
7
H O S T I N G U N T R U S T E D U S E R S
U N D E R X E N : L E S S O N S F R O M

T H E T R E N C H E S

Now that we’ve gone over the basics of
Xen administration—storage, networking,

provisioning, and management—let’s look
at applying these basics in practice. This

chapter is mostly a case study of our VPS hosting firm,
prgmr.com, and the lessons we’ve learned from rent-
ing Xen instances to the public.

The most important lesson of public Xen hosting is that the users can’t
be trusted to cooperate with you or each other. Some people will always try to
seize as much as they can. Our focus will be on preventing this tragedy of the
commons.

Advantages for the Users

There’s exactly one basic reason that a user would want to use a Xen VPS
rather than paying to colocate a box in your data center: it’s cheap, especially
for someone who’s just interested in some basic services, rather than massive
raw performance.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

90 Chapter 7

Xen also gives users nearly all the advantages they’d get from colocating
a box: their own publicly routed network interface, their own disk, root access,
and so forth. With a 128MB VM, they can run DNS, light mail service, a web
server, IRC, SSH, and so on. For lightweight services like these, the power
of the box is much less important than its basic existence—just having
something available and publicly accessible makes life more convenient.

You also have the basic advantages of virtualization, namely, that hosting
one server with 32GB of RAM is a whole lot cheaper than hosting 32 servers
with 1GB of RAM each (or even 4 servers with 8GB RAM each). In fact, the
price of RAM being what it is, I would argue that it’s difficult to even eco-
nomically justify hosting a general-purpose server with less than 32GB
of RAM.

The last important feature of Xen is that, relative to other virtualization
systems, it’s got a good combination of light weight, strong partitioning,
and robust resource controls. Unlike some other virtualization options, it’s
consistent—a user can rely on getting exactly the amount of memory, disk
space, and network bandwidth that he’s signed up for and approximately as
much CPU and disk bandwidth.

Shared Resources and Protecting Them from the Users

Xen’s design is congruent to good security.
—Tavis Ormandy, http://taviso.decsystem.org/virtsec.pdf

It’s a ringing endorsement, by security-boffin standards. By and large, with
Xen, we’re not worried about keeping people from breaking out of their
virtual machines—Xen itself is supposed to provide an appropriate level of
isolation. In paravirtualized mode, Xen doesn’t expose hardware drivers to

G R I D C O M P U T I N G A N D V I R T U A LI Z A T I O N

One term that you hear fairly often in connection with Xen is grid computing. The
basic idea behind grid computing is that you can quickly and automatically pro-
vision and destroy nodes. Amazon’s EC2 service is a good example of a grid
computing platform that allows you to rent Linux servers by the hour.

Grid computing doesn’t require virtualization, but the two concepts are fairly
closely linked. One could design a system using physical machines and PXEboot
for fast, easy, automated provisioning without using Xen, but a virtualization system
would make the setup more lightweight, agile, and efficient.

There are several open source projects that are attempting to create a standard
and open interface to provision “grid computing” resources. One such project is
Eucalyptus (http://www.eucalyptus.com/). We feel that standard frameworks
like this—that allow you to easily switch between grid computing providers—are
essential if “the grid” is to survive.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

Host ing Un t rus ted Users Under Xen: Lessons from the T renches 91

domUs, which eliminates one major attack vector.1 For the most part, securing
a dom0 is exactly like securing any other server, except in one area.

That area of possible concern is in the access controls for shared
resources, which are not entirely foolproof. The primary worry is that mali-
cious users could gain more resources than they’re entitled to, or in extreme
cases cause denial-of-service attacks by exploiting flaws in Xen’s accounting.
In other words, we are in the business of enforcing performance isolation,
rather than specifically trying to protect the dom0 from attacks via the domUs.

Most of the resource controls that we present here are aimed at users
who aren’t necessarily malicious—just, perhaps, exuberant.

Tuning CPU Usage
The first shared resource of interest is the CPU. While memory and disk size
are easy to tune—you can just specify memory in the config file, while disk
size is determined by the size of the backing device—fine-grained CPU
allocation requires you to adjust the scheduler.

Scheduler Basics

The Xen scheduler acts as a referee between the running domains. In some
ways it’s a lot like the Linux scheduler: It can preempt processes as needed,
it tries its best to ensure fair allocation, and it ensures that the CPU wastes
as few cycles as possible. As the name suggests, Xen’s scheduler schedules
domains to run on the physical CPU. These domains, in turn, schedule and
run processes from their internal run queues.

Because the dom0 is just another domain as far as Xen’s concerned, it’s
subject to the same scheduling algorithm as the domUs. This can lead to
trouble if it’s not assigned a high enough weight because the dom0 has to be
able to respond to I/O requests. We’ll go into more detail on that topic a bit
later, after we describe the general procedures for adjusting domain weights.

Xen can use a variety of scheduling algorithms, ranging from the simple
to the baroque. Although Xen has shipped with a number of schedulers in
the past, we’re going to concentrate on the credit scheduler ; it’s the current
default and recommended choice and the only one that the Xen team has
indicated any interest in keeping.

The xm dmesg command will tell you, among other things, what scheduler
Xen is using.

xm dmesg | grep scheduler

(XEN) Using scheduler: SMP Credit Scheduler (credit)

If you want to change the scheduler, you can set it as a boot parameter—
to change to the SEDF scheduler, for example, append sched=sedf to the
kernel line in GRUB. (That’s the Xen kernel, not the dom0 Linux kernel
loaded by the first module line.)

