
murach’s
VVVVVisual Basicisual Basicisual Basicisual Basicisual Basic

20082008200820082008
Anne Boehm

(Chapter 3)
Thanks for downloading this chapter from Murach’s Visual Basic 2008. We hope it will
show you how easy it is to learn from any Murach book, with its paired-pages presenta-
tion, its “how-to” headings, its practical coding examples, and its clear, concise style.

To view the full table of contents for this book, you can go to our web site. From there,
you can read more about this book, you can find out about any additional downloads that
are available, and you can review our other books on .NET development.

Thanks for your interest in our books!

TRAINING & REFERENCE

MIKE MURACH & ASSOCIATES, INC.
1-800-221-5528 • (559) 440-9071 • Fax: (559) 440-0963
murachbooks@murach.com • www.murach.com
Copyright © 2008 Mike Murach & Associates. All rights reserved.

http://www.murach.com/books/vb08/index.htm
http://www.murach.com
mailto:murachbooks@murach.com
http://www.murach.com

iii

Contents
Introduction xiii

Section 1 Introduction to Visual Basic programming
Chapter 1 An introduction to Visual Studio 3
Chapter 2 How to design a Windows Forms application 35
Chapter 3 How to code and test a Windows Forms application 57

Section 2 The Visual Basic language essentials
Chapter 4 How to work with numeric and string data 99
Chapter 5 How to code control structures 141
Chapter 6 How to code procedures and event handlers 167
Chapter 7 How to handle exceptions and validate data 189
Chapter 8 How to work with arrays and collections 223
Chapter 9 How to work with dates and strings 263
Chapter 10 More skills for working with Windows forms and controls 293
Chapter 11 How to create and use classes 331
Chapter 12 How to debug an application 369

Section 3 Database programming
Chapter 13 An introduction to database programming 395
Chapter 14 How to work with data sources and datasets 427
Chapter 15 How to work with bound controls and parameterized queries 469
Chapter 16 How to use ADO.NET to write your own data access code 505

Section 4 Object-oriented programming
Chapter 17 How to work with default properties, events, and operators 545
Chapter 18 How to work with inheritance 571
Chapter 19 How to work with interfaces and generics 609
Chapter 20 How to organize and document your classes 637

Section 5 Other programming skills
Chapter 21 How to work with files and data streams 657
Chapter 22 How to work with XML files 681
Chapter 23 How to use LINQ 703
Chapter 24 How to enhance the user interface 729
Chapter 25 How to deploy an application 763

Reference aids
Appendix A How to install and use the software and files for this book 789
Index 799

Judy
Highlight

Chapter 3 How to code and test a Windows Forms application 57

3

How to code and test a
Windows Forms application
In the last chapter, you learned how to design a form for a Windows Forms
application. In this chapter, you’ll learn how to code and test a Windows Forms
application. Here, the emphasis will be on the Visual Studio skills that you
need for entering, editing, and testing the Visual Basic code for your
applications. You’ll learn how to write that code in the rest of this book.

An introduction to coding.. 58
Introduction to object-oriented programming .. 58
How to refer to properties, methods, and events .. 60
How an application responds to events .. 62

How to add code to a form .. 64
How to create an event handler for the default event of a form or control ... 64
How IntelliSense helps you enter the code for a form 66
The event handlers for the Invoice Total form .. 68
How to code with a readable style .. 70
How to code comments .. 72
How to detect and correct syntax errors ... 74

Other skills for working with code 76
How to use the toolbar buttons ... 76
How to collapse or expand code ... 76
How to print the source code .. 76
How to use code snippets ... 78
How to rename identifiers .. 80
How to use the Smart Compile Auto Correction feature 82
How to use the My feature ... 84
How to get help information ... 86

How to run, test, and debug a project 88
How to run a project ... 88
How to test a project ... 90
How to debug runtime errors .. 92

Perspective .. 94

58 Section 1 Introduction to Visual Basic programming

An introduction to coding

Before you learn the mechanics of adding code to a form, it’s important to
understand some of the concepts behind object-oriented programming.

Introduction to object-oriented programming

Whether you know it or not, you are using object-oriented programming as
you design a Windows form with Visual Studio’s Form Designer. That’s because
each control on a form is an object, and the form itself is an object. These
objects are derived from classes that are part of the .NET Class Library.

When you start a new project from the Windows Application template, you
are actually creating a new class that inherits the characteristics of the Form
class that’s part of the .NET Class Library. Later, when you run the form, you
are actually creating an instance of your form class, and this instance is known
as an object.

Similarly, when you add a control to a form, you are actually adding a
control object to the form. Each control is an instance of a specific class. For
example, a text box control is an object that is an instance of the TextBox class.
Similarly, a label control is an object that is an instance of the Label class. This
process of creating an object from a class can be called instantiation.

As you progress through this book, you will learn much more about classes
and objects because Visual Basic is an object-oriented language. In chapter 11,
for example, you’ll learn how to use the Visual Basic language to create your
own classes. At that point, you’ll start to understand what’s actually happening
as you work with classes and objects. For now, though, you just need to get
comfortable with the terms and accept the fact that a lot is going on behind the
scenes as you design a form and its controls.

Figure 3-1 summarizes what I’ve just said about classes and objects. It also
introduces you to the properties, methods, and events that are defined by classes
and used by objects. As you’ve already seen, the properties of an object define
the object’s characteristics and data. For instance, the Name property gives a
name to a control, and the Text property determines the text that is displayed
within the control. In contrast, the methods of an object determine the opera-
tions that can be performed by the object.

An object’s events are signals sent by the object to your application that
something has happened that can be responded to. For example, a Button
control object generates an event called Click if the user clicks the button. Then,
your application can respond by running a Visual Basic procedure to handle the
Click event.

By the way, the properties, methods, and events of an object or class are
called the members of the object or class. You’ll learn more about properties,
methods, and events in the next three figures.

Chapter 3 How to code and test a Windows Forms application 59

A form object and its ten control objects

Class and object concepts
• An object is a self-contained unit that combines code and data. Two examples of objects

you have already worked with are forms and controls.

• A class is the code that defines the characteristics of an object. You can think of a class
as a template for an object.

• An object is an instance of a class, and the process of creating an object from a class is
called instantiation.

• More than one object instance can be created from a single class. For example, a form
can have several button objects, all instantiated from the same Button class. Each is a
separate object, but all share the characteristics of the Button class.

Property, method, and event concepts
• Properties define the characteristics of an object and the data associated with an object.

• Methods are the operations that an object can perform.

• Events are signals sent by an object to the application telling it that something has
happened that can be responded to.

• Properties, methods, and events can be referred to as members of an object.

• If you instantiate two or more instances of the same class, all of the objects have the
same properties, methods, and events. However, the values assigned to the properties can
vary from one instance to another.

Objects and forms
• When you use the Form Designer, Visual Studio automatically generates Visual Basic

code that creates a new class based on the Form class. Then, when you run the project, a
form object is instantiated from the new class.

• When you add a control to a form, Visual Studio automatically generates Visual Basic
code in the class for the form that instantiates a control object from the appropriate class
and sets the control’s default properties. When you move and size a control, Visual
Studio automatically sets the properties that specify the location and size of the control.

Figure 3-1 Introduction to object-oriented programming

60 Section 1 Introduction to Visual Basic programming

How to refer to properties, methods, and events

As you enter the code for a form in the Code Editor window, you often need
to refer to the properties, methods, and events of its objects. To do that, you type
the name of the object, a period (also known as a dot operator, or dot), and the
name of the member. This is summarized in figure 3-2.

