Ajax.NET Professional
Library

Every once in a while, a technology is extremely simplified with the introduction of new wrapper
libraries. These libraries use existing technologies but make the development process easier to use
by wrapping the sometimes difficult concepts into easier-to-use, more simplified concepts. So, the
term wrapper library comes from having a library of code wrapped around existing technology. You
can tell when a great wrapper library is released because of its instant popularity.

This chapter covers one such wrapper library known as the Ajax library for .NET. In this chapter
and the next, we will show off the simplicity of talking back and forth between client browsers and
your application server without page postbacks. We’ll also dig a little under the hood of the library
to show you how and why the library works.

This chapter shows you how to get started using the Ajax.NET Pro library. To get started, you'll set
up a simple example and get it working. The following topics will be covered:

O

Acquiring Ajax.NET Pro

Adding a reference to the Ajax.NET Pro assembly

Setting up the Web.Config to handle Ajax requests
Registering the page class

Writing methods in code-behind to be accessible on the client
Examining the request

Executing the Ajax method and getting a server response

Digging into callbacks and context

00000 o0 oo

Trapping errors

When you have finished these examples, you will have completed your first implementation of
the Ajax.NET Pro library. You will have successfully set up an ASPNET page that uses the library
to refresh parts of your page with data from the web server.

Chapter 7

Acquiring Ajax.NET Pro Version 6.4.16.1

In Chapters 7 and 8, we're using and talking about Ajax.NET Pro version 6.4.16.1. As with all software,
this library is evolving and continually being added to and upgraded. We’ve made the version 6.4.16.1
library available to you for downloading on our web site, http: //BeginningAjax.com. You can down-
load the version in one of two ways:

Q Compiled Library, ready to use

Q Library Source Code, must be compiled first

I'would recommend that first you download the Compiled Library. This is a simple zip file that contains a
single file named Ajax.NET. This is the already compiled library that is ready for you to start using as a
reference in the next section. If you would like to have access to the source code, you can download the
Library Source Code, which has all the source code files needed for you to do the compiling yourself; then
the code can be embedded into your application.

Preparing Your Application

In order to prepare your application to use Ajax.NET Pro, follow these two steps:

1. Add areference to the Ajax.NET Pro library.

2. Wire up the Ajax.NET Pro library in the Wweb. Config file so that your application can process
the special requests created by the Ajax.NET Pro library.

Try It Out Preparing Your Application to Use Ajax.NET Pro

1. To use the Ajax.NET Pro library, your first step is to set a reference to the library. This allows
you to use library functionality inside your application. Create a new web site in Visual Studio.
Visual Studio 2005 automatically creates a Bin folder for you. Right-click on this folder and
select Add Reference. Figure 7-1 shows the Add Reference dialog box. Select the Browse tab,
and navigate to the AjaxPro.d11 file that you downloaded (or compiled from the Library
Source Code). Once this is selected, click the OK button, and you will have successfully refer-
enced the Ajax.NET Pro library from your application.

2. The Ajax.NET Pro library uses a page handler to process requests that come into the server from
your client application. This page handler needs to be wired up to your application, and this
is done by an inserting it into your Web.Config file. This code should be inserted in the
<system.web> section of Web.Config:

<httpHandlers>

<add verb="POST, GET" path="AjaxPro/*.ashx"
type="AjaxPro.AjaxHandlerFactory, AjaxPro" />
</httpHandlers>

160

Ajax.NET Professional Library

Add Reference [2JE&3
JMET | COM | Projects | Browse | Recent
Look jn: | £ B.4.16.1 AjasPra v QT [Er
,ﬂ AjaxPro.dil
File name: AjanPro.dl v
Files of twpe: | Component Files 7. dIl® HbF olb: nce:® exe) W
[Ok][Cancel
Figure 7-1

If you don’t fully understand what an HTTP handler is, you're not alone. This code basically

tells ASPNET to take ownership of all requests that come into your web site with the path of
/AjaxPro/ and have a file extension of . ashx, and then process that request with the Ajax.NET
Pro library. Later you'll see JavaScript that is loaded dynamically from these * . ashx paths. When
you see URLSs like this, remember that they're being processed by the Ajax.NET Pro library.

You'll examine what is happening with those requests later in this chapter.

Using the Ajax.NET Pro Library

Now that your application is set up to use the Ajax.NET Professional library, you are ready to benefit
from the ease of use the library offers. In Chapter 2, you saw how a JavaScript method could be used to
change an image. In the first example here, you'll perform that same functionality, but instead of chang-
ing the image client side from left to right and back again, you'll ask the server for an image to display.

There are three steps required to use the Ajax.NET Pro library in your application:

1. First, you write the code that is going to be used in your image switching routine.
2. Second, you wire up that code to be used by the Ajax.NET Pro library.
3. Third, you execute that code from JavaScript.
So, your goal in this example is to switch an image by using JavaScript as you did in Chapter 2. However,

the major difference will be that you ask the server for an image name, and the response from the server
will become the src attribute of your image.