1 In HVM mode, the emulated QEMU devices are something of a risk, which is part of why we
don’t offer HVM domains.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

92 Chapter 7

VCPUs and Physical CPUs

For convenience, we consider each Xen domain to have one or more virtual
CPUs (VCPUs), which periodically run on the physical CPUs. These are the
entities that consume credits when run. To examine VCPUs, use xm vcpu-list
<domain>:

xm vcpu-list horatio

Name ID VCPUs CPU State Time(s) CPU Affinity

horatio 16 0 0 --- 140005.6 any cpu

horatio 16 1 2 r-- 139968.3 any cpu

In this case, the domain has two VCPUs, 0 and 1. VCPU 1 is in the running
state on (physical) CPU 1. Note that Xen will try to spread VCPUs across
CPUs as much as possible. Unless you’ve pinned them manually, VCPUs can
occasionally switch CPUs, depending on which physical CPUs are available.

To specify the number of VCPUs for a domain, specify the vcpus= directive
in the config file. You can also change the number of VCPUs while a domain
is running using xm vcpu-set. However, note that you can decrease the number
of VCPUs this way, but you can’t increase the number of VCPUs beyond the
initial count.

To set the CPU affinity, use xm vcpu-pin <domain> <vcpu> <pcpu>. For
example, to switch the CPU assignment in the domain horatio, so that VCPU0
runs on CPU2 and VCPU1 runs on CPU0:

xm vcpu-pin horatio 0 2

xm vcpu-pin horatio 1 0

Equivalently, you can pin VCPUs in the domain config file (/etc/xen/
horatio, if you’re using our standard naming convention) like this:

vcpus=2

cpus=[0,2]

This gives the domain two VCPUs, pins the first VCPU to the first physical
CPU, and pins the second VCPU to the third physical CPU.

Credit Scheduler

The Xen team designed the credit scheduler to minimize wasted CPU time.
This makes it a work-conserving scheduler, in that it tries to ensure that the CPU
will always be working whenever there is work for it to do.

As a consequence, if there is more real CPU available than the domUs are
demanding, all domUs get all the CPU they want. When there is contention—
that is, when the domUs in aggregate want more CPU than actually exists—
then the scheduler arbitrates fairly between the domains that want CPU.

Xen does its best to do a fair division, but the scheduling isn’t perfect by
any stretch of the imagination. In particular, cycles spent servicing I/O by
domain 0 are not charged to the responsible domain, leading to situations
where I/O-intensive clients get a disproportionate share of CPU usage.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

Host ing Un t rus ted Users Under Xen: Lessons from the T renches 93

Nonetheless, you can get pretty good allocation in nonpathological cases.
(Also, in our experience, the CPU sits idle most of the time anyway.)

The credit scheduler assigns each domain a weight and, optionally, a cap.
The weight indicates the relative CPU allocation of a domain—if the CPU is
scarce, a domain with a weight of 512 will receive twice as much CPU time as
a domain with a weight of 256 (the default). The cap sets an absolute limit
on the amount of CPU time a domain can use, expressed in hundredths of a
CPU. Note that the CPU cap can exceed 100 on multiprocessor hosts.

The scheduler transforms the weight into a credit allocation for each
VCPU, using a separate accounting thread. As a VCPU runs, it consumes
credits. If a VCPU runs out of credits, it only runs when other, more thrifty
VCPUs have finished executing, as shown in Figure 7-1. Periodically, the
accounting thread goes through and gives everybody more credits.

Figure 7-1: VCPUs wait in two queues: one for VCPUs
with credits and the other for those that are over their
allotment. Once the first queue is exhausted, the CPU
will pull from the second.

In this case, the details are probably less important than the practical
application. Using the xm sched-credit commands, we can adjust CPU alloca-
tion on a per-domain basis. For example, here we’ll increase a domain’s CPU
allocation. First, to list the weight and cap for the domain horatio:

xm sched-credit -d horatio

{'cap': 0, 'weight': 256}

Then, to modify the scheduler’s parameters:

xm sched-credit -d horatio -w 512

xm sched-credit -d horatio

{'cap': 0, 'weight': 512}

VCPUVCPU PCPU

VCPU PCPU

underover

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

94 Chapter 7

Of course, the value “512” only has meaning relative to the other domains
that are running on the machine. Make sure to set all the domains’ weights
appropriately.

To set the cap for a domain:

xm sched-credit -d domain -c cap

Scheduling for Providers
We decided to divide the CPU along the same lines as the available RAM—it
stands to reason that a user paying for half the RAM in a box will want more
CPU than someone with a 64MB domain. Thus, in our setup, a customer with
25 percent of the RAM also has a minimum share of 25 percent of the CPU
cycles.

The simple way to do this is to assign each CPU a weight equal to
the number of megabytes of memory it has and leave the cap empty. The
scheduler will then handle converting that into fair proportions. For example,
our aforementioned user with half the RAM will get about as much CPU time
as the rest of the users put together.

Of course, that’s the worst case; that is what the user will get in an environ-
ment of constant struggle for the CPU. Idle domains will automatically yield
the CPU. If all domains but one are idle, that one can have the entire CPU to
itself.

NOTE It’s essential to make sure that the dom0 has sufficient CPU to service I/O requests. You
can handle this by dedicating a CPU to the dom0 or by giving the dom0 a very high
weight—high enough to ensure that it never runs out of credits. At prgmr.com, we
handle the problem by weighting each domU with its RAM amount and weighting the
dom0 at 6000.

