape format
system in the extent aggregation layer to the block aggregation layer of a disk storage
system, where random access can take place.

10.4.5 Direct attached tape

The simplest back-up architecture is the direct connection of the tape to the host, in which
the data flows from the disk to the tape library via the host (Figure 10.27).

Figure 10.27 In direct attached tape the data flows from the disk to the tape library via the
host, as shown by the arrow



344 THE SNIA SHARED STORAGE MODEL

10.4.6 LAN attached tape

LAN attached tape is the classic case of a network back-up (Section 7.2), in which a
LAN separates the host to be backed up from the back-up server, which is connected to
the tape library. The back-up data is moved from the host, via the LAN, to the back-up
server, which then writes to the tape (Figure 10.28).

10.4.7 Shared tape drive

In tape library sharing, two hosts use the same tape drives of a library. In this approach,
the hosts dynamically negotiate who will use which drives and tape media. To achieve

Figure 10.28 In classical network back-up, the data must be moved from the host to be
backed up, via the LAN, to the back-up server, which then writes to the tape



10.4 EXAMPLES OF TAPE-BASED BACK-UP TECHNIQUES AND ARCHITECTURES 345

this, one server acts as library master, all others as library clients. The library master
co-ordinates access to the tapes and the tape drives (Figure 10.29). In this manner, a
LAN-free back-up can be implemented, thus freeing up the LAN from back-up traffic
(Section 7.8.2).

10.4.8 Partitioned tape library

In library partitioning a library can be broken down into several virtual tape libraries
(Section 7.8.4). Each host is assigned its own virtual library to which it works. In this man-
ner, several back-up servers can work to the library’s different tape drives simultaneously.

Figure 10.29 A shared tape drive facilitates the implementation of LAN-free back-up, which
frees the LAN from back-up traffic



346 THE SNIA SHARED STORAGE MODEL

Figure 10.30 In a partitioned tape library, several hosts work to virtual tape libraries that
consist of different physical tape drives, but which share a common robot

The library co-ordinates the parallel accesses to the media changer (Figure 10.30) inde-
pendently.

10.4.9 Virtual tape controller

Additional back-up functionality now comes into play in the storage network! A virtual
tape controller in the storage network permits the virtualization of tape devices, media
and media changer. Thus, different interfaces can be implemented and different tape
devices emulated. However, the back-up data still runs directly from the hosts to the
drives (Figure 10.31).



10.4 EXAMPLES OF TAPE-BASED BACK-UP TECHNIQUES AND ARCHITECTURES 347

Figure 10.31 A virtual tape controller virtualizes tape devices, media and media changer

10.4.10 Virtual tape controller with disk cache

The approach using a virtual tape controller can be expanded to include an additional
disk cache (Figure 10.32). This yields the following three-stage process for a back-up:

1. First of all, the host reads the data to be backed up from disk.

2. This data is first written to a disk belonging to the virtual tape controller, the so-called
disk cache.

3. Finally, the data is moved from the disk cache to tape.

In this manner, a back-up can benefit from the higher performance of the disk storage.
This is especially useful when backed up data must be restored: Most restore requests
deal with data which was backed up within the last one or two days.



348 THE SNIA SHARED STORAGE MODEL

Figure 10.32 If the virtual tape controller is extended to include a disk cache, the back-up
software can benefit from the higher disk performance

10.4.11 Data mover for tape

With an additional data mover in the storage network that moves the data from disk to
tape, server-free back-up can be implemented. This frees up both the LAN and also the
participating hosts from back-up traffic (Section 7.8.1). The back-up servers only have to
control and check the operations of the data mover (Figure 10.33).



10.4 EXAMPLES OF TAPE-BASED BACK-UP TECHNIQUES AND ARCHITECTURES 349

Figure 10.33 Additional data movers in the network implement the server-free back-up,
which frees both the LAN and the hosts from back-up traffic at the same time

10.4.12 File server with tape drive

Figure 10.34 shows the implementation of the NDMP local back-up (Section 7.9.4). In
this approach, the file server itself transports the data from disk to tape, which in this case
is even locally connected. External back-up software checks this process and receives
the meta-information of the backed up data via a LAN connection by means of the
NDMP protocol.



350 THE SNIA SHARED STORAGE MODEL

Figure 10.34 In the NDMP local back-up the NAS server takes over the transport of the data
from disk to tape, which in this case is even locally connected

10.4.13 File server with external tape

If the NAS server in Section 10.4.12 is exchanged for a NAS head with external disk
and tape storage, then the back-up software additionally checks the functions of the tape
library on the host. Again, additional meta information on the backed up information
flows from the NAS head to the back-up server (Figure 10.35).



10.4 EXAMPLES OF TAPE-BASED BACK-UP TECHNIQUES AND ARCHITECTURES 351

Figure 10.35 The NDMP local back-up can also be implemented for external disk and tape
storage on a NAS head

10.4.14 File server with data mover

An additional data mover in the storage network (Figure 10.36), which takes over the
transport of the back-up data from the NAS head with external storage, also implements
server-free back-up (Section 7.8.1) on file server level. LAN and back-up software are
already freed from data transport by the use of NDMP (Section 7.9.4).



352 THE SNIA SHARED STORAGE MODEL

Figure 10.36 Combined use of NDMP and a data mover frees up the LAN, the back-up
server due to NDMP, and frees up the NAS head from the transport of the back-up data by
the implementation of server-free back-up at file server level

10.5 SUMMARY

The SNIA Shared Storage Model permits architectures to be described and compared
with one another in a value-neutral manner and discussed using a consistent vocabulary.
This makes it easier for manufacturers to present the differences between their products
and competing products to the customer on the basis of a common vocabulary. The
customer interested in the actual functionality finds it easier to compare and choose
between different product alternatives. He benefits from the function-centred approach
of the SNIA Shared Storage Model, which puts the entire functionalities of the Shared
Storage environment in the foreground and only highlights the components on the basis
of which these are implemented as a secondary consideration.