161

Chapter 7

The server-side code that is responsible for switching the image looks like this:

Changelmage Method for Code-Behind Page
public string ChangelImage (string input, string left, string right)
{
//Get the image filename without the file extension
string filename = System.IO.Path.GetFileNameWithoutExtension (input) ;
//Check if the strings match, ignoring case
if (string.CompareOrdinal (filename, left) == 0)
{
//if the strings match then send back the 'right' string
return input.Replace(filename, right);
}
//strings did not match, send back 'left' string
return input.Replace(filename, left);
}

The changeImage method accepts three parameters; an input string, which is the path of the current
image that is loaded; a 1eft string, which defines what the Left image src should be; and a right
string, which defines the Right image src. Calling this method in code would look something like this:

MyImage.ImageUrl = ChangelImage (MyImage.ImageUrl, "ArrowLeft", "ArrowRight");

This is straightforward code that switches the image.

Try It Out Placing the Image-Switching Code in Your Page
1. Create a page in the root of your web site called ImageSwitcher.aspx.

2. Right-click on this file, and select Use as Default, so that when you run your application,
this is the page that will be shown in your browser. By default, Visual Studio creates an
ImageSwitch.aspx.cs file for you.

w

Add using AjaxPro; with all the other using statements at the top of your page.

4. Open this file, and insert the ChangeImage () method just below your Page_Load method.
Compile your project.

At this point, your project should compile with zero errors. If you do have compile errors, it's most
likely because you haven’t referenced the AjaxPro assembly correctly, as shown in Figure 7-1. If you run
your project, you will not see any page output because you haven’t done any UI work just yet. That will
come later.

You have completed Step 1 in using the Ajax.NET Pro library in your application. However, the real
magic in this example is in Step 2— making that code accessible using JavaScript so that you can access
this functionality in the client browser. This is very simple to do using the Ajax.NET Pro library, and that
is just where you're going with this example. One of the nicest features of the Ajax.NET Pro library is
that you can easily adapt your existing code without rewriting it. Yes, you read that correctly — you do
not have to rewrite any of your code to make it available in your JavaScript. All you have to do is regis-
ter your code with the Ajax.NET Pro library. That sounds kind of strange —register your code —doesn’t
it? The first two of the three steps in using the Ajax.NET library are the easiest to implement. And if
your code is already written, this next step should take you only about 2 minutes. To make your code

162

Ajax.NET Professional Library

accessible using JavaScript, you first register your page class with the Ajax.NET Pro library. This class
has method(s) on it that you want to expose to JavaScript. Then, you register the method you want to
expose. This is all explained in the next two sections.

Registering Your Page for Ajax.NET Pro

Registering your page class with the Ajax.NET Pro library is what activates the library. This is the com-
mand that generates a JavaScript object that you can use on the client browser. Registering your page
class is very simple and is done with just one line of code. This single line of code needs to be executed
somewhere in the page’s lifecycle and is generally inserted into the Page_Load method.

protected void Page_Load(object sender, EventArgs e)
{ AjaxPro.Utility.RegisterTypeForAjax (typeof (Chapter7_ImageSwitcher)) ;
}

By default, your page class is the same as the page name that you assigned to the . aspx file, preceded
by any folder structure that the file is in. In this case, the file ImageSwitcher.aspxisina /Chapter7/
folder, so the name is automatically created as Chapter7_ImageSwitcher. This can get out of sync if
you've used the rename function in Visual Studio. You can confirm your page class name in two places
if your application is compiling.

Q At the top of the . aspx page in the page directive, you'll see an Inherits attribute. This is your
page class name.

<%@ Page Language="C#" Inherits="Chapter7_ImageSwitcher" %>

Q The second place you can check your page class name is in the . cs file. The . cs file actually
defines a partial class that is shared with the same class your .aspx page is inherited from.
The class signature is the class name.

We bring this up only because if you rename an . aspx page, Visual Studio will rename the actual files,
but it will not rename the page class.

public partial class Chapter7_ImageSwitcher: System.Web.UI.Page

Remember that C# is a case-sensitive, so imageswitcher is different from ImageSwitcher is different
from imageSwitcher. If you've incorrectly cased the name, your application shouldn’t compile.

Registering Your Methods for Ajax.NET Pro

Now that you've registered your page, the next step is to register your page methods. You can’t have
one without the other. You have to register a class that has Ajax. NET Pro method(s) on it. You've already
added the ChangeImage () method to your ImageSwitch.aspx.cs file. Remember, I said you can call
this code in JavaScript without rewriting any of it. Here is the magic of the library. Simply mark your
method with an AjaxPro.AjaxMethod () attribute. If you've never used attributes before you're in for
a great surprise. This is a simple way of decorating your existing code. Just add the following line pre-
ceding your ChangeImage () method:

[Ajax.AjaxMethod ()]

163

Chapter 7

So, your entire server-side ImageSwitch.aspx.cs code file should look like this:
Server Side — Chapter7_IlmageSwitcher.aspx.cs

protected void Page_Load(object sender, EventArgs e)
{

AjaxPro.Utility.RegisterTypeForAjax (typeof (Chapter7_ImageSwitcher)) ;
}

[AjaxPro.AjaxMethod ()]
public string ChangelImage (string input, string left, string right)
{
//Get the image filename without the file extension
string filename = System.IO.Path.GetFileNameWithoutExtension (input) ;
//Check if the strings match, ignoring case
if (string.CompareOrdinal (filename, left) == 0)
{
//strings match == send back 'right' string
return input.Replace(filename, right);
}
//strings did not match, send back 'left' string
return input.Replace(filename, left);

Viola! Step 2 of using the Ajax.NET Pro library in your application is done. You've now registered your
page class, and that class has an AjaxMethod () in it. You can now access this method in JavaScript with
a very standard syntax. Your JavaScript is going to be as simple as the following:

Chapter7_ImageSwitcher.Changelmage (img.src, "ArrowLeft", "ArrowRight");

This line of code returns a response object that has a value of the URL that you want to set as the source
of your image, pointing to either the left or the right image. Now you're ready to start writing the UI and
the JavaScript, which is the last step in the three-step process to use the Ajax.NET Pro library.