This simple weight = memory formula becomes a bit more complex
when dealing with multiprocessor systems because independent systems of
CPU allocation come into play. A good rule would be to allocate VCPUs in
proportion to memory (and therefore in proportion to weight). For example,
a domain with half the RAM on a box with four cores (and hyperthreading
turned off) should have at least two VCPUs. Another solution would be to
give all domains as many VCPUs as physical processors in the box—this
would allow all domains to burst to the full CPU capacity of the physical
machine but might lead to increased overhead from context swaps.

Controlling Network Resources
Network resource controls are, frankly, essential to any kind of shared hosting
operation. Among the many lessons that we’ve learned from Xen hosting has
been that if you provide free bandwidth, some users will exploit it for all it’s
worth. This isn’t a Xen-specific observation, but it’s especially noticeable with
the sort of cheap VPS hosting Xen lends itself to.

We prefer to use network-bridge, since that’s the default. For a more
thorough look at network-bridge, take a look at Chapter 5.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

Host ing Un t rus ted Users Under Xen: Lessons from the T renches 95

Monitoring Network Usage

Given that some users will consume as much bandwidth as possible, it’s vital
to have some way to monitor network traffic.2

To monitor network usage, we use BandwidthD on a physical SPAN
port. It’s a simple tool that counts bytes going through a switch—nothing
Xen-specific here. We feel comfortable doing this because our provider
doesn’t allow anything but IP packets in or out, and our antispoof rules are
good enough to protect us from users spoofing their IP on outgoing packets.

A similar approach would be to extend the dom0 is a switch analogy and
use SNMP monitoring software. As mentioned in Chapter 5, it’s important to
specify a vifname for each domain if you’re doing this. In any case, we’ll leave
the particulars of bandwidth monitoring up to you.

Once you can examine traffic quickly, the next step is to shape the users.
The principles for network traffic shaping and policing are the same as for
standalone boxes, except that you can also implement policies on the Xen
host. Let’s look at how to limit both incoming and outgoing traffic for a
particular interface—as if, say, you have a customer who’s going over his
bandwidth allotment.

2 In this case, we’re talking about bandwidth monitoring. You should also run some sort of IDS,
such as Snort, to watch for outgoing abuse (we do) but there’s nothing Xen-specific about that.

A R P C A CH E P O I S O N I N G

If you use the default network-bridge setup, you are vulnerable to ARP cache
poisoning, just as on any layer 2 switch.

The idea is that the interface counters on a layer 2 switch—such as the virtual
switch used by network-bridge—watch traffic as it passes through a particular port.
Every time a switch sees an Ethernet frame or ARP is-at, it keeps track of what port
and MAC it came from. If it gets a frame destined for a MAC address in its cache, it
sends that frame down the proper port (and only the proper port). If the bridge sees
a frame destined for a MAC that is not in the cache, it sends that frame to all ports.*

Clever, no? In most cases this means that you almost never see Ethernet frames
destined for other MAC addresses (other than broadcasts, etc.). However, this
feature is designed purely as an optimization, not a security measure. As those of
you with cable providers who do MAC address verification know quite well, it is
fairly trivial to fake a MAC address. This means that a malicious user can fill the
(limited in size) ARP cache with bogus MAC addresses, drive out the good data,
and force all packets to go down all interfaces. At this point the switch becomes
basically a hub, and the counters on all ports will show all traffic for any port.

There are two ways we have worked around the problem. You could use Xen’s
network-route networking model, which doesn’t use a virtual bridge. The other
approach is to ignore the interface counters and use something like BandwidthD,
which bases its accounting on IP packets.

* We are using the words port and interface interchangeably here. This is a reasonable
simplification in the context of interface counters on an SNMP-capable switch.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

96 Chapter 7

Network Shaping Principles
The first thing to know about shaping is that it only works on outgoing traffic.
Although it is possible to police incoming traffic, it isn’t as effective. Fortunately,
both directions look like outgoing traffic at some point in their passage
through the dom0, as shown in Figure 7-2. (When we refer to outgoing and
incoming traffic in the following description, we mean from the perspective
of the domU.)

Figure 7-2: Incoming traffic comes from the Internet, goes through the virtual bridge, and gets shaped by a
simple nonhierarchical filter. Outgoing traffic, on the other hand, needs to go through a system of filters that
assign packets to classes in a hierarchical queuing discipline.

Shaping Incoming Traffic

We’ll start with incoming traffic because it’s much simpler to limit than out-
going traffic. The easiest way to shape incoming traffic is probably the token
bucket filter queuing discipline, which is a simple, effective, and lightweight
way to slow down an interface.

The token bucket filter, or TBF, takes its name from the metaphor of a
bucket of tokens. Tokens stream into the bucket at a defined and constant
rate. Each byte of data sent takes one token from the bucket and goes out
immediately—when the bucket’s empty, data can only go as tokens come in.
The bucket itself has a limited capacity, which guarantees that only a reason-
able amount of data will be sent out at once. To use the TBF, we add a qdisc
(queuing discipline) to perform the actual work of traffic limiting. To limit the
virtual interface osric to 1 megabit per second, with bursts up to 2 megabits
and maximum allowable latency of 50 milliseconds:

tc qdisc add dev osric root tbf rate 1mbit latency 50ms peakrate 2mbit maxburst 40MB

This adds a qdisc to the device osric. The next arguments specify where
to add it (root) and what sort of qdisc it is (tbf). Finally, we specify the rate,

HTB qdisc

class class class
filters

vif

Internet peth

iptables

filters

classify

dequeue
class class

vifpeth TBF qdiscInternet

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

Host ing Un t rus ted Users Under Xen: Lessons from the T renches 97

latency, burst rate, and amount that can go at burst rate. These parameters
correspond to the token flow, amount of latency the packets are allowed to
have (before the driver signals the operating system that its buffers are full),
maximum rate at which the bucket can empty, and the size of the bucket.