In some cases, you will refer to the properties and methods of a class
instead of an object that’s instantiated from the class. You’ll see examples of
that in later chapters. For now, you just need to realize that you refer to these
properties and methods using the same general syntax that you use to refer to
the properties and methods of an object. You enter the class name, a dot, and the
property or method name.

To make it easier for you to refer to the members of an object or class,
Visual Studio’s IntelliSense feature displays a list of the members that are
available for that class or object after you type a class or object name and a
period. Then, you can highlight the entry you want by clicking on it, typing one
or more letters of its name, or using the arrow keys to scroll through the list. In
most cases, you can then complete the entry by pressing the Tab or Enter key.

To give you an idea of how properties, methods, and events are used in
code, this figure shows examples of each. In the first example for properties,
code is used to set the value that’s displayed for a text box to 10. In the second
example, code is used to set the ReadOnly property of a text box to True.
Although you can also use the Properties window to set these values, that just
sets the properties at the start of the application. By using code, you can change
the properties as an application is running.

In the first example for methods, the Select method of a text box is used to
move the focus to that text box. In the second example, the Close method of a
form is used to close the active form. In this example, the Me keyword is used
instead of the name of the form. Here, Me refers to the current instance of the
active form. Note also that the names of the methods are followed by parenthe-
ses. If a method requires parentheses like these, they’re added automatically
when you press the Enter key after entering the method name.

As you progress through this book, you’ll learn how to use the methods for
many types of objects, and you’ll learn how to supply arguments within the
parentheses of a method. For now, though, just try to understand that you can
call a method from a class or an object.

Although you’ll frequently refer to properties and methods as you code an
application, you’ll rarely need to refer to an event. That’s because Visual Studio
automatically generates the code for working with events, as you’ll see later in
this chapter. To help you understand the code that Visual Studio generates,
however, the last example in this figure shows how you refer to an event. In this
case, the code refers to the Click event of a button named btnExit.

Chapter 3 How to code and test a Windows Forms application 61

A member list that’s displayed in the Code Editor window

The syntax for referring to a member of a class or object
ClassName.MemberName
objectName.MemberName

Statements that refer to properties
txtTotal.Text = 10 Assigns the value 10 to the Text property of the text box named

txtTotal.

txtTotal.ReadOnly = True Assigns the True value to the ReadOnly property of the text box
named txtTotal so the user can’t change its contents.

Statements that refer to methods
txtMonthlyInvestment.Select() Uses the Select method to move the focus to the text box named

txtMonthlyInvestment.

Me.Close() Uses the Close method to close the form that contains the
statement. In this example, Me is a keyword that is used to refer
to the current instance of the form class.

Code that refers to an event
btnExit.Click Refers to the Click event of a button named btnExit.

How to enter member names when working in the Code Editor
• To display a list of the available members for a class or an object, type the class or object

name followed by a period (called a dot operator, or just dot). Then, type one or more
letters of the member name, and Visual Studio will filter the list so that only the mem-
bers that start with those letters are displayed. You can also scroll through the list to
select the member you want.

• Once you’ve selected a member, you can press the Tab key to insert it into your code, or
you can press the Enter key to insert the member and start a new line of code.

• By default, all the available members are displayed in the list. To display just the com-
mon members, click the Common tab at the bottom of the list.

• If a member list isn’t displayed, select the Tools�Options command to display the
Options dialog box. Then, expand the Text Editor group, select the Basic group, and
check the Auto List Members and Parameter Information boxes.

Figure 3-2 How to refer to properties, methods, and events

62 Section 1 Introduction to Visual Basic programming

How an application responds to events

Windows Forms applications are event-driven. That means they work by
responding to the events that occur on objects. To respond to an event, you code
a procedure known as an event handler. In figure 3-3, you can see the event
handler for the event that occurs when the user clicks the Exit button on the
Invoice Total form. In this case, this event handler contains a single statement
that uses the Close method to close the form.

This figure also lists some common events for controls and forms. One
control event you’ll respond to frequently is the Click event. This event occurs
when the user clicks an object with the mouse. Similarly, the DoubleClick event
occurs when the user double-clicks an object.

Although the Click and DoubleClick events are started by user actions,
that’s not always the case. For instance, the Enter and Leave events typically
occur when the user moves the focus to or from a control, but they can also
occur when code moves the focus to or from a control. Similarly, the Load event
of a form occurs when a form is loaded into memory. For the first form of an
application, this typically happens when the user starts the application. And the
Closed event occurs when a form is closed. For the Invoice Total form in this
figure, this happens when the user selects the Exit button or the Close button in
the upper right corner of the form.

In addition to the events shown here, most objects have many more events
that the application can respond to. For example, events occur when the user
positions the mouse over an object or when the user presses or releases a key.
However, you don’t typically respond to those events.

Chapter 3 How to code and test a Windows Forms application 63

Event: The user clicks the Exit button

Response: The procedure for the Click event of the Exit button is executed
Private Sub btnExit_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles btnExit.Click
 Me.Close()
End Sub

Common control events
Event Occurs when…

Click …the user clicks the control.

DoubleClick …the user double-clicks the control.

Enter …the focus is moved to the control.

Leave …the focus is moved from the control.

Common form events
Event Occurs when…

Load …the form is loaded into memory.

Closing …the form is closing.

Closed …the form is closed.

Concepts
• Windows Forms applications work by responding to events that occur on objects.

• To indicate how an application should respond to an event, you code an event handler,
which is a Visual Basic procedure that handles the event.

• An event can be an action that’s initiated by the user like the Click event, or it can be an
action initiated by program code like the Closed event.

Figure 3-3 How an application responds to events

64 Section 1 Introduction to Visual Basic programming

How to add code to a form

Now that you understand some of the concepts behind object-oriented
coding, you’re ready to learn how to add code to a form. Because you’ll learn
the essentials of the Visual Basic language in the chapters that follow, though, I
won’t focus on the coding details right now. Instead, I’ll focus on the concepts
and mechanics of adding the code to a form.

How to create an event handler for the default
event of a form or control

Although you can create an event handler for any event of any object,
you’re most likely to create event handlers for the default event of a form or
control. So that’s what you’ll learn to do in this chapter. Then, in chapter 6,
you’ll learn how to create event handlers for other events.

To create an event handler for the default event of a form or control, you
double-click the object in the Form Designer. When you do that, Visual Studio
opens the Code Editor, generates a procedure declaration for the default event
of the object, and places the insertion point between the Sub and End Sub
statements that it has generated. Then, you can enter the Visual Basic statements
for the procedure between the Sub and End Sub statements.

To illustrate, figure 3-4 shows the Sub and End Sub statements that were
generated when I double-clicked the Calculate button on the Invoice Total form.
In the Sub statement, Visual Studio generated a procedure name that consists of
the name of the object that the event occurred on (btnCalculate), an underscore,
and the name of the event (Click).

This procedure name is followed by two arguments in parentheses that
you’ll learn more about later. And the arguments are followed by a Handles
clause that says that the procedure is designed to handle the Click event of the
button named btnCalculate. It is this clause, not the procedure name, that
determines what event the procedure handles.

For now, you should avoid modifying the procedure declaration that’s
generated for you when you create an event handler. In chapter 6, though, you’ll
learn how to modify the declaration so a single procedure can provide for more
than one event.

Chapter 3 How to code and test a Windows Forms application 65

The procedure that handles the Click event of the Calculate button

How to handle the Click event of a button
1. In the Form Designer, double-click the control. This opens the Code Editor, generates

the declaration for the procedure that handles the event, and places the cursor within this
declaration.