Examining the Request Object

In the coming pages, you'll execute the preceding JavaScript line and work with the response object
you'll get back from the JavaScript call. This object is very simple to work with and has only five proper-
ties: value, error, request, extend, and context. These are defined in the table that follows. All of
these properties have a default value of null, so if they are never populated, you will get a client-side
error if you try to use them. This is usually the culprit for the famous ever-so-unhelpful undefined
error, as seen in Figure 7-2. It’s good practice to check for null values just about everywhere. You'll see
more of this as you move on, specifically under the section about trapping errors later in the chapter.

Error
. A Runtime Error has occurred.
Do you wish to Debug?
Line: 53
Etrar: ‘response’ is undefined
‘fes Ma
Figure 7-2

164

Ajax.NET Professional Library

Property

response

response.

response

response.

response.

.value

error

.request

extend

context

Default Value

null

null

null

null

null

Description

The value is populated with what is returned from the
server.

The error value is either null or the error string that
was returned from the server. Normally you want this
to be null, although, as you'll see, it can be a nice way
to provide information to yourself about the client.

This is a copy of the original request object that was
used to issue the request back to the server. This con-
tains two very helpful properties: method and args.
method is the original method name that was called,
and args is an object describing all of the values
passed into the method.

The extend property is a JavaScript prototype that is
added to all Ajax.NET Pro objects. It is used internally
by the library to bind events and is not normally used.

The context is optional and can be used in certain sit-
uations to pass data along from one point to another.
You'll see this in use later in the chapter, where it'll be
easier to understand.

Executing Your Ajax on the Client

Building on the concept you learned from Chapter 2, you'll start this example with very similar HTML,
as you see in the code that follows. The HTML preloads both the left and the right image. This is simply
to make the switch faster once you get a response from the server. If you didn’t preload these images in
a hidden <div> tag, the end user would have to wait while the new image was downloaded from the

server. You also have a ChangeMe () JavaScript function that does the work of actually changing the

image. So, how does this ChangeMe () function get fired?

Client Side — Chapter7/ImageSwitcher.aspx
<script type="text/Javascript" language="Javascript">
function ChangeMe (target, leftName, rightName) {
var response
rightName) ;
target.src =

}

</script>

= Chapter7_ImageSwitcher.ChangeImage (target.src,

response.value;

<div style="DISPLAY:none;VISIBILITY:hidden">
<!-- preload images -->

</div>

leftName,

<img onclick="ChangeMe (this, 'ArrowLeft', 'ArrowRight')" src="images/ArrowLeft.gif"
border="0">

165

Chapter 7

What Is a Language Proxy?

The term proxy is used when one language represents an object that has all the same prop-
erties (and sometimes method calls) as an object in another language. So, a JavaScript
proxy object will mimic all the properties of the .NET object. This means you can easily
use the same syntax in JavaScript that you would use in .NET. It is the job of the proxy
object to talk back and forth between JavaScript and .NET. Proxy classes make your pro-
gramming life easier because you don’t have to worry about communication between the
two languages or systems.

Think of a proxy class as a language interpreter, allowing you to communicate easily
in your native language, while the proxy does all the interpreting for you to the other
language.

Notice that the tag has a JavaScript onclick attribute that points to your ChangeMe () function.
You pass in three values: first, the tag represented by the keyword this, followed by the left
and right image names, ArrowLeft and ArrowRight.

The first line of the function calls into the Ajax.NET Pro library with the Class.Method naming conven-
tion. Remember, you registered your page class, which was named Chapter7_ImageSwitcher, and
then you attributed your server-side ChangeImage () method with the AjaxPro.AjaxMethod ()
attribute. The Ajax.NET Pro library now makes a JavaScript object for you that is a proxy object used

to communicate with your ASP.NET application.

This proxy object makes it possible for you to simply call the Chapter7_ImageSwitcher.ChangeImage ()
method, which looks like it’s executing your server-side code right inside your JavaScript. What's actually
happening is that the proxy object uses the same signature and naming conventions that your server-side
code uses, making it look transparent when you call your server code from JavaScript.

When the end user clicks the image, the ChangeMe () function is called. The first thing you do is build a
response variable that will hold the return value of your Chapter7_ImageSwitcher.ChangeImage ()
method. Notice that you also pass in the appropriate parameters to your server-side method to the
proxy. Finally, you get back a value from the server in the response . value property, and that becomes
the new source value of the image, which is the new URL of the image to be used.

This is the same client-side effect that you saw in Chapter 2, changing the image from left to right when
the user clicked the image. However, this time the value came from the server. Although this example is
pretty basic, it is very important because what you've really built so far is the ability to use Ajax.NET Pro
between the client browser and your ASP.NET server to return a single string from the server and then
update the client page.

Imagine the possibilities here. You could return the HTML of an entire datagrid and update the

innerHTML of a div tag. With a little Dynamic HTML (DHTML) you can change the style of a div or
span tag and create some very powerful features using just what you’ve learned so far.