Shaping Outgoing Traffic

Having shaped incoming traffic, we can focus on limiting outgoing traffic.
This is a bit more complex because the outgoing traffic for all domains goes
through a single interface, so a single token bucket won’t work. The policing
filters might work, but they handle the problem by dropping packets, which
is . . . bad. Instead, we’re going to apply traffic shaping to the outgoing physical
Ethernet device, peth0, with a Hierarchical Token Bucket, or HTB qdisc.

The HTB discipline acts like the simple token bucket, but with a
hierarchy of buckets, each with its own rate, and a system of filters to assign
packets to buckets. Here’s how to set it up.

First, we have to make sure that the packets on Xen’s virtual bridge
traverse iptables:

echo 1 > /proc/sys/net/bridge/bridge-nf-call-iptables

This is so that we can mark packets according to which domU emitted
them. There are other reasons, but that’s the important one in terms of our
traffic-shaping setup. Next, for each domU, we add a rule to mark packets
from the corresponding network interface:

iptables -t mangle -A FORWARD -m physdev --physdev-in baldr -j MARK --set-mark 5

Here the number 5 is an arbitrary mark—it’s not important what the num-
ber is, as long as there’s a useful mapping between number and domain. We’re
using the domain ID. We could also use tc filters directly that match on
source IP address, but it feels more elegant to have everything keyed to the
domain’s physical network device. Note that we’re using physdev-in—traffic
that goes out from the domU comes in to the dom0, as Figure 7-3 shows.

Figure 7-3: We shape traffic coming into the domU as it comes into the dom0 from
the physical device, and shape traffic leaving the domU as it enters the dom0 on the
virtual device.

vifpeth network-bridge

filter “incoming” traffic

filter “outgoing” traffic

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

98 Chapter 7

Next we create a HTB qdisc. We won’t go over the HTB options in too
much detail—see the documentation at http://luxik.cdi.cz/~devik/qos/htb/
manual/userg.htm for more details:

tc qdisc add dev peth0 root handle 1: htb default 12

Then we make some classes to put traffic into. Each class will get traffic
from one domU. (As the HTB docs explain, we’re also making a parent class
so that they can share surplus bandwidth.)

tc class add dev peth0 parent 1: classid 1:1 htb rate 100mbit

tc class add dev peth0 parent 1:1 classid 1:2 htb rate 1mbit

Now that we have a class for our domU’s traffic, we need a filter that will
assign packets to it.

tc filter add dev peth0 protocol ip parent 1:0 prio 1 handle 5 fw flowid 1:2

Note that we’re matching on the “handle” that we set earlier using
iptables. This assigns the packet to the 1:2 class, which we’ve previously
limited to 1 megabit per second.

At this point traffic to and from the target domU is essentially shaped, as
demonstrated by Figure 7-4. You can easily add commands like these to the
end of your vif script, be it vif-bridge, vif-route, or a wrapper. We would also
like to emphasize that this is only an example and that the Linux Advanced
Routing and Traffic Control how-to at http://lartc.org/ is an excellent place to
look for further documentation. The tc man page is also informative.

Figure 7-4: The effect of the shaping filters

Storage in a Shared Hosting Environment

As with so much else in system administration, a bit of planning can save a
lot of trouble. Figure out beforehand where you’re going to store pristine
filesystem images, where configuration files go, and where customer data
will live.

For pristine images, there are a lot of conventions—some people use
/diskimages, some use /opt/xen , /var/xen or similar, some use a subdirectory
of /home. Pick one and stick with it.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

Host ing Un t rus ted Users Under Xen: Lessons from the T renches 99

Configuration files should, without exception, go in /etc/xen. If you don’t
give xm create a full path, it’ll look for the file in /etc/xen. Don’t disappoint it.

As for customer data, we recommend that serious hosting providers use
LVM. This allows greater flexibility and manageability than blktap-mapped
files while maintaining good performance. Chapter 4 covers the details of
working with LVM (or at least enough to get started), as well as many other
available storage options and their advantages. Here we’re confining ourselves
to lessons that we’ve learned from our adventures in shared hosting.

Regulating Disk Access with ionice
One common problem with VPS hosting is that customers—or your own
housekeeping processes, like backups—will use enough I/O bandwidth to
slow down everyone on the machine. Furthermore, I/O isn’t really affected
by the scheduler tweaks discussed earlier. A domain can request data, hand
off the CPU, and save its credits until it’s notified of the data’s arrival.

Although you can’t set hard limits on disk access rates as you can with
the network QoS, you can use the ionice command to prioritize the different
domains into subclasses, with a syntax like:

ionice -p <PID> -c <class> -n <priority within class>

Here -n is the knob you’ll ordinarily want to twiddle. It can range from 0
to 7, with lower numbers taking precedence.

