5

Using Hibernate for
Persistent Objects

Release 1, Week 5, W _

b

Raj: When do you want to meet with Susan for the questions on
the screens we are working on currently?

Steve: Let's just call her right now since it impacts our
database istence design. After all, she wants to be an
active stakeholder since her department is paying for this
application. (c) Visual Patterns, Inc.

80

Chapter 5 Using Hibernate for Persistent Objects

WITHIN THE FIRST FEW YEARS OF my software development career, I came to realize
more and more that information (data) is an organization’s main asset; however, many
developers tend to lose sight of this fact and get caught up in the latest cool tools.

We often use the words “information technology” (or simply, I'T) but have you ever
stopped to think about these two words? In my opinion, the definition is obvious: tech-
nology to manage information. Simply put, data is at the core of what we do in our
industry because we are constantly moving data from point A to point B. No matter
how many systems the data travels through, it originates on one end (point A; for exam-
ple, a UI) and is typically viewed on the other end (point B; for example, reports).
Furthermore, the data and its structure typically outlive the applications built around it;
hence, it should arguably be the most important component of an overall software appli-
cation’s architecture.

Given my emphasis on data and databases, I will cover Hibernate before the other key
products discussed later in this book, such as the Spring Framework and the Eclipse SDK.

What’s Covered in This Chapter

In this chapter, we develop the classes we need to implement functionality for the first
five user stories (page 63) for our sample application, Time Expression. So, we will do
the following:

= Understand what object-relational mapping technology is and the benefits
it offers.

= Install HSQLDB, a Java-based, lightweight relational database.
= Design our database.

= Write a Data Definition Language (DDL) script to create our database tables using
Ant and test out some sample queries.

= Set up Hibernate, understand its basic concepts, and begin working with it.

= Demonstrate a simple and then a slightly more complex example (along with a
corresponding unit test suite class) of using Hibernate for Time Expression’s
Department and Timesheet tables.

= Discuss advanced Hibernate areas for you to explore (should you need them).

Note
The complete code for the examples used in this chapter can be found within this book’s code zip file (avail-
able on the book's website).

We will cover a lot of material in this chapter, so let’s get started.

An Overview of Object-Relational Mapping (ORM)

An Overview of Object-Relational

Mapping (ORM)

It 1s no secret that relational databases are the most common type of databases in a
majority of organizations today when compared to other formats (for example, object-
oriented, hierarchical, network). Product names such as Oracle, Microsoft SQL Server,
MySQL, IBM DB2, and Sybase are common terms used by developers in our line

of work.

On the computer languages side of things, object-oriented (OO) programming has
become the norm. Languages such as Java, C#, C++, and even OO scripting languages
are common discussion topics among developers.

A majority of the software applications that use relational database and OO languages
end up writing code to map the relational model to the OO model. This can involve
anywhere from cumbersome mapping code (because of the use of embedded SQL or
stored procedure calls) to heavy-handed technology, such as EJB’s entity beans.

Because most of us seem to like both relational databases and OO, Object-R elational
Mapping (ORM) has become a natural choice for working with POJOs (plain old Java
objects), especially if you don’t need the distributed and secure execution of EJB’ entity
beans (which also map object attributes to relational database fields).

Although you still need to map the relational model to the OO model, the mapping
is typically done outside of the programming language, such as in XML files. Also, once
this mapping is done for a given class, you can use instances of this class throughout your
applications as POJOs. For example, you can use a save method for a given object and
the underlying ORM framework will persist the data for you instead of you having to
write tedious INSERT or UPDATE statements using JDBC, for example.

Hibernate 1s one such ORM framework and given its popularity in the world of Java
today, we will use it for Time Expression. A few others, such as JDO, iBATIS, Java, and
Apache ObJectR elationalBridge, are listed at the end of this chapter under
“Recommended Resources.”

Hibernate also supports the EJB 3.0 standard, so should you need to move to EJB
3.0,1t'll be an easy transition (in fact, EJB 3.0 is based on many of the concepts and
techniques found in Hibernate). EJB 3.0, as you might already know, aims to simplify
working with EJB technology prior to this release; for example, EJB 3.0 provides a
lighter-weight persistent API similar to the one provided by Hibernate. However, if you
do not need the many services provided by EJB technology, you can use the Hibernate
core technology by itself (without needing a big EJB container product such as an appli-
cation server).

Before delving into Hibernate, let’s review some basic concepts common across
ORM technologies. Later we will look at lots of Hibernate Java code and XML file
examples. After you have the hang of coding using an ORM framework, you will almost
certainly not turn back to the old ways of working with relational databases.

81

82

Chapter 5 Using Hibernate for Persistent Objects

Relationships and Cardinality

Database relationships are typically defined in terms of direction and cardinality (multi-
plicity in OO terminology). From an OO perspective, relationships are defined as associ-
ation, inheritance, or aggregation. Many software development projects use ORM either
with existing databases or are required to conform to standards established by a database
group within the organization; hence, I will approach our relations discussion from a
database perspective.

Note

Relationships can be viewed as unidirectional or bidirectional for objects. On the other hand, relations in a
relational database are bidirectional by definition because related tables know of each other. However, if we
were designing objects that map to the database, we would factor in both types of relations because object
relationships have to be made bidirectional explicitly. So for the sake of our discussion on relationships and
cardinality, we will pretend that the database can have both—unidirectional and bidirectional—relations.