166

Ajax.NET Professional Library

Digging into response.value

In the first example, you received a string in the response.value property. This was the string name of
the image LeftArrow or RightArrow that you used to set the image source to change the image from
right to left. Strings can be very helpful and are a very common datatype to be passed back to the client
from the server. Imagine using HTML in your return strings. What if you rendered an entire control, such
as a datagrid, to its HTML and then returned that HTML as your string value. With this logic, it’s pretty
easy to magically load a datagrid client side. The code that follows is used to render a control to HTML.
The next example then builds a datagrid, and you can easily adapt these examples to any control to get its
rendered HTML. The reason that this works is that all controls have a RenderControl () method.

RenderControlToHtml() — Getting the HTML String from a Control
public string RenderControlToHtml (Control ControlToRender)
{
System.Text.StringBuilder sb = new System.Text.StringBuilder();
System.IO.StringWriter stWriter = new System.IO.StringWriter (sb);
System.Web.UI.HtmlTextWriter htmlWriter = new
System.Web.UI.HtmlTextWriter (stWriter) ;
ControlToRender.RenderControl (htmlWriter) ;
return sb.ToString ();

}

Rendering a Datagrid

[AjaxPro.AjaxMethod ()]

public string CreateNewDataGrid()

{
DataGrid myDataGrid = new DataGrid() ;
myDataGrid.ShowHeader = false;
myDataGrid.DataSource = BuildMultiplicationTable() ;
myDataGrid.DataBind () ;
return RenderControlToHtml (myDataGrid) ;

}

public DataTable BuildMultiplicationTable ()
{
//Build a Data Table with 11 cells
DataTable myTable = new DataTable() ;
for (int 1 = 1; 1 < 11; 1++)
myTable.Columns.Add (new DataColumn (i.ToString()));

//Populate 10 rows with a 10X10 multiplication chart
for (int 1 = 1; 1 < 11; 1i++)
{

DataRow row = myTable.NewRow() ;

for (int j = 1; J < 11; j++)

{

row[j-1] = i*j;

}

myTable.Rows.Add (row) ;
}

return myTable;

167

Chapter 7

Using strings will get you moving quickly on your project. After all, just about anything can be con-
verted to a string, but as you'll see in the next section, it’s also nice to be able to return custom objects.
Ajax.NET Pro has support out of the box for the following .NET types. Any type on this list can be
returned from your server side function to your client side call with no additional programming.

Q Strings
Integers
Double
Boolean
DateTime
DataSet
DataTable

O 000U oo

All the types in this list are pretty easy to understand with exception of the last two items. What would
you do with a Dataset in JavaScript on the client? What about a bataTable? Well, it turns out that you
would do pretty much the same thing as you would on the server. You do not have Databind () opera-
tions as you would on the server, but you do have a DataTable.Tables array, each table has a Rows
array, and finally, each row has properties that are inline with the original table column names.

Try It Out Building an HTML Table from a DataTable Object

The following code gets a DataTable, server side, and draws an HTML table on the client.

Client Code — Building an HTML Table from a DataSet
<script type="text/javascript" language="javascript">
function BuildHtmlTable() {

var response = Chapter7_BuildHtmlTable.BuildMultiplicationTable() ;

if (response.value != null && response.value.Rows.length>0)

var datatable = response.value;

var table = new Array();

table[table.length] = '<table border=1>';

for(var r=0; r<datatable.Rows.length; r++) {
var row = datatable.Rows|[r];

table[table.length] = '<tr>';
for (var c=0; c<datatable.Columns.length; c++)
table[table.length] = '<td valign=top>"
}
table[table.length] = '</tr>"';
}
table[table.length] = '</table>"';

document .getElementById ("DynamicTable") .innerHTML

}
}
function ClearHtmlTable() {
document .getElementById ("DynamicTable") .innerHTML =
}
//==>
</script>
<form id="forml" runat="server">

168

'
7

{

+ row[c+l] + '</td>';

{

table.join('");

Ajax.NET Professional Library

<p>Chapter 7 :: Build Html Table.

Clear Html Table

Build Html Table

</p>

<div id="DynamicTable"></div>

</form>

Server Code — Returning a DataTable
protected void Page_Load(object sender, EventArgs e)

{
AjaxPro.Utility.RegisterTypeForAjax (typeof (Chapter7_BuildHtmlTable)) ;

}

[AjaxPro.AjaxMethod ()]
public DataTable BuildMultiplicationTable ()
{
//Build a Data Table with 11 cells
DataTable myTable = new DataTable() ;
for (int 1 = 1; 1 < 11; 1i++)
myTable.Columns.Add (new DataColumn (i.ToString()));

//Populate 10 rows with a 10X10 multiplication chart
for (int 1 = 1; 1 < 11; 1i++)
{

DataRow row = myTable.NewRow() ;

for (int j = 1; j < 11; j++)

{

row[j - 1] =1 * j;

}

myTable.Rows.Add (row) ;
}

return myTable;

Notice that the last line in the client code block is an empty <div> tag named DynamicTable. When

the hyperlink “Build Html Table” is clicked, the JavaScript function BuildHtmlTable () is called. In the
server-side code, the page class name is Chapter7_BuildHtmlTable, and the server side method

that returns a DataTable is BuildMultiplicationTable () . So, inside the JavaScript function
BuildHtmlTable (), you can call Chapter7_BuildHtmlTable.BuildMultiplicationTable() .
Then in the response.value, you'll get back an object that is very similar to a server-side DataTable,
with Rows and Columns properties. As with the DataTable object, Ajax.NET Pro also has a Dataset
object that can be used just as easily.