We recommend always specifying 2 for the class. Other classes exist—3 is idle
and 1 is realtime—but idle is extremely conservative, while realtime is so
aggressive as to have a good chance of locking up the system. The within-class
priority is aimed at proportional allocation, and is thus much more likely to
be what you want.

Let’s look at ionice in action. Here we’ll test ionice with two different
domains, one with the highest normal priority, the other with the lowest.

First, ionice only works with the CFQ I/O scheduler. To check that
you’re using the CFQ scheduler, run this command in the dom0:

cat /sys/block/[sh]d[a-z]*/queue/scheduler

noop anticipatory deadline [cfq]

noop anticipatory deadline [cfq]

The word in brackets is the selected scheduler. If it’s not [cfq], reboot
with the parameter elevator = cfq.

Next we find the processes we want to ionice. Because we’re using tap:aio
devices in this example, the dom0 process is tapdisk. If we were using phy:
devices, it’d be [xvd <domain id> <device specifier>].

ps aux | grep tapdisk

root 1054 0.5 0.0 13588 556 ? Sl 05:45 0:10 tapdisk
/dev/xen/tapctrlwrite1 /dev/xen/tapctrlread1

root 1172 0.6 0.0 13592 560 ? Sl 05:45 0:10 tapdisk
/dev/xen/tapctrlwrite2 /dev/xen/tapctrlread2

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

100 Chap te r 7

Now we can ionice our domains. Note that the numbers of the tapctrl
devices correspond to the order the domains were started in, not the
domain ID.

ionice -p 1054 -c 2 -n 7

ionice -p 1172 -c 2 -n 0

To test ionice, let’s run a couple of Bonnie++ processes and time them.
(After Bonnie++ finishes, we dd a load file, just to make sure that conditions
for the other domain remain unchanged.)

prio 7 domU tmp # /usr/bin/time -v bonnie++ -u 1 && dd if=/dev/urandom of=load

prio 0 domU tmp # /usr/bin/time -v bonnie++ -u 1 && dd if=/dev/urandom of=load

In the end, according to the wall clock, the domU with priority 0 took
3:32.33 to finish, while the priority 7 domU needed 5:07.98. As you can see,
the ionice priorities provide an effective way to do proportional I/O
allocation.

The best way to apply ionice is probably to look at CPU allocations and
convert them into priority classes. Domains with the highest CPU allocation
get priority 1, next highest priority 2, and so on. Processes in the dom0 should
be ioniced as appropriate. This will ensure a reasonable priority, but not
allow big domUs to take over the entirety of the I/O bandwidth.

Backing Up DomUs
As a service provider, one rapidly learns that customers don’t do their own
backups. When a disk fails (not if—when), customers will expect you to have
complete backups of their data, and they’ll be very sad if you don’t. So let’s
talk about backups.

Of course, you already have a good idea how to back up physical
machines. There are two aspects to backing up Xen domains: First, there’s
the domain’s virtual disk, which we want to back up just as we would a real
machine’s disk. Second, there’s the domain’s running state, which can be
saved and restored from the dom0. Ordinarily, our use of backup refers
purely to the disk, as it would with physical machines, but with the advantage
that we can use domain snapshots to pause the domain long enough to get a
clean disk image.

We use xm save and LVM snapshots to back up both the domain’s storage
and running state. LVM snapshots aren’t a good way of implementing full
copy-on-write because they handle the “out of snapshot space” case poorly,
but they’re excellent if you want to preserve a filesystem state long enough to
make a consistent backup.

Our implementation copies the entire disk image using either a plain cp
(in the case of file-backed domUs) or dd (for phy: devices). This is because we
very much want to avoid mounting a possibly unclean filesystem in the dom0,
which can cause the entire machine to panic. Besides, if we do a raw device
backup, domU administrators will be able to use filesystems (such as ZFS on
an OpenSolaris domU) that the dom0 cannot read.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

Host ing Unt r us ted Use rs Unde r Xen: Lessons f rom the T renches 101

An appropriate script to do as we’ve described might be:

#!/usr/bin/perl

my @disks,@stores,@files,@lvs;

$domain=$ARGV[0];

my $destdir="/var/backup/xen/${domain}/";

system "mkdir -p $destdir";

open (FILE, "/etc/xen/$domain") ;

while (<FILE>) {

 if(m/^disk/) {

 s/.*\[\s+([^\]]+)\s*\].*/\1/;

 @disks = split(/[,]/);

 # discard elements without a :, since they can't be

 # backing store specifiers

 while($disks[$n]) {

 $disks[$n] =~ s/['"]//g;

 push(@stores,"$disks[$n]") if("$disks[$n]"=~ m/:/);

 $n++;

 }

 $n=0;

 # split on : and take only the last field if the first

 # is a recognized device specifier.

 while($stores[$n]) {

 @tmp = split(/:/, $stores[$n]);

 if(($tmp[0] =~ m/file/i) || ($tmp[0] =~ m/tap/i)) {

 push(@files, $tmp[$#tmp]);

 }

 elsif($tmp[0] =~ m/phy/i) {

 push(@lvs, $tmp[$#tmp]);

 }

 $n++;

 }

 }

}

close FILE;

print "xm save $domain $destdir/${domain}.xmsave\n";

system ("xm save $domain $destdir/${domain}.xmsave");

foreach(@files) {

print "copying $_";

 system("cp $_ ${destdir}") ;

}

foreach $lv (@lvs) {

 system("lvcreate --size 1024m --snapshot --name ${lv}_snap $lv");

}

system ("xm restore $destdir/${domain}.xmsave && gzip $destdir/${domain}.xmsave");

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

102 Chap te r 7

foreach $lv (@lvs) {

$lvfile=$lv;

$lvfile=~s/\//_/g;

print "backing up $lv";

 system("dd if=${lv}_snap | gzip -c > $destdir/${lvfile}.gz") ;

 system("lvremove ${lv}_snap");

}

Save it as, say, /usr/sbin/backup_domains.sh and tell cron to execute the
script at appropriate intervals.