2. Type the Visual Basic code between the Sub statement and the End Sub statement.

3. When you finish entering the code, you can return to the Form Designer by clicking the
View Designer button in the Solution Explorer window.

How to handle the Load event for a form
• Follow the procedure shown above, but double-click the form itself.

Description
• The procedure declaration for the event handler that’s generated when you double-click

on an object in the Form Designer includes a procedure name that consists of the object
name, an underscore, and the event name.

• The Handles clause in the procedure declaration determines what event the procedure
handles using the object name, dot, event name syntax.

• In chapter 6, you’ll learn how to handle events other than the default event.

Figure 3-4 How to create an event handler for the default event of a form or control

Object Event

66 Section 1 Introduction to Visual Basic programming

How IntelliSense helps you enter the code for a
form

In figure 3-2, you saw how IntelliSense displays a list of the available
members for a class or an object. IntelliSense can also help you select a type for
the variables you declare, which you’ll learn how to do in chapter 4. And it can
help you use the correct syntax to call a procedure as shown in chapter 6 or to
call a method as shown in chapter 11.

With Visual Basic 2008, IntelliSense has been improved to help you even
more as you enter the basic code for an application. In particular, IntelliSense
can help you enter statements and functions as well as the names of variables,
objects, and classes. Figure 3-5 illustrates how this works.

The first example in this figure shows the list that IntelliSense displays
when you start to enter a new line of code. Here, because I entered the letter d,
the list includes only those items that start with that letter. As described earlier
in this chapter, you can enter as many letters as you want, and Visual Studio will
continue to filter the list so it contains only the items that begin with those
letters. You can also scroll through the list to select an item, and you can press
the Tab or Enter key to insert the item into your code.

Note that when you select a keyword that begins a statement, a description
of the statement is displayed in a tool tip along with the syntax of the statement.
That can help you enter the statement correctly. In addition, as you enter the
statement, you’re prompted for any additional keywords that are required by the
statement.

The second example in this figure shows the list that’s displayed as you
enter the code for an If statement. You’ll learn more about this statement in
chapter 5. For now, just notice that after I typed a space and the letter t follow-
ing the If keyword, Visual Studio displayed a list of all the items that begin with
the letter T. That made it easy to select the item I wanted, which in this case was
the name of a control.

If you’ve used previous versions of Visual Basic, you’ll appreciate these
expanded IntelliSense features. For example, it’s easy to forget the exact syntax
of a statement or function, so the tool tip that’s displayed when you select a
statement or function can help refresh your memory. Similarly, it’s easy to
forget the names you’ve given to items such as controls and variables, so the list
that’s displayed can help you locate the appropriate name. And that can help
you avoid introducing errors into your code.

Although it’s not shown here, Visual Basic 2008 IntelliSense also lets you
see the code that’s behind a list while the list is still displayed. To do that, you
simply press the Ctrl key and the list becomes semi-transparent. This eliminates
the frustration a lot of programmers felt when code was hidden by an
IntelliSense list in previous versions of Visual Studio.

Chapter 3 How to code and test a Windows Forms application 67

The list that’s displayed when you enter a letter at the beginning of a line
of code

The list that’s displayed as you enter code within a statement

Description
• The IntelliSense that’s provided for Visual Basic 2008 lists keywords, functions, vari-

ables, objects, and classes as you type so you can enter them correctly.

• When you highlight an item in a list, a tool tip is displayed with information about the
item.

• If you need to see the code behind a list without closing the list, press the Ctrl key. Then,
the list becomes semi-transparent.

Figure 3-5 How IntelliSense helps you enter the code for a form

68 Section 1 Introduction to Visual Basic programming

The event handlers for the Invoice Total form

Figure 3-6 presents the two event handlers for the Invoice Total form. The
code that’s shaded in this example is the code that’s generated when you
double-click the Calculate and Exit buttons in the Form Designer. You have to
enter the rest of the code yourself.

I’ll describe this code briefly here so you have a general idea of how it
works. If you’re new to programming, however, you may not understand the
code completely until after you read the next two chapters.

The event handler for the Click event of the Calculate button calculates the
discount percent, discount amount, and invoice total based on the subtotal
entered by the user. Then, it displays those calculations in the appropriate text
box controls. For example, if the user enters a subtotal of $1000, the discount
percent will be 20%, the discount amount will be $200, and the invoice total
will be $800.

In contrast, the event handler for the Click event of the Exit button contains
just one statement that executes the Close method of the form. As a result, when
the user clicks this button, the form is closed, and the application ends.

In addition to the code that’s generated when you double-click the Calculate
and Exit buttons, Visual Studio generates other code that’s hidden in the
Designer.vb file. When the application is run, this is the code that implements
the form and controls that you designed in the Form Designer. Although you
may want to look at this code to see how it works, you shouldn’t modify this
code with the Code Editor as it may cause problems with the Form Designer.

When you enter Visual Basic code, you must be aware of the two coding
rules summarized in this figure. First, you must separate the words in each
statement by one or more spaces. Note, however, that you don’t have to use
spaces to separate the words from operators, although Visual Basic adds spaces
for you by default. Second, if you want to continue a statement, you do that by
coding a space followed by a line-continuation character, which is an under-
score (_). You can see an example of that in both of the procedure declarations
in this figure.

Chapter 3 How to code and test a Windows Forms application 69

The event handlers for the Invoice Total form
Public Class frmInvoiceTotal

 Private Sub btnCalculate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnCalculate.Click

 Dim discountPercent As Decimal
 If txtSubtotal.Text >= 500 Then
 discountPercent = 0.2
 ElseIf txtSubtotal.Text >= 250 And txtSubtotal.Text < 500 Then
 discountPercent = 0.15
 ElseIf txtSubtotal.Text >= 100 And txtSubtotal.Text < 250 Then
 discountPercent = 0.1
 Else
 discountPercent = 0
 End If

 Dim discountAmount As Decimal = txtSubtotal.Text * discountPercent
 Dim invoiceTotal As Decimal = txtSubtotal.Text - discountAmount

 txtDiscountPercent.Text = FormatPercent(discountPercent, 1)
 txtDiscountAmount.Text = FormatCurrency(discountAmount)
 txtTotal.Text = FormatCurrency(invoiceTotal)

 txtSubtotal.Select()

 End Sub

 Private Sub btnExit_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnExit.Click
 Me.Close()
 End Sub

End Class

Coding rules
• Use spaces to separate the words in each statement.

• To continue a statement to the next line, type a space followed by an underscore (the
line-continuation character).

Description
• When you double-click the Calculate and Exit buttons in the Form Designer, it generates

the shaded code shown above. Then, you can enter the rest of the code within the event
handlers.

• The first event handler for the Invoice Total form is executed when the user clicks the
Calculate button. This procedure calculates and displays the discount percent, discount
amount, and total based on the subtotal entered by the user.

• The second event handler for the Invoice Total form is executed when the user clicks the
Exit button. This procedure closes the form, which ends the application.

Figure 3-6 The event handlers for the Invoice Total form

70 Section 1 Introduction to Visual Basic programming

How to code with a readable style

When you build an application, Visual Basic makes sure that your code
follows all of its rules. If it doesn’t, Visual Basic reports syntax errors that you
have to correct before you can continue.

Besides adhering to the coding rules, though, you should try to write your
code so it’s easy to read, debug, and maintain. That’s important for you, but it’s
even more important if someone else has to take over the maintenance of your
code. You can create more readable code by following the four coding recom-
mendations presented in figure 3-7. These recommendations are illustrated by
the event handler in this figure.