Returning Custom Objects

So, what about custom objects? Suppose that you have a person class, and the person has name, street,
city, state, zip, and phone number properties. Can you return this person from your function and have
it magically converted for you? Luckily, the answer is yes —but there is a catch. The custom class that
you're returning needs to be registered, just like the page class needed to be registered (you’ll see why
this needs to happen in Chapter 8), and the custom class needs to be marked with a Serializable()
attribute. The code block in this section shows the partial code for the custom person class, just showing

169

Chapter 7

the name and street properties. To use this class as a return type, it would need to be registered, and the
proxy class will automatically be processed by the Ajax.NET Pro library.

Ajax.Utility.RegisterTypeForAjax (typeof (Person)) ;

The only down side to this is that the automatic conversion is one-way. It allows for you to serialize your
.NET objects to JavaScript Object Notation (JSON as described in Chapter 5) for use in JavaScript, but it
does not allow you to use the Person class as an input value from JavaScript back to .NET. It is possible
to send this Person class back to .NET (maybe as a parameter), but it’s not automatic. You'll look at how
to get a custom class back to .NET form JavaScript in Chapter 8.

A Simple Person Class Marked with [Serializable()] Attribute
[Serializable()]

public class Person

{

public Person()

{1

private string _Name;
public string Name
{
get { return _Name; }
set { _Name = value; }
}

private string _Street;
public string Street
{
get { return _Street; }
set { _Street = value; }

More Advanced Callbacks and Context

The preceding method of using the Ajax.NET Pro library is great, but it's worth going to the next step
here. Did you notice that the way the response is requested was inline in your code? What if it took 10
seconds to execute your method and get a response back to the client? That means your browser would
be locked and waiting for the response to come back, and nothing else could happen while you were
waiting. This, as you've encountered previously in this book, is called synchronous execution. There is a
very simple way to make this code execute asynchronously, which is to say that the request will be fired,
but you're not going to wait for the response. Instead you're going to tell the Ajax.NET Pro library what
to do with the response once it is returned. This is accomplished with a callback routine. A callback is
simply another function that can be called where the response can be passed in.

Take a look at a minor difference in this JavaScript ChangeMe () function, and compare it to the one ear-
lier in the chapter in the “Executing Your Ajax on the Client” section.

function ChangeMe (target, onName, offName) {

Chapter7_ImageSwitcherCallback.ChangeImage
(target.src, onName, offName, ChangeMe_Callback, target) ;

170

Ajax.NET Professional Library

Notice the number of parameters that you're passing into the ImageSwitcher.ChangeImage ()
method. There are now five parameters, where before there were only three. The server-side method
accepts only three, so how can this work? Remember that this is actually a JavaScript proxy object that is
created by the Ajax.NET Pro library for you to use. Every proxy object that is created is created with a
couple of overloads. An overload is a variation of a method using the same method name but with a
unique set of parameters known as a signature. The signature is defined as the order and types of the
parameters the method accepts. The proxy object Chapter7_ImageSwitcher.ChangeMe () gets created
with the following signatures.

a Chapter7_ImageSwitcher.ChangeImage (string, string, string)
] Chapter7_ImageSwitcher.ChangeImage (string, string, string, callback)

a Chapter7_ImageSwitcher.ChangeImage (string, string, string, callback, context)

Notice the last two parameters, callback and context. callback is the name of the method that you
want the response to be sent to. In this example, you would have a problem if all you could work with in
the callback method was the response from the server. You’'d have a problem because you need to set

the value of the image tag, and you wouldn’t know what that image tag was. So, Ajax.NET Pro has a last
parameter called context. Whatever object you pass in as the context parameter will be returned in
the response object as its context property. Remember, the response object has five properties, value,
error, request, extend, and context. Now you see where the context is helpful. The context basi-
cally gets a free ride from your execution point (where you ask for the server method to be called) into
your callback method.

It is common to name the callback function the same as the original function name, with the _Callback
appended to it. Take a look at this callback function.

function ChangeMe_Callback (response) {
if (response.error != null)
alert (response.error.name + ' :: ' + response.error.description);
else
response.context.src = response.value;

Notice that the callback method takes only one parameter. It's common to call this parameter response,
or res. The response object’s context parameter is populated with the image tag because you sent that
tag in as the context when you executed this line.

Chapter7_ImageSwitcherCallback.ChangeImage
(target.src, onName, offName, ChangeMe_Callback, target) ;

In the JavaScript, you can reference the response. context as if it’s the image. You set its source equal
to the value that was returned from the server. To get the value returned from the server, you look in the
response.value property. The entire HTML + JavaScript now should look like this.

Client Side — Chapter7 /ImageSwitcherCallback.aspx

<script type="text/Javascript" language="Javascript">

<!——

function ChangeMe (target, leftName, rightName) {
alert (response.value) ;

171

Chapter 7

Chapter7_ImageSwitcherCallback.ChangeImage (target.src, leftName,
rightName, ChangeMe_Callback, target) ;
}
function ChangeMe_Callback (response) {
if (response.error != null)
alert (response.error.name + ' :: ' + response.error.description);
else
response.context.src = response.value;

}
//==>
</script>

<div style="DISPLAY:none;VISIBILITY:hidden">
<!-- preload images -->

</div>
<img onclick="ChangeMe (this, 'ArrowLeft', 'ArrowRight')" src="images/ArrowLeft.gif"
border="0">

In the preceding code, you're now executing the image changer in an asynchronous manner. This means
that you don’t have to wait for the server to return a response. The code can continue to execute and do
other functions. When the server does return a response, the Ajax.NET Pro library will receive that
response and execute the callback method, sending in the response as its object. This is a much more
fluid style of programming, and you'll enjoy the benefits of not having your code bottlenecked because
of a long-running process on the server.