This script works by saving each domain, copying file-based storage, and
snapshotting LVs. When that’s accomplished, it restores the domain, backs
up the save file, and backs up the snapshots via dd.

Note that users will see a brief hiccup in service while the domain is
paused and snapshotted. We measured downtime of less than three minutes
to get a consistent backup of a domain with a gigabyte of RAM—well within
acceptable parameters for most applications. However, doing a bit-for-bit
copy of an entire disk may also degrade performance somewhat.3 We suggest
doing backups at off-peak hours.

To view other scripts in use at prgmr.com, go to http://book.xen.prgmr.com/.

Remote Access to the DomU

The story on normal access for VPS users is deceptively simple: The Xen VM
is exactly like a normal machine at the colocation facility. They can SSH into
it (or, if you’re providing Windows, rdesktop). However, when problems
come up, the user is going to need some way of accessing the machine at a
lower level, as if they were sitting at their VPS’s console.

For that, we provide a console server that they can SSH into. The easiest
thing to do is to use the dom0 as their console server and sharply limit their
accounts.

NOTE Analogously, we feel that any colocated machine should have a serial console attached
to it.4 We discuss our reasoning and the specifics of using Xen with a serial console in
Chapter 14.

An Emulated Serial Console
Xen already provides basic serial console functionality via xm. You can access
a guest’s console by typing xm console <domain> within the dom0. Issue
commands, then type CTRL-] to exit from the serial console when you’re done.

The problem with this approach is that xm has to run from the dom0
with effective UID 0. While this is reasonable enough in an environment with
trusted domU administrators, it’s not a great idea when you’re giving an

3 Humorous understatement.
4 Our experience with other remote console tools has, overall, been unpleasant. Serial redirection
systems work quite well. IP KVMs are barely preferable to toggling in the code on the front panel.
On a good day.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

Host ing Unt r us ted Use rs Unde r Xen: Lessons f rom the T renches 103

account to anyone with $5. Dealing with untrusted domU admins, as in a
VPS hosting situation, requires some additional work to limit access using
ssh and sudo.

First, configure sudo. Edit /etc/sudoers and append, for each user:

<username> ALL=NOPASSWD:/usr/sbin/xm console <vm name>

Next, for each user, we create a ~/.ssh/authorized_keys file like this:

no-agent-forwarding,no-X11-forwarding,no-port-forwarding,command="sudo xm
console <vm name>" ssh-rsa <key> [comment]

This line allows the user to log in with his key. Once he’s logged in,
sshd connects to the named domain console and automatically presents it
to him, thus keeping domU administrators out of the dom0. Also, note the
options that start with no. They’re important. We’re not in the business of
providing shell accounts. This is purely a console server—we want people to
use their domUs rather than the dom0 for standard SSH stuff. These settings
will allow users to access their domains’ consoles via SSH in a way that keeps
their access to the dom0 at a minimum.

A Menu for the Users
Of course, letting each user access his console is really just the beginning.
By changing the command field in authorized_keys to a custom script, we can
provide a menu with a startling array of features!

Here’s a sample script that we call xencontrol. Put it somewhere in the
filesystem—say /usr/bin/xencontrol—and then set the line in authorized_keys
to call xencontrol rather than xm console.

#!/bin/bash

DOM="$1"

cat << EOF

`sudo /usr/sbin/xm list $DOM`

Options for $DOM

1. console

2. create/start

3. shutdown

4. destroy/hard shutdown

5. reboot

6. exit

EOF

printf "> "

read X

case "$X" in

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

104 Chap te r 7

1) sudo /usr/sbin/xm console "$DOM" ;;

2) sudo /usr/sbin/xm create -c "$DOM" ;;

3) sudo /usr/sbin/xm shutdown "$DOM" ;;

4) sudo /usr/sbin/xm destroy "$DOM" ;;

5) sudo /usr/sbin/xm reboot "$DOM" ;;

esac

When the user logs in via SSH, the SSH daemon runs this script in place
of the user’s login shell (which we recommend setting to /bin/false or its
equivalent on your platform). The script then echoes some status information,
an informative message, and a list of options. When the user enters a number,
it runs the appropriate command (which we’ve allowed the user to run by
configuring sudo).

PyGRUB, a Bootloader for DomUs

Up until now, the configurations that we’ve described, by and large, have
specified the domU’s boot configuration in the config file, using the kernel,
ramdisk, and extra lines. However, there is an alternative method, which
specifies a bootloader line in the config file and in turn uses that to load a
kernel from the domU’s filesystem.

The bootloader most commonly used is PyGRUB, or Python GRUB.
The best way to explain PyGRUB is probably to step back and examine the
program it’s based on, GRUB, the GRand Unified Bootloader. GRUB itself is
a traditional bootloader—a program that sits in a location on the hard drive
where the BIOS can load and execute it, which then itself loads and executes
a kernel.