The first coding recommendation is to use indentation and extra spaces to
align related elements in your code. This is possible because you can use one or
more spaces or tabs to separate the elements in a Visual Basic statement. In this
example, all of the statements within the event handler are indented. In addition,
the statements within each clause of the If statement are indented and aligned so
you can easily identify the parts of this statement.

The second recommendation is to separate the words, values, and operators
in each statement with spaces. If you don’t, your code will be less readable as
illustrated by the second code example in this figure. In this example, each line
of code includes at least one operator. Because the operators aren’t separated
from the word or value on each side of the operator, though, the code is difficult
to read. In contrast, the readable code includes a space on both sides of each
operator.

The third recommendation is to use blank lines before and after groups of
related statements to set them off from the rest of the code. This too is illus-
trated by the first procedure in this figure. Here, the code is separated into four
groups of statements. In a short procedure like this one, this isn’t too important,
but it can make a long procedure much easier to follow.

The fourth recommendation is to use line-continuation characters so long
statements are easier to read in the Code Editor window. This also makes these
statements easier to read when you print them.

Throughout this chapter and book, you’ll see code that illustrates the use of
these recommendations. You will also receive other coding recommendations
that will help you write code that is easy to read, debug, and maintain.

By default, the Code Editor automatically formats your code as you enter it.
When you press the Enter key at the end of a statement, for example, the Editor
will indent the next statement to the same level. In addition, it will capitalize all
variable names so they match their declarations, and it will add a space before
and after each operator.

Chapter 3 How to code and test a Windows Forms application 71

A procedure written in a readable style
Private Sub btnCalculate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnCalculate.Click

 Dim discountPercent As Decimal
 If txtSubtotal.Text >= 500 Then
 discountPercent = 0.2
 ElseIf txtSubtotal.Text >= 250 And txtSubtotal.Text < 500 Then
 discountPercent = 0.15
 ElseIf txtSubtotal.Text >= 100 And txtSubtotal.Text < 250 Then
 discountPercent = 0.1
 Else
 discountPercent = 0
 End If

 Dim discountAmount As Decimal = txtSubtotal.Text * discountPercent
 Dim invoiceTotal As Decimal = txtSubtotal.Text - discountAmount

 txtDiscountPercent.Text = FormatPercent(discountPercent, 1)
 txtDiscountAmount.Text = FormatCurrency(discountAmount)
 txtTotal.Text = FormatCurrency(invoiceTotal)

 txtSubtotal.Select()

End Sub

 Statements written in a less readable style
dim discountAmount as Decimal=txtsubtotal.Text*discountpercent
dim invoiceTotal as Decimal=txtsubtotal.Text-discountamount
txtdiscountpercent.Text=formatpercent(discountpercent,1)
txtdiscountamount.Text=formatcurrency(discountamount)
txttotal.Text=formatcurrency(invoicetotal)

Coding recommendations
• Use indentation and extra spaces to align statements and clauses within statements so

they reflect the structure of the program.

• Use spaces to separate the words, operators, and values in each statement.

• Use blank lines before and after groups of related statements.

• Use line-continuation characters to shorten long lines of code so they’re easier to read in
the Code Editor window.

Notes
• As you enter code in the Code Editor, Visual Studio may adjust the indentation, spacing,

and capitalization so it’s easier to read. This has no effect on the operation of the code.

• If Visual Basic doesn’t adjust the code, check the Pretty Listing option in the Options
dialog box. To find this option, expand the Text Editor group, the Basic group, and the
VB Specific group.

Figure 3-7 How to code with a readable style

72 Section 1 Introduction to Visual Basic programming

How to code comments

Comments can be used to document what the program does and what
specific blocks or lines of code do. Since the Visual Basic compiler ignores
comments, you can include them anywhere in a program without affecting your
code. Figure 3-8 shows you how to code comments.

The basic idea is that you start a comment with an apostrophe. Then,
anything after the apostrophe is ignored by the compiler. As a result, you can
code whatever comments you want.

In this figure, you can see four lines of comments at the start of the proce-
dure that describe what the procedure does. You can see one-line comments at
the start of blocks of code that describe what the statements in those blocks do.
And you can see one example of a comment that follows a statement on the
same line.

Although some programmers sprinkle their code with comments, that
shouldn’t be necessary if you write your code so it’s easy to read and under-
stand. Instead, you should use comments only to clarify code that’s difficult to
understand. The trick, of course, is to provide comments for the code that needs
explanation without cluttering the code with unnecessary comments. For
example, an experienced Visual Basic programmer wouldn’t need any of the
comments shown in this figure.

One problem with comments is that they may not accurately represent what
the code does. This often happens when a programmer changes the code, but
doesn’t change the comments that go along with it. Then, it’s even harder to
understand the code, because the comments are misleading. So if you change
the code that has comments, be sure to change the comments too.

Incidentally, all comments are displayed in the Code Editor in a different
color from the words in the Visual Basic statements. By default, the Visual
Basic code is blue and black (blue for Visual Basic keywords and black for the
rest of the code), while the comments are green. That makes it easy to identify
the comments.

Chapter 3 How to code and test a Windows Forms application 73

A procedure with comments
Private Sub btnCalculate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnCalculate.Click

' ==
' This procedure calculates the discount and total for an invoice.
' The discount depends on the invoice subtotal.
' ==

' Determine the discount percent
 Dim discountPercent As Decimal
 If txtSubtotal.Text >= 500 Then
 discountPercent = 0.2
 ElseIf txtSubtotal.Text >= 250 And txtSubtotal.Text < 500 Then
 discountPercent = 0.15
 ElseIf txtSubtotal.Text >= 100 And txtSubtotal.Text < 250 Then
 discountPercent = 0.1
 Else
 discountPercent = 0
 End If

' Calculate the discount amount and invoice total
 Dim discountAmount As Decimal = txtSubtotal.Text * discountPercent
 Dim invoiceTotal As Decimal = txtSubtotal.Text - discountAmount

' Format the discount percent, discount amount, and invoice total
' and move these values to their respective text boxes
 txtDiscountPercent.Text = FormatPercent(discountPercent, 1)
 txtDiscountAmount.Text = FormatCurrency(discountAmount)
 txtTotal.Text = FormatCurrency(invoiceTotal)

 txtSubtotal.Select() ' Move the focus to the Subtotal text box

End Sub

Coding recommendations
• Use comments only for portions of code that are difficult to understand.

• Make sure that your comments are correct and up-to-date.

Description
• Comments are used to help document what a program does and what the code within it

does.

• To code a comment, type an apostrophe followed by the comment. You can use this
technique to add a comment on its own line or to add a comment after the code on a line.

• During testing, you can comment out lines of code by coding an apostrophe before them.
This is useful for testing new statements without deleting the old statements. Another
way to comment out one or more lines of code is to select the lines and click on the
Comment or Uncomment button in the Text Editor toolbar (see figure 3-10).

Figure 3-8 How to code comments

74 Section 1 Introduction to Visual Basic programming

How to detect and correct syntax errors

As you enter code, Visual Studio checks the syntax of each statement. If a
syntax error, or build error, is detected, Visual Studio displays a wavy line
under the code in the Code Editor. In the Code Editor in figure 3-9, for example,
you can see wavy lines under three different portions of code. Then, if you place
the mouse pointer over one of the errors, Visual Basic will display a description
of the error.

If the Error List window is open as shown in this figure, any errors that
Visual Studio detects are also displayed in that window. Then, you can double-
click on an error message to jump to the related code in the Code Editor. After
you correct a coding problem, its message is removed from the Error List
window.