Ajax.NET Pro Request Events —
Keeping Your Users Updated

The AjaxPro.Request object has several placeholder events that you can set up JavaScript functions
against. These event placeholders are onLoading, onError, onTimeout, and onStateChanged. I call
them placeholders because they’re null unless you assign a function to them. In this section, we’re going
to look at the onLoading event and how it can be used to let your users know that something is happen-
ing in the background. For example, the user might have just clicked a button that loads a large set of
data and takes 5 seconds to execute. During this 5 seconds (which seems like forever) if nothing updates
to let the user know something is happening, they might get antsy and press the button again, and
again, and again — which we know just further delays the problem.

The following example uses the onLoading event from the class object that was registered using the
Utility.RegisterTypeForAjax call (probably in your page load event). This onLoading event is
called by the Ajax.NET Pro library before and after all calls are made to AjaxMethods on your registered
class. The code-behind page for this example has a simple method on it called WaitXSeconds. Its job is to
simply wait for a given number of seconds and then return true. In a real application, this might be your
database call or some other routine that might take a while. While this code is working, you can let your
users know the code is busy with a little DHTML. When the text button is clicked, a red “Loading . ..”
box will show in the top-left corner of the window. When the method is done, the “Loading . . .” box

is hidden.

172

Ajax.NET Professional Library

Chapter7_Onloading.aspx.cs Example
protected void Page_Load(object sender, EventArgs e)
{
Utility.RegisterTypeForAjax (typeof (Chapter7_OnLoading)) ;
}
[AjaxPro.AjaxMethod ()]
public string WaitXSeconds (int SecondsToWait)
{
System.Threading.Thread.Sleep (SecondsToWait*1000) ;
return string.Format("{0} seconds have passed", SecondsToWait.ToString());;

The onLoading event in this example will get assigned to a function that you create. The onLoading
function takes a single parameter, which is true or false, and lets you know if the onLoading function
is being called at the beginning of the request (true) or at the end of the request (false). You use this
parameter to set the visible property of an absolute positioned div tag named "loading". When it’s
true, you set the visibility to visible, and when it's false (the end), you set its value to hidden.

Chapter7_Onloading.aspx Example
<form id="forml" runat="server">
<div id="loading"
style="visibility:hidden;position:absolute;top:0px;left:0px;background-
color:Red;color:White; ">Loading. ..</div>
<div>
Click Here
to run a 4 second process, and let the user know with a "Loading..."
tag in the top left corner of the window.
</div>
</form>
<script language="javascript" type="text/javascript">
Chapter7_OnLoading.onLoading = function (currentVis) {
var loadingDiv = document.getElementById("loading") ;
if (loadingDiv != null) {
loadingDiv.style.visibility = currentVis ? "visible" : "hidden";
}
}
function ShowLoading (seconds) {
Chapter7_OnLoading.WaitXSeconds (seconds,WaitXSeconds_Callback) ;
}
function WaitXSeconds_Callback (response) {
alert (response.value) ;
}

</script>

A nice feature of the way the onLoading event works is that it’s tied to the class object. So, if your registered
class (in this case the Page class) has many AjaxMethods on it, the onLoading event will be fired at the
beginning and the end of every method that is called. And remember, you had to program this only once!

Errors, Errors, Errors. They Happen, You Trap ’em.

So far you've covered the response’s value, request, and context properties. Last, and maybe most
important, is the error property. When Ajax.NET Pro processes your request, if all goes as planned and
no error occurs, this property will have a null value. If any unhandled error is thrown during the Ajax.NET

173

Chapter 7

Checking for Null Values

If the error property is null, there is no error, at least not one that was sent back with
the response object. If the value property is null, the server didn’t return any values,
and if the context is null, no context was originally set up. But no matter what they
mean, usually you account for these nulls with a simple if () statement in your code,
as demonstrated in code earlier in the chapter using this line:

if (response.error != null)
This line lets you know if an error was returned. In the sample, you coded that if there

is an error, the error is shown to the user, and the value of the image source tag is not
set. But you can choose to handle the error however you want.

Pro request, the string value of that error is returned. The response. error object has three properties —
name, description, and number.

Property Description

response.error .name The name of the error, usually the namespace of the error
that was thrown.

response.error.description This is the equivalent of the Exception.Message in the
NET Framework.

response.error.number If the exception thrown has an error number, it is popu-
lated here.

Notice that the last code block in the preceding section contains code to check the response.error
property to see if it is null. If it is found not to be null, then you know you have an error, and you dis-
play the error message to the user. This will probably not be what you want to do in your real-world
application. You would probably check the error number, and then handle the error appropriately,
according to what caused the error.

Using the Ajax.NET Pro Library —
Looking under the Hood

So, in summary, preparing your application to use the Ajax.NET Pro library requires the following steps:

1. First, you have to set up your ASP.NET application to be Ajax.NET Pro—enabled. This is done
with the reference being set to the AjaxPro.dll assembly.

2. Second, you must modify your web.Config file to register the AjaxPro.AjaxHandlerFactory
to process all the AjaxPro/* . ashx requests.