PyGRUB, therefore, is like GRUB for a domU. The Xen domain builder
usually loads an OS kernel directly from the dom0 filesystem when the virtual
machine is started (therefore acting like a bootloader itself). Instead, it can
load PyGRUB, which then acts as a bootloader and loads the kernel from the
domU filesystem.5

PyGRUB is useful because it allows a more perfect separation between
the administrative duties of the dom0 and the domU. When virtualizing the
data center, you want to hand off virtual hardware to the customer. PyGRUB
more effectively virtualizes the hardware. In particular, this means the cus-
tomer can change his own kernel without the intervention of the dom0
administrator.

NOTE PyGRUB has been mentioned as a possible security risk because it reads an untrusted
filesystem directly from the dom0. PV-GRUB (see “PV-GRUB: A Safer Alternative to
PyGRUB?” on page 105), which loads a trusted paravirtualized kernel from the dom0
then uses that to load and jump to the domU kernel, should improve this situation.

5 This is an oversimplification. What actually happens is that PyGRUB copies a kernel from the
domU filesystem, puts it in /tmp, and then writes an appropriate domain config so that the
domain builder can do its job. But the distinction is usually unimportant, so we’ve opted to
approach PyGRUB as the bootloader it pretends to be.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

Host ing Unt r us ted Use rs Unde r Xen: Lessons f rom the T renches 105

P V - G R U B : A S A F E R A L T E R N A T I V E T O P Y G R U B ?

PV-GRUB is an excellent reason to upgrade to Xen 3.3. The problem with PyGRUB is
that while it’s a good simulation of a bootloader, it has to mount the domU partition
in the dom0, and it interacts with the domU filesystem. This has led to at least one
remote-execution exploit. PV-GRUB avoids the problem by loading an executable
that is, quite literally, a paravirtualized version of the GRUB bootloader, which then
runs entirely within the domU.

This also has some other advantages. You can actually load the PV-GRUB binary
from within the domU, meaning that you can load your first menu.lst from a read-only
partition and have it fall through to a user partition, which then means that unlike my
PyGRUB setup, users can never mess up their menu.lst to the point where they can’t
get into their rescue image.

Note that Xen creates a domain in either 32- or 64-bit mode, and it can’t switch
later on. This means that a 64-bit PV-GRUB can’t load 32-bit Linux kernels, and vice
versa.

Our PV-GRUB setup at prgmr.com starts with a normal xm config file, but with no
bootloader and a kernel= line that points to PV-GRUB, instead of the domU kernel.

kernel = "/usr/lib/xen/boot/pv-grub-x86_64.gz"
extra = "(hd0,0)/boot/grub/menu.lst"
disk = ['phy:/dev/denmark/horatio,xvda,w','phy:/dev/denmark/rescue,xvde,r']

Note that we call the architecture-specific binary for PV-GRUB. The 32-bit (PAE)
version is pv-grub-x86_32.

This is enough to load a regular menu.lst, but what about this indestructible rescue
image of which I spoke? Here’s how we do it on the new prgmr.com Xen 3.3
servers. In the xm config file:

kernel = "/usr/lib/xen/boot/pv-grub-x86_64.gz"
extra = "(hd1,0)/boot/grub/menu.lst"
disk = ['phy:/dev/denmark/horatio,xvda,w','phy:/dev/denmark/rescue,xvde,r']

Then, in /boot/grub/menu.lst on the rescue disk:

default=0
timeout=5

title Xen domain boot
 root (hd1)
 kernel /boot/pv-grub-x86_64.gz (hd0,0)/boot/grub/menu.lst

title CentOS-rescue (2.6.18-53.1.14.el5xen)
 root (hd1)
 kernel /boot/vmlinuz-2.6.18-53.1.14.el5xen ro root=LABEL=RESCUE
 initrd /boot/initrd-2.6.18-53.1.14.el5xen.img

title CentOS installer
 root (hd1)
 kernel /boot/centos-5.1-installer-vmlinuz
 initrd /boot/centos-5.1-installer-initrd.img

title NetBSD installer
 root (hd1)
 kernel /boot/netbsd-INSTALL_XEN3_DOMU.gz

(continued)

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

106 Chap te r 7

Making PyGRUB Work
The domain’s filesystem will need to include a /boot directory with the
appropriate files, just like a regular GRUB setup. We usually make a separate
block device for /boot, which we present to the domU as the first disk entry in
its config file.

To try PyGRUB, add a bootloader= line to the domU config file:

bootloader = "/usr/bin/pygrub"

Of course, this being Xen, it may not be as simple as that. If you’re using
Debian, make sure that you have libgrub, e2fslibs-dev, and reiserfslibs-dev
installed. (Red Hat Enterprise Linux and related distros use PyGRUB with
their default Xen setup, and they include the necessary libraries with the
Xen packages.)

Even with these libraries installed, it may fail to work without some
manual intervention. Older versions of PyGRUB expect the virtual disk to
have a partition table rather than a raw filesystem. If you have trouble, this
may be the culprit.

With modern versions of PyGRUB, it is unnecessary to have a partition
table on the domU’s virtual disk.

Self-Support with PyGRUB

At prgmr.com, we give domU administrators the ability to repair and cus-
tomize their own systems, which also saves us a lot of effort installing and
supporting different distros. To accomplish this, we use PyGRUB and see to
it that every customer has a bootable read-only rescue image they can boot
into if their OS install goes awry. The domain config file for a customer
who doesn’t want us to do mirroring looks something like the following.