If the Error List window isn’t open, you can display it by selecting the Error
List command from the View menu. When you’re learning Visual Basic, you’re
going to make a lot of coding errors, so it makes sense to keep this window
open. But after you get used to Visual Basic, you can conserve screen space by
using the Auto Hide button so this window is only displayed when you point to
the Error List tab.

By the way, Visual Studio isn’t able to detect all syntax errors as you enter
code. So some syntax errors aren’t detected until the project is built. You’ll learn
more about building projects later in this chapter.

Chapter 3 How to code and test a Windows Forms application 75

The Code Editor and Error List windows with syntax errors displayed

Description
• Visual Studio checks the syntax of your Visual Basic code as you enter it. If a syntax

error (or build error) is detected, it’s highlighted with a wavy underline in the Code
Editor, and you can place the mouse pointer over it to display a description of the error.

• If the Error List window is open, all of the build errors are listed in that window. Then,
you can double-click on any error in the list to take you to its location in the Code Editor.
When you correct the error, it’s removed from the error list.

• If the Error List window isn’t open, you can display it by selecting the Error List com-
mand from the View menu.

• Visual Studio doesn’t detect some syntax errors until the project is built. As a result, you
may encounter more syntax errors when you build and run the project.

Figure 3-9 How to detect and correct syntax errors

Error List window

76 Section 1 Introduction to Visual Basic programming

Other skills for working with code

The topics that follow present some other skills for working with code.
You’ll use many of these skills as you code and test your applications.

How to use the toolbar buttons

Whenever you work with a Windows application like Visual Studio, it’s
worth taking a few minutes to see what’s available from the toolbar buttons.
When you’re entering or editing code, both the Standard and Text Editor
toolbars provide some useful functions, and they are summarized in figure 3-10.

During testing, you can comment out several lines of code by selecting the
lines of code and clicking the Comment Out button in the Standard toolbar.
Then, you can test the application without those lines of code. Later, if you
decide you want to use them after all, you can select the lines and click the
Uncomment button to restore them. Similarly, you can use the Increase Indent
and Decrease Indent buttons in the Text Editor toolbar to adjust the indentation
for selected lines of code.

You can also use the Text Editor toolbar to work with bookmarks. After you
use the Toggle button to set bookmarks on specific lines of code, you can move
between the marked lines by clicking the next and previous buttons. Although
you usually don’t need bookmarks when you’re working with simple applica-
tions, bookmarks can be helpful when you’re working with large applications.

As you get more Visual Basic experience, you should also experiment with
the first three buttons on the Text Editor toolbar. You’ll find that they provide
quick access to information like the member list for an object or the parameter
list for a function.

How to collapse or expand code

As you write the code for an application, you may want to collapse or
expand some of the code. To do that, you can use the techniques described in
figure 3-10. When you collapse the procedures that are already tested, it’s easier
to find what you’re looking for in the rest of the code. And if you want to print
the source code for a class, you don’t have to print the collapsed code.

How to print the source code

Sometimes, it helps to print the code for the class that you’re working on in
the Code Editor window. To do that, you use the Print command in the File
menu. Then, if you don’t want to print the collapsed code, you check the Hide
Collapsed Regions box. When the code is printed, any lines that extend beyond
the width of the printed page are automatically wrapped to the next line.

Chapter 3 How to code and test a Windows Forms application 77

The Code Editor and the Text Editor toolbar

How to use the Standard toolbar to comment or uncomment lines
• Select the lines and click the Comment Out or Uncomment button. When you comment

out coding lines during testing, you can test new statements without deleting the old
ones.

How to use the Text Editor toolbar
• To display or hide the Text Editor toolbar, right-click in the toolbar area and choose Text

Editor from the shortcut menu.

• To increase or decrease the indentation of several lines of code, select the lines and click
the Increase Indent or Decrease Indent button. Or, press the Tab and Shift+Tab keys.

• To move quickly between lines of code, you can use the last eight buttons on the Text
Editor toolbar to set and move between bookmarks.

How to collapse or expand regions of code
• If a region of code appears in the Code Editor with a minus sign (-) next to it, you can

click the minus sign to collapse the region so just the first line is displayed.

• If a region of code appears in the Code Editor with a plus sign (+) next to it, you can
click the plus sign to expand the region so all of it is displayed.

Figure 3-10 How to use the toolbars and collapse or expand code

78 Section 1 Introduction to Visual Basic programming

How to use code snippets

When you add code to an application, you will often find yourself entering
the same pattern of code over and over. For example, you often enter a series of
If blocks like the ones in the previous figures. To make it easy to enter patterns
like these, Visual Studio provides a feature known as code snippets. These
snippets make it easy to enter common control structures like the ones that
you’ll learn about in chapter 5.

To insert a code snippet on a blank line of text as shown in figure 3-11,
right-click on the blank line in the Code Editor and select the Insert Snippet
command from the shortcut menu. Then, double-click the name of the group
(like Code Patterns), double-click the name of the subgroup (like Conditionals
and Loops), and double-click the name of the snippet you want to insert.

At that point, the code snippet is inserted into the Code Editor. In this
figure, for example, you can see that If, ElseIf, Else, and End If lines have been
inserted into the code. Now, you just need to replace the words True and False
with conditions and enter the Visual Basic statements that you want executed for
the If, ElseIf, and Else clauses.

Although code snippets make it easy to enter common patterns of code, it
can be cumbersome to access them using the shortcut menu. Because of that,
you may want to use the shortcuts for the code snippets you use most often. In
the second screen in this figure, for example, the tool tip for the selected code
snippet indicates that the shortcut for that code snippet is IfElseIf. To insert this
code snippet using its shortcut, you just enter the shortcut and press the Tab key.

If you find that you like using code snippets, you should be aware that it’s
possible to add or remove snippets from the default list. To do that, you can
choose the Code Snippets Manager command from the Tools menu. Then, you
can use the resulting dialog box to remove code snippets that you don’t use or to
add new code snippets. Be aware, however, that writing a new code snippet
requires creating an XML file that defines the code snippet. To learn how to do
that, you can consult the documentation for Visual Studio.

Incidentally, if you’re new to programming and don’t understand the If
statements in this chapter, don’t worry about that. Just focus on the mechanics
of using code snippets. In chapter 5, you’ll learn everything you need to know
about coding If statements.

Chapter 3 How to code and test a Windows Forms application 79

The list that’s displayed for the Code Patterns group

The default list of code snippets for the Conditionals and Loops group

The If…ElseIf…Else…End If code snippet after it has been inserted

Description
• To insert a code snippet, right-click in the Code Editor and select the Insert Snippet

command from the resulting menu. Then, select the code snippet you wish to insert. You
can also insert a snippet by entering its shortcut and pressing the Tab key.

• Before you can select a snippet, you must get to the group that it’s in. For instance, to
use the snippet shown above, you must select the Code Patterns group followed by the
Conditionals and Loops group.

• Once a snippet has been inserted into your code, you can replace the highlighted portions
with your own code and add any other required code. To move from one highlighted
portion of code to the next, you can press the Tab key.

• You can use the Tools�Code Snippets Manager command to display a dialog box that
you can use to edit the list of available code snippets and to add custom code snippets.

Figure 3-11 How to use code snippets

80 Section 1 Introduction to Visual Basic programming

How to rename identifiers

As you work on the code for an application, you may decide to change the
name of a variable, procedure, class, or other identifier. When you do that,
you’ll want to be sure that you change all occurrences of the identifier. Figure
3-12 shows you two techniques you can use to rename an identifier.