174

Ajax.NET Professional Library

3. Now that your application is Ajax.NET Pro—enabled, you're ready to build some Ajax function-
ality into your pages. On the page level, register your page class with the Ajaxpro.Utility
.RegisterTypeForAjax () method.

P

Then decorate your methods with the AjaxPro.AjaxMethod () attribute.

5. Finally, the Ajax.NET Pro library will create a JavaScript proxy object for you that follows
the ClassName .MethodName () naming convention. Just add a little client UI and JavaScript to
activate your server response, and your application is running on Ajax fuel.

You also now know how to trap errors, check for those errors, and check for null values.
However, although you now know the steps to make this all happen, you may have some questions

about what's really happening under the hood to make this functionality work. The next few sections
answer some of the common questions you may have about how all this functionality is really working.

When Is the Proxy JavaScript Created?

Remember preparing your page to be enabled with the Ajax.NET Pro library? This involved two steps.
The first was registering your page class, with a line like the following;:

AjaxPro.Utility.RegisterTypeForAjax (typeof (Chapter7_ImageSwitcher)) ;
The second was attributing your public method with the AjaxPro.AjaxMethod () attribute:

[AjaPro.AjaxMethod ()]
If you set a breakpoint on the RegisterTypeForAjax call and walk through the code, you'll find that
this part of the library is doing something very simple. It’s creating JavaScript tags that will be inserted
at the top of your page with source values that point back to the AjaxpPro/*.ashx page handler. When
you set up your Web. Config file, you registered the page handler so that these types of calls are pro-
cessed by the Ajax.NET Pro library. So, the entire job of the RegisterTypeForaAjax method is to write
<script> tags to the page. If you view source on the ASPX page from the browser, look towards the top
of the page scripts that match this format.

<script type="text/javascript" src="/ajaxpro/prototype.ashx"></script>

<script type="text/javascript" src="/ajaxpro/core.ashx"></script>

<script type="text/javascript" src="/ajaxpro/converter.ashx"></script>

<script type="text/javascript" src="/ajaxpro/Chapter7_BuildHtmlTable,App_Web_it-
_kzny.ashx"></script>

The first three tags point to /AjaxPro/common.ashx, core.ashx, and converter. ashx files. These are

JavaScript files that contain some general housekeeping helpers for Ajax.NET Pro (you’'ll look at this in
the next chapter).

175

Chapter 7

The fourth script source has a little more interesting name. The RegisterTypeForAjax created this
script source, and the format is:

ClassName, AssemblyName.ashx

But this file doesn’t exist—how does it get processed? Remember the /AjaxPro/*.ashx mapping to
the Ajax page handler in the Web. Config? Because of that, any requested file path in the /ajaxPro/
directory that ends with . ashx will be processed by the Ajax.NET Pro library. This URL is parsed, and
from the named assembly that is found and the named class, the library is able to create the JavaScript
proxy objects.

How does it know what proxy objects to create? It knows by using something in the .NET Framework
called reflection. Reflection allows you to use code to inspect other code. So, the Ajax.NET Pro library cre-
ates a page class instance, in the example, a Chapter7_ImageSwitcher.aspx page, and then inspects
that page class for any methods that are marked with the AjaxpPro.AjaxMethod () attribute. Any meth-
ods that are found will automatically have JavaScript proxy objects created for them. These proxy objects
are generated on demand and are written as the source of the AjaxPro/Chapter7_ImageSwitcher,
App_Web_it-kzny.ashx request.

Why the funky assembly name App Web it-kzny? This is a framework-generated assembly where the
page class Chapter7_ImageSwitcher lives. The NET framework uses these unique names to keep sep-
arate versions of the page when it shadow compiles them, so it’s helpful to the framework to have a set
of random characters added to the assembly name. These unique assembly names are generated by the
framework, and the Ajax.NET Pro library is smart enough to figure this out for you. So luckily, you don’t
ever have to know or care where the page class lives. The RegisterTypeForAjax call does this for you.

What Does the JavaScript Do?

When the browser requests a URL, the server (in this case your ASPNET application server) returns to
it a bunch of HTML. You can easily see this HTML with a view source in your browser. As soon as this
HTML is received, it has to be parsed. You don’t ever see the raw HTML (unless you do a view source)
because the browser actually renders that HTML into a web page. When the <script> tag that has a
source attribute is loaded, the browser will make another request back to the server to get that data. It’s
important to realize that these are loaded as separate requests. The same thing is done for images; that
is they are loaded in separate synchronous requests one right after the other.

What Happens on the Server after the
Proxy JavaScript Has Been Fired?

When the JavaScript source is called on the server, based on the URL, you know that these script files
are going to be processed by the Ajax.NET Pro library. The JavaScript that is created, creates the proxy
objects that enable you to call the PageClassName . MethodName () JavaScript function calls. These are
called proxy objects because they don’t actually do any of the work; they simply proxy the call through
an Ajax protocol to the server.

176

Ajax.NET Professional Library

How Is the Method in the Code-Behind Actually Executed
and How Is the Page Actually Created?

You'll see how this is done in detail in the next chapter. Essentially, this is where the reflection is done,
the page class is created in code, and then the method is executed with the parameters that were sent in
from the JavaScript call.