The first entry is the normal boot, with 64-bit PV-GRUB. The rest are various types
of rescue and install boots. Note that we specify (hd1) for the rescue entries; in this
case, the second disk is the rescue disk.

The normal boot loads PV-GRUB and the user’s /boot/grub/menu.lst from
(hd0,0). Our default user-editable menu.lst looks like this:

default=0
timeout=5

title CentOS (2.6.18-92.1.6.el5xen)
 root (hd0,0)
 kernel /boot/vmlinuz-2.6.18-92.1.6.el5xen console=xvc0
root=LABEL=PRGMRDISK1 ro
 initrd /boot/initrd-2.6.18-92.1.6.el5xen.img

PV-GRUB only runs on Xen 3.3 and above, and it seems that Red Hat has no
plans to backport PV-GRUB to the version of Xen that is used by RHEL 5.x.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

Host ing Unt r us ted Use rs Unde r Xen: Lessons f rom the T renches 107

bootloader = "/usr/bin/pygrub"

memory = 512

name = "lsc"

vif = ['vifname=lsc,ip=38.99.2.47,mac=aa:00:00:50:20:2f,bridge=xenbr0']

disk = [

 'phy:/dev/verona/lsc_boot,sda,w',

 'phy:/dev/verona_left/lsc,sdb,w',

 'phy:/dev/verona_right/lsc,sdc,w',

 'file://var/images/centos_ro_rescue.img,sdd,r'

]

Note that we’re now exporting four disks to the virtual host: a /boot
partition on virtual sda, reserved for PyGRUB; two disks for user data, sdb
and sdc; and a read-only CentOS install as sdd.

A sufficiently technical user, with this setup and console access, needs
almost no help from the dom0 administrator. He or she can change the
operating system, boot a custom kernel, set up a software RAID, and boot
the CentOS install to fix his setup if anything goes wrong.

Setting Up the DomU for PyGRUB

The only other important bit to make this work is a valid /grub/menu.lst, which
looks remarkably like the menu.lst in a regular Linux install. Our default looks
like this and is stored on the disk exported as sda:

default=0

timeout=15

title centos

 root (hd0,0)

 kernel /boot/vmlinuz-2.6.18-53.1.6.el5xen console=xvc0 root=/dev/sdb ro

 initrd /boot/initrd-2.6.18-53.1.6.el5xen.XenU.img

title generic kernels

 root (hd0,0)

 kernel /boot/vmlinuz-2.6-xen root=/dev/sdb

 module /boot/initrd-2.6-xen

title rescue-disk

 root (hd0,0)

 kernel /boot/vmlinuz-2.6.18-53.1.6.el5xen console=xvc0 root=LABEL=RESCUE

ro

 initrd /boot/initrd-2.6.18-53.1.6.el5xen.XenU.img

NOTE /boot/grub/menu.lst is frequently symlinked to either /boot/grub/grub.conf or
/etc/grub.conf. /boot/grub/menu.lst is still the file that matters.

As with native Linux, if you use a separate partition for /boot, you’ll need
to either make a symlink at the root of /boot that points boot back to . or make
your kernel names relative to /boot.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

108 Chap te r 7

Here, the first and default entry is the CentOS distro kernel. The second
entry is a generic Xen kernel, and the third choice is a read-only rescue image.
Just like with native Linux, you can also specify devices by label rather than
disk number.

Wrap-Up

This chapter discussed things that we’ve learned from our years of relying on
Xen. Mostly, that relates to how to partition and allocate resources between
independent, uncooperative virtual machines, with a particular slant toward
VPS hosting. We’ve described why you might host VPSs on Xen; specific
allocation issues for CPU, disk, memory, and network access; backup methods;
and letting customers perform self-service with scripts and PyGRUB.

Note that there’s some overlap between this chapter and some of the
others. For example, we mention a bit about network configuration, but we
go into far more detail on networking in Chapter 5, Networking. We describe
xm save in the context of backups, but we talk a good deal more about it and
how it relates to migration in Chapter 9. Xen hosting’s been a lot of fun. It
hasn’t made us rich, but it’s presented a bunch of challenges and given us a
chance to do some neat stuff.

W O R K I N G W I T H P A R T I T I O N S O N V I R T U A L D I S K S

In a standard configuration, partition 1 may be /boot, with partition 2 as /. In that
case, partition 1 would have the configuration files and kernels in the same format
as for normal GRUB.

It’s straightforward to create these partitions on an LVM device using fdisk. Doing
so for a file is a bit harder. First, attach the file to a loop, using losetup:

losetup /dev/loop1 claudius.img

Then create two partitions in the usual way, using your favorite partition editor:

fdisk /dev/loop1

Then, whether you’re using an LVM device or loop file, use kpartx to create
device nodes from the partition table in that device:

kpartx -av /dev/loop1

Device nodes will be created under /dev/mapper in the format devnamep#.
Make a filesystem of your preferred type on the new partitions:

mke2fs /dev/mapper/loop1p1
mke2fs -j /dev/mapper/loop1p2

mount /dev/mapper/loop1p2 /mnt
mount /dev/mapper/loop1p1 /mnt/boot

Copy your filesystem image into /mnt, make sure valid GRUB support files are in
/mnt/boot (just like a regular GRUB setup), and you are done.

The Book of Xen
(C) 2009 by Chris Takemura and Luke S. Crawford