The first technique shown in this figure is to rename the identifier from its
declaration. Here, the name of the discountPercent variable is being changed to
discountPct. When you change an identifier like this, a bar appears under the
last character of the name as shown in the first screen. Then, you can move the
mouse pointer over the bar and click the drop-down arrow that appears to
display a smart tag menu. This menu shows a Rename command that you can
use to change all occurrences of the identifier in your project.

You can also rename an identifier from any occurrence of that identifier. To
do that, just right-click on the identifier, select the Rename command, and enter
the new name into the Rename dialog box that’s displayed.

Chapter 3 How to code and test a Windows Forms application 81

How to rename an identifier from its declaration
The bar that appears under a renamed identifier

The menu that’s available from the bar

How to rename an identifier from any occurrence

Description
• Visual Studio lets you rename identifiers in your code, such as variable, procedure, and

class names. This works better than using search-and-replace because when you use
rename, Visual Studio is aware of how the identifier is used in your project.

• When you change the declaration for an identifier in your code, Visual Studio displays a
bar beneath the last character of the identifier. Then, you can move the mouse pointer
over the bar, click the drop-down arrow that’s displayed, and select the Rename com-
mand from the smart tag menu.

• You can also rename an identifier from anywhere it’s used in your project. To do that,
right-click the identifier and select the Rename command from the shortcut menu to
display the Rename dialog box. Then, enter the new name for the identifier.

Figure 3-12 How to rename identifiers

82 Section 1 Introduction to Visual Basic programming

How to use the Smart Compile Auto Correction
feature

As you learned in figure 3-9, Visual Studio puts a wavy line under any
syntax errors that it detects while you’re entering code. In some cases, though,
Visual Studio takes that one step further with its Smart Compile Auto Correc-
tion feature. In those cases, a bar appears at the right end of the wavy underline.

To use this feature, you place the mouse pointer over this bar to display a
smart tag. Then, you can click the drop-down arrow that appears to display the
Error Correction Options window shown in figure 3-13. This window includes a
description of the error, suggestions for correcting the error, and a preview of
how the code will look if you apply the corrections. If you like the suggested
corrections, you just click on the suggestion to apply them.

For this example, I set the Option Strict option on, which you’ll learn how
to do in the next chapter. Because that forces you to do some data conversion
before comparisons or arithmetic calculations can be done, the suggested
changes do those data conversions. This illustrates the power of this feature, so
you’re going to want to use it whenever it’s available.

Chapter 3 How to code and test a Windows Forms application 83

The Code Editor with the Error Correction Options window displayed

Figure 3-13 How to use the Smart Compile Auto Correction feature

Description
• When Visual Studio detects a syntax error, it highlights the error with a wavy underline

in the Code Editor.

• If a bar appears at the right end of a wavy underline, you can use the Error Correction
Options window to view and apply suggested corrections.

• To display the Error Correction Options window, place the mouse pointer over the bar,
then over the smart tag that’s displayed, and click the drop-down arrow.

• To apply a correction, click the appropriate “Replace…” link.

Note
• To get the errors and the suggested corrections in the screen above, I turned the Option

Strict option on. You’ll learn more about that in the next chapter.

Error Correction Options window

84 Section 1 Introduction to Visual Basic programming

How to use the My feature

The My feature that was introduced with Visual Basic 2005 can improve
your productivity by making it easy to access .NET Framework classes and
functions that would be otherwise difficult to find. If you’re new to program-
ming, this feature may not make much sense to you, but it will as you learn
more about Visual Basic. So for now, it’s enough to know that this feature is
available and trust that you’ll learn more about it later.

Figure 3-14 illustrates how this feature works. As you can see, the My
feature exposes a hierarchy of objects that you can use to access information.
These objects are created automatically when you run an application. The three
statements in this figure illustrate how you can use some of these objects. To get
more information about any of these objects, you can use the Help feature as
described later in this chapter.

The first statement in this figure shows how you can use the Name property
of the My.User object to get the name of the user of an application. By default,
this property returns both the domain name and the user name. To get this
information without using this object, you would have to use the UserName and
UserDomainName properties of the Windows.Forms.SystemInformation class.
This illustrates how the My objects can make finding the information you need
more intuitive.

The second statement shows how you can use the My.Computer.FileSystem
object to check if a specified directory exists on the user’s computer. To do that,
it uses the DirectoryExists method of this object. In chapter 21, you’ll learn
about many of the properties and methods of this object that you can use to
work with drives, directories, and files.

The third statement shows how you can use the My.Forms object to display
a form. Note that when you use this technique, an instance of the form is created
automatically if it doesn’t already exist. This wasn’t possible with Visual Basic
2002 or 2003. You’ll learn more about how to use the My.Forms object in
chapter 24.

Chapter 3 How to code and test a Windows Forms application 85

The main My objects for Windows Forms applications

A statement that gets the name of the current user of an application
lblName.Text = My.User.Name

A statement that checks if a directory exists
If My.Computer.FileSystem.DirectoryExists("C:\VB 2008\Files") Then ...

A statement that creates an instance of a form and displays it
My.Forms.frmInvestment.Show()

Description
• The My feature makes it easy to access frequently used .NET Framework classes and

functions using objects that are grouped by the tasks they perform. These objects are
created automatically when an application is run.

Figure 3-14 How to use the My feature

My

My.Application

My.Application.Log

My.Application.Info

My.Computer

My.User

My.Forms

My.Computer.Audio

My.Computer.Clipboard

My.Resources

My.Settings

My.WebServices

My.Computer.Clock

My.Computer.FileSystem

My.Computer.Info

My.Computer.Keyboard

My.Computer.Mouse

My.Computer.Network

My.Computer.Ports

My.Computer.Registry

86 Section 1 Introduction to Visual Basic programming

How to get help information

As you develop applications in Visual Basic, it’s likely that you’ll need
some additional information about the IDE, the Visual Basic language, an
object, property, method, event, or some other aspect of Visual Basic program-
ming. Figure 3-15 shows several ways you can get that information.

When you’re working in the Code Editor or the Form Designer, the quickest
way to get help information is to press F1 while the insertion point is in a
keyword or an object is selected. Then, Visual Studio opens a separate Help
window like the one shown in this figure and displays the available information
about the selected keyword or object. Another way to launch a Help window is
to select a command from Visual Studio’s Help menu such as the Search,
Contents, or Index command.

The Help window is split into two panes. The right pane shows the last help
topic that you accessed. In this figure, for example, the right pane displays a
help topic that provides information about working with the Code Editor.

The left pane, on the other hand, displays the Index, Contents, and Help
Favorites tabs that help you locate help topics. In this figure, for example, the
left pane displays the Index tab. At the top of this tab, the drop-down list has
been used to filter help topics so they’re appropriate for Visual Basic program-
mers. In addition, “code e” has been entered to navigate to the index entries that
begin with those letters, and the Code Editor entry has been selected.

In addition to the topic that’s displayed in the right pane, all the topics that
are available for a selected entry are listed in the Index Results window that’s
displayed across the bottom of the screen. When the Code Editor entry was
selected in this figure, for example, four topics were listed in the Index Results
window and the first topic was displayed by default. To display another topic,
you simply click on it.

In the left pane, you can click on the Contents tab to display a list of help
topics that are grouped by category. Or, you can click on the Help Favorites tab
to view a list of your favorite help topics. At first, the Help Favorites tab won’t
contain any help topics. However, you can add topics to this tab by displaying a
topic and clicking on the Add To Help Favorites button that’s available from the
toolbar.