What Is Really Being Sent Back to the Client

In an earlier example, you read about a string being sent back to the client. Remember response.value?
response.value can hold any value or object, or even stay null. When a simple type is sent back (such
as String or Integer), the actual value is what is stored. When something like a Dataset is returned,
because there is no such thing as a DataSet object in JavaScript, the DataSet is converted into a
JavaScript Object Notation (JSON) object (JSON is discussed in Chapter 5) that holds much of the same
data that a DatasSet holds. But understand, you're not dealing with a full ADO.NET Dataset, you're
dealing with a JSON object that has simply been populated with data that matches the data in the
DataSet you were expecting. This was shown earlier in the chapter when you dynamically created an
HTML table from an Ajax.NET Pro call that returned a DataTable. Once you know that JSON objects
can be held in the response.value property, the question to answer is this— “Can I return my own
custom types?” Absolutely, you can. In fact if your custom type is a simple type, you can simply mark
you class with the [Serializable ()] attribute, and the Ajax.NET Pro library will do the rest. You'll
look more into this functionality when you look at extending the Ajax.NET Framework in Chapter 8.

Summary

In this chapter:

0 You were given an introduction to the Ajax.NET Pro library.

d You were able to download the code from www.BeginningaAjax.com and reference the
Ajax.NET Pro library.

0 And once you had the project set up, you were able to create a client/server conversation, and
updated your web page with the server content Ajax style.

In Chapter 8, you'll look under the hood of the Ajax.NET library and see more about how the magic is
happening. You'll walk through the code that comes with the library and show what’s happening when
and why. Remember, the idea of a wrapper library is to make life easier, which hopefully the simplicity
of the code in this chapter has shown. Chapter 8 is a little more advanced. If you're interested in extend-
ing the library with custom objects, then Chapter 8 will be a good read for you.

177

Beginning Ajax with ASP.NET

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN-13: 978-0-471-78544-6
ISBN-10: 0-471-78544-X

Manufactured in the United States of America

10987654321

1B/QT/QY/QW/IN

Library of Congress Control Number: 2006016507

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permis-

sion should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis,
IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http: //www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND
STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS
SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT.
NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HERE-
FROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A
CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT
THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR
WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE
AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAP-
PEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written permission. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc., is not associated with any product or vendor
mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not
be available in electronic books.

About the Authors

Wallace B. “Wally” McClure graduated from the Georgia Institute of Technology in 1990 with a Bachelor
of Science degree in electrical engineering. He continued his education there, receiving a master’s degree
in the same field in 1991. Since that time, he has done consulting and development for such organizations
as The United States Department of Education, Coca-Cola, Bechtel National, Magnatron, and Lucent
Technologies, among others. Products and services have included work with ASP, ADO, XML, and SQL
Server, as well as numerous applications in the Microsoft NET Framework. Wally has been working with
the .NET Framework since the summer of 2000. Wally McClure specializes in building applications that
have large numbers of users and large amounts of data. He is a Microsoft MVP and an ASPInsider, and a
partner in Scalable Development, Inc. You can read Wally’s blog at http: //weblogs.asp.net/wallym.
Wally and coauthor Paul Glavich also co-host the ASP.NET Podcast. You can listen to it at www . aspnet
podcast . com. In addition, Wally travels around the southeast United States doing user group talks and
sessions at various CodeCamps.

When not working or playing with technology, Wally tries to spend time with his wife Ronda and their
two children, Kirsten and Bradley. Occasionally, Wally plays golf and on July 30, 2005, broke par on a
real golf course for the first time in his life. If he hadn’t been there, he would not have believed it.

Scott Cate is the President of myKB.com, Inc., in Scottsdale, Arizona. myKB.com, Inc., is a technology com-
pany specializing in commercial ASPNET applications. His product line includes myKB.com (knowledge
base software), kbAlertz.com (Microsoft knowledge base notifications), and EasySearchASPnet (a plug-
gable search engine for ASP.NET sites). Scott also runs AZGroups.com (Arizona .NET user groups), one of
the largest and most active user group communities in the country, and is a member of ASPInsiders.com, a
group devoted to giving early feedback to the Microsoft ASPNET team. In addition, Scott has coauthored
the novel Surveillance, which can be found at http: //surveillance-the-novel .com.

Paul Glavich is currently an ASPNET MVP and works as a senior technical consultant for Readify. He
has over 15 years of industry experience ranging from PICK, C, C++, Delphi, and Visual Basic 3/4/5/6
to his current specialty in .NET C++ with C#, COM+, and ASP.NET. Paul has been developing in .NET
technologies since .NET was first in beta and was technical architect for one of the world’s first Internet
banking solutions using .NET technology. Paul can be seen on various .NET related newsgroups, has
presented at the Sydney .NET user group (www.sdnug.org) and is also a board member of ASPInsiders
(www.aspinsiders.com). He has also written some technical articles that can be seen on community
sites, such as ASPAlliance.com (www.aspalliance.com).

On a more personal note, Paul is married with three children and two grandkids, and holds a third
degree black belt in budo-jitsu.

Craig Shoemaker can’t sit still. As the host of the Polymorphic Podcast (polymorphicpodcast.com),
Craig teaches on topics as timely as software architecture and as cutting edge as the latest Ajax technolo-
gies. Whether he’s writing for CoDe Magazine, ASPAlliance, or DotNetJunkies or speaking at local user
groups, Southern California Code Camp, or VSLive!, Craig loves to share his passion for the art and sci-
ence for software development. Craig is also a full-time software engineer for Microsoft Certified Partner
PDSA, Inc. (pdsa . com) in Tustin, California.