You can display a Search tab in the right pane by clicking on the Search
button in the toolbar. From this tab, you can enter a word or phrase to search for
and select the languages, technologies, and content you want to search. Then,
when you click the Search button, the results are displayed in the tab and you
can click a topic to display it.

When you display information in the Help window, you should realize that
the Help window uses a built-in web browser to display help topics that are
available from your computer and from the Internet. In addition, the Help
window works much like a web browser. To jump to a related topic, you can
click on a hyperlink. To move forward and backward through previously dis-
played topics, you can use the Forward and Back buttons. As a result, with a
little practice, you shouldn’t have much trouble using this window.

Chapter 3 How to code and test a Windows Forms application 87

The Help window

Figure 3-15 How to get help information

Description
• You can display a Help window by selecting an object in the Form Designer or position-

ing the insertion point in a keyword in the Code Editor and pressing F1.

• You can also display a Help window by selecting a command (such as Index, Contents,
or Search) from Visual Studio’s Help menu.

• The Help window works like a web browser and can display help topics that are avail-
able from your computer or from the Internet. You can use the buttons in its toolbar to
navigate between help topics or to add topics to your list of favorite topics.

• The Help window is divided into two panes. The left pane displays the Index, Content,
and Help Favorites tabs that let you locate the help topics you want to display. The right
pane displays the last help topic that you accessed.

• If you click on the Search button, the right pane will display a Search tab that lets you
search for help topics by entering a word or phrase.

• If you click on the How Do I button, the right pane will display a How Do I tab that lets
you go to a topic by clicking on a link.

• To close a tab, click on the Close button when the tab is active. To display a tab, click the
tab or select it from the Active Files drop-down list that’s next to the Close button.

Index, Contents, and
Help Favorites tabs

Index Results window

88 Section 1 Introduction to Visual Basic programming

How to run, test, and debug a project

After you enter the code for a project and correct any syntax errors that are
detected as you enter this code, you can run the project. When the project runs,
you can test it to make sure it works the way you want it to, and you can debug
it to remove any programming errors you find.

How to run a project

As you learned in chapter 1, you can run a project by clicking the Start
Debugging button in the Standard toolbar, selecting the Start Debugging com-
mand from the Debug menu, or pressing the F5 key. This builds the project if it
hasn’t been built already and causes the project’s form to be displayed, as
shown in figure 3-16. When you close this form, the application ends. Then,
you’re returned to Visual Studio where you can continue working on your
program.

You can also build a project without running it as described in this figure. In
most cases, though, you’ll run the project so you can test and debug it.

If build errors are detected when you run a project, the errors are displayed
in the Error List window, and you can use this window to identify and correct
the errors. If it isn’t already displayed, you can display this window by clicking
on the Error List tab that’s usually displayed at the bottom of the window or by
using the View�Error List command.

Chapter 3 How to code and test a Windows Forms application 89

The form that’s displayed when you run the Invoice Total project

Description
• To run a project, click the Start Debugging button in the Standard toolbar, select the

Debug�Start Debugging menu command, or press the F5 key. This causes Visual Studio
to build the project and create an assembly. Then, if there are no build errors, the assem-
bly is run so the project’s form is displayed as shown above.

• If syntax errors are detected when a project is built, they’re listed in the Error List
window and the project does not run.

• You can build a project without running it by selecting the Build�Build Solution
command.

• When you build a project for the first time, all of the components of the project are built.
After that, only the components that have changed are rebuilt. To rebuild all components
whether or not they’ve changed, use the Build�Rebuild Solution command.

Figure 3-16 How to run a project

90 Section 1 Introduction to Visual Basic programming

How to test a project

When you test a project, you run it and make sure the application works
correctly. As you test your project, you should try every possible combination of
input data and user actions to be certain that the project works correctly in every
case. In other words, your goal is to make the project fail. Figure 3-17 provides
an overview of the testing process for Visual Basic applications.

To start, you should test the user interface. Make sure that each control is
sized and positioned properly, that there are no spelling errors in any of the
controls or in the form’s title bar, and that the navigation features such as the tab
order and access keys work properly.

Next, subject your application to a carefully thought-out sequence of valid
test data. Make sure you test every combination of data that the project will
handle. If, for example, the project calculates the discount at different values
based on the value of the subtotal, use subtotals that fall within each range.

Finally, test the program to make sure that it properly handles invalid data
entered by users. For example, type text information into text boxes that expect
numeric data. Leave fields blank. Use negative numbers where they shouldn’t
be allowed. Remember that the goal of testing is to find all of the problems.

As you test your projects, you’ll encounter runtime errors. These errors,
also known as exceptions, occur when Visual Basic encounters a problem that
prevents a statement from being executed. If, for example, a user enters “ABC”
into the Subtotal text box on the Invoice Total form, a runtime error will occur
when the program tries to assign that value to a decimal variable.

When a runtime error occurs, Visual Studio breaks into the debugger and
displays an Exception Assistant window like the one in this figure. Then, you
can use the debugging tools that you’ll be introduced to in the next figure to
debug the error.

Runtime errors, though, should only occur when you’re testing a program.
Before an application is put into production, it should be coded and tested so all
runtime errors are caught by the application and appropriate messages are
displayed to the user. You’ll learn how to do that in chapter 7 of this book.

Chapter 3 How to code and test a Windows Forms application 91

The Exception Assistant that’s displayed when a runtime error occurs

How to test a project
1. Test the user interface. Visually check all the controls to make sure they are displayed

properly with the correct text. Use the Tab key to make sure the tab order is set cor-
rectly, verify that the access keys work right, and make sure that the Enter and Esc keys
work properly.

2. Test valid input data. For example, enter data that you would expect a user to enter.

3. Test invalid data or unexpected user actions. For example, leave required fields blank,
enter text data into numeric input fields, and use negative numbers where they are not
appropriate. Try everything you can think of to make the application fail.

Description
• To test a project, you run the project to make sure it works properly no matter what

combinations of valid or invalid data you enter or what sequence of controls you use.

• If a statement in your application can’t be executed, a runtime error, or exception,
occurs. Then, if the exception isn’t handled by your application, the statement that
caused the exception is highlighted and an Exception Assistant window like the one
above is displayed. At that point, you need to debug the application.

Figure 3-17 How to test a project

92 Section 1 Introduction to Visual Basic programming

How to debug runtime errors

When a runtime error occurs, Visual Studio enters break mode. In that mode,
Visual Studio displays the Code Editor and highlights the statement that couldn’t
be executed, displays the Debug toolbar, and displays an Exception Assistant
dialog box like the one shown in figure 3-17. This is designed to help you find
the cause of the exception (the bug), and to debug the application by preventing
the exception from occurring again or by handling the exception.

Often, you can figure out what caused the problem just by knowing what
statement couldn’t be executed, by reading the message displayed by the Excep-
tion Assistant, or by reading the troubleshooting tips displayed by the Exception
Assistant. But sometimes, it helps to find out what the current values in some of
the variables or properties in the program are.

To do that, you can place the mouse pointer over a variable or property in the
code so a data tip is displayed as shown in figure 3-18. This tip displays the
current value of the variable or property. You can do this with the Exception
Assistant still open, or you can click on its Close button to close it. Either way,
the application is still in break mode. In this figure, the data tip for the Text
property of the txtSubtotal control is “$$1000”, which shows that the user didn’t
enter valid numeric data.

Within the data tip, you’ll see a magnifying glass and an arrow for a drop-
down list. If you click on this arrow, you’ll see the three choices shown in this
figure. Then, if you click on Text Visualizer, the value in the data tip will be
shown in the Text Visualizer dialog box the way it actually is. So in this simple
example, the value will show as $$1000, not “$$1000”. Although that isn’t much
different than what the data tip shows, the differences are more dramatic when
the data is more complex.

Once you find the cause of a bug, you can correct it. Sometimes, you can do
that in break mode and continue running the application. Often, though, you’ll
exit from break mode before fixing the code. To exit, you can click the Stop
Debugging button in the Standard toolbar. Then, you can correct the code and test
the application again.

For now, don’t worry if you don’t know how to correct the problem in this
example. Instead, you can assume that the user will enter valid data. In chapter 7,
though, you’ll learn how to catch exceptions and validate all user entries for an
application because that’s what a professional application has to do. And in
chapter 12, after you’ve learned the Visual Basic essentials, you’ll learn a lot
more about debugging.

Chapter 3 How to code and test a Windows Forms application 93

How a project looks in break mode

Figure 3-18 How to debug runtime errors

Description
• When an application encounters a runtime error, you need to fix the error. This is com-

monly referred to as debugging, and the error is commonly referred to as a bug.

• When an application encounters a runtime error, it enters break mode. In break mode, the
Debug toolbar is displayed along with the Exception Assistant window.

• The information in the Exception Assistant window should give you an idea of what the
error might be. You can also click on the links in the Troubleshooting Tips list to display
more information in a Help window.

• If you close the Exception Assistant window, the application remains in break mode.

• To display a data tip for a property or variable, move the mouse pointer over it in the
Visual Basic code.

• If the data tip includes a drop-down arrow to the right of a magnifying glass, you can
click the error and select Text Visualizer to see exactly what the data looks like.

• To exit break mode and end the application, click the Stop Debugging button in the
Standard toolbar or press Shift+F5.

• You’ll learn more about debugging and the Exception Assistant window in chapter 12.

Stop Debugging button

Data tip

94 Section 1 Introduction to Visual Basic programming

Perspective

If you can code and test the Invoice Total project that’s presented in this
chapter, you’ve already learned a lot about Visual Basic programming. You know
how to enter the code for the event handlers that make the user interface work the
way you want it to. You know how to build and test a project. And you know some
simple debugging techniques.

On the other hand, you’ve still got a lot to learn. In particular, you haven’t
learned much about the Visual Basic language. That’s why the next six chapters
present the Visual Basic essentials.

Terms

object-oriented programming
object-oriented language
object
class
instance
instantiation
property
method
event
member
dot operator
dot
argument
event-driven application
event handler
procedure declaration
procedure name
tool tip
line-continuation character
comment

syntax error
build error
code snippet
identifier
smart tag menu
My feature
comment out a line
bookmark
collapse
expand
build a project
run a project
test a project
runtime error
exception
bug
debug
break mode
data tip

Exercise 3-1 Code the Invoice Total form
In this exercise, you’ll add code to the Invoice Total form that you designed in
exercise 2-1. Then, you’ll build and test the project to be sure it works. You’ll
also experiment with debugging and review some help information.

Copy and open the Invoice Total application
1. Use the Windows Explorer to copy the Invoice Total project that you created

for chapter 2 from the C:\VB 2008\Chapter 02 directory to the C:\VB
2008\Chapter 03 directory.

2. Open the Invoice Total solution (InvoiceTotal.sln) that’s now in the C:\VB
2008\Chapter 03\InvoiceTotal directory.

Chapter 3 How to code and test a Windows Forms application 95

Add code to the form and correct syntax errors
3. Display the Invoice Total form in the Form Designer, and double-click on the

Calculate button to open the Code Editor and generate the procedure
declaration for the Click event of this object. Then, enter the code for this
procedure as shown in figure 3-6. As you enter the code, be sure to take
advantage of all of the Visual Studio features for coding including snippets.

4. Return to the Form Designer, and double-click the Exit button to generate the
procedure declaration for the Click event of this object. Enter the statement
shown in figure 3-6 for this event handler.

5. Open the Error List window as described in figure 3-9. If any syntax errors are
listed in this window, double-click on each error to move to the error in the
Code Editor. If the Auto Correction feature is available for an error, check to
see whether its suggested correction (or one of its suggested corrections) is the
one you want to make. Then, correct the error.

Test the application
6. Press F5 to build and run the project. If any syntax errors are detected, you’ll

need to correct the errors and press F5 again.

7. When the application runs and the Invoice Total form is displayed, enter a valid
numeric value in the first text box and click the Calculate button or press the
Enter key to activate this button. Assuming that the calculation works, click the
Exit button or press the Esc key to end the application. If either of these
procedures doesn’t work right, of course, you need to debug the problems and
test the application again.

Enter invalid data and display data tips in break mode
8. Start the application again. This time, enter xx for the subtotal. Then, click the

Calculate button. This will cause Visual Studio to enter break mode and display
the Exception Assistant.

9. Note the highlighted statement and read the message that’s displayed in the
Exception Assistant. Then, close the Assistant, and move the mouse pointer
over the property in this statement to display its data tip. This shows that the
code for this application needs to be enhanced so it checks for invalid data.

10. Display the smart tag for the Text property in the highlighted statement, click
its drop-down arrow, and select Text Visualizer. This shows the data exactly as
it was entered in the Text Visualizer dialog box. Then, click the Stop
Debugging button in Standard toolbar to end the application.

Experiment with the Visual Basic features
11. In the Dim statement for the discountPercent variable, change the variable

name to discountPct. When you do that, a bar will appear under the last letter
of the variable. Place the mouse pointer over this bar to display a drop-down
arrow. Then, click on this arrow and select the Rename command. This should
rename the discountPercent variable to discountPct throughout the form. But
run the form to make sure it’s working correctly.

96 Section 1 Introduction to Visual Basic programming

12. In the If statement, right-click on one of the occurrences of the variable named
discountPct. Then, select the Rename command, and use it to rename this
variable to discountPercent throughout the form. To make sure this worked, run
the application.

13. Select the lines that contain the ElseIf clauses and click on the Comment Out
button in the Standard toolbar. That should change these coding lines to
comments. Then, run the application to see how it works when these lines are
ignored. When you’re done, select the lines that were commented out and click
on the Uncomment button to restore them.

14. In the Code Editor, click on the minus sign in front of the btnCalculate_Click
procedure to collapse it. Then, expand that procedure and collapse the
btnExit_Click procedure. Last, print just the expanded code for this form.

15. In the Solution Explorer, show all the files and double-click on the file named
frmInvoiceTotal.Designer.vb to open it in the Code Editor. This is the code that
determines how the form will look when it’s instantiated. After you read
chapter 11 and section 4, this code will make more sense to you. For now,
though, just close the window with this code.

Experiment with the Help feature
16. To see how context-sensitive help works, place the insertion point in the Select

method in the last statement of the first event handler and press F1. This should
open a Help window that tells you more about this method.

17. In the left pane, select the Index tab to display the Index window. Type
“snippets” into the Look For box to see the entries that are listed under this
topic. Next, if Visual Basic (or Visual Basic Express Edition) isn’t selected in
the Filtered By drop-down list, select it to show just the topics for Visual Basic.
Then, click on one or more topics to display them.

18. Use the Tools�Options command, and review the help options. In the Online
group, you may want to change the loading option to “Try local only, not
online,” because that can speed up the access of help topics.

19. Continue to experiment with the Index, Contents, Help Favorites, and Search
features to see how they work, and try to use some of the buttons in the
Standard toolbar to see how they work. Then, close the Help window.

Exit from Visual Studio
20. Click the Close button for the Visual Studio window to exit from this

application. If you did everything and got your application to work right,
you’ve come a long way!