Unidirectional is when one table knows of another, but not vice versa. For example,
you might have a record that uses a unique primary key; this same primary key can be
used as a foreign key by records in a child table, thereby establishing a unidirectional
relationship. In a bidirectional relationship, records in both tables would know about each
other. For example, assume we have two tables named Employee and Project to store
information about which employees worked on which project. In the Project record, we
might have an Employeeld foreign key. On the flip side, we might have a Projectld key
in the Employee table.

Cardinality can be defined as one-fo-one, one-to-many (or many-to-one depending on
which direction you look at the relationship), and many-to-many. We look at each briefly:

= A one-to-one relationship is when a record in table 1 can have exactly one associ-
ated record in table 2. For example, a record in a Person table might have exactly
one related record in a JobTitle table.

= A one-to-many relationship is typically seen in parent-child relationships where a
parent record can have several related records in a child table (for example, related
via the parent’s primary key).

= A many-to-many relationship is where a record in table 1 can have several related
records in table 2 and vice versa. For example, an Employee table might have more
than one record in a Project table (because an employee can be involved in multi-
ple projects). On the flip side, a record in the Project table might have several
related records in the Employee table because a project can have multiple
employees assigned to it. Also, this type of relationship is typically achieved by
using an (extra) association table (for example, a ProjectEmployee table that con-
tains foreign keys pointing to the two main tables).

An Overview of Object-Relational Mapping (ORM)

Note
We will be looking at examples of relationships in this chapter from various perspectives, namely diagrams,
code, and mappings. For example, Figures 5.1 and 5.2 show examples of one-to-many relationships.

Object Identity

An object identity (or simply, object id) i1s something that uniquely defines a persisted
object (that is, a record in the database). It is commonly mapped to the primary key of a
database table.

Cascade

Cascading can be defined as an action on a given entity flowing down to related entities.
For example, if we wanted to maintain referential integrity between related parent-child
tables in a database, we would delete records from a child table whenever its related par-
ent is deleted, so that no orphan records are left lingering in the database. Similarly, when
you read a parent record in, you may also want to read in all its children records.
Cascading can be defined for each of the four CRUD operations—that is, create, read,
update, and delete. Also, cascading is often handled via the use of database triggers.

Mapping

Before we can begin working with objects that store and retrieve data from a relational
database, we must create mappings (usually in an XML file) between the database tables
and Java classes. The mapping file typically contains properties, which essentially map an
attribute (variable) in a class to a column in database. If you are new to some of these
concepts, don’t worry; after you see some examples later in this chapter, it’ll start to
become a bit clearer.

There are various mapping strategies we can employ, such as horizontal mapping, ver-
tical mapping, and union mapping. In vertical mapping, each class in a hierarchy (abstract
or concrete) is mapped to a different table. For example, if we have concrete classes
named Dog and Cat, both inheriting from an abstract class named Animal, we would
end up having three tables in the database—one for each class. In horizontal mapping, each
concrete class is mapped to a table. In union mapping, many classes (presumably part of
the same hierarchy) map to a single table.

Although vertical mapping is more flexible, it 1s also more complex because it
requires multiple tables to extract all the data. Hence, we will use horizontal mapping
because it is a simpler design and can provide faster performance, especially for simple to
reasonably complex applications. To be more specific, our approach will involve one table
per class mapping strategy.

83

84

Chapter 5 Using Hibernate for Persistent Objects

In-Memory Versus Persisted Objects

When we are working with ORM technologies, there is a distinction between database
objects we have in memory versus persisted ones. If the object does not exist in the
database, or its attribute values do match the corresponding column values in the data-
base, it is considered an in-memory object. For example, Hibernate distinguishes object
states as persistent, detached, or transient (each is explained later in this chapter).

Another way to look at this distinction is that if we remove an object from memory
(for example, by removing it from a Java collection), it does not necessarily mean the
record has been physically deleted from the database (unless, of course, we mapped the
collection in Hibernate to have automatic cascading during parent deletes).

Design of Our Sample Database

Now that we have covered some OR concepts, it is time to set up our database so that
we can move one step closer to building an application’s user interface with the help of
the Spring Web MVC Framework.

As I mentioned in earlier chapters, the focus of this book is more on development
and less on infrastructure. Given Java’s vendor product portability (for example, operating
system, web/application server, databases), in theory, it should be relatively easy to
develop your application using one product but deploy to another application. In light of
this, I chose the easiest (and consequently lightest-weight) products to set up. HSQLDB,
a relational database, is one such product (discussed later in this chapter), and we will use
it for Time Expression.

Denormalization

Before we look at HSQLDB, let’s revisit our domain model from Chapter 3,“XP and
AMDD-Based Architecture and Design Modeling,” shown in Figure 5.1.

Empl L 0% Timesheet |1 %% T
mp oyee manages imeshee contains ime
0.* 0.*

has a is charged to|

1 1
Status Department

Figure 5.1 Domain model for Time Expression.

Given the simplicity of our sample application, Time Expression, and its domain model,
we could create a physical database model (PDM), also known as an Entity-R elationship
(ER) diagram, which contains entities identical to ones in our domain model, with the
addition of columns and data types and other database constraints. However, let’s denor-
malize it just a bit for performance and ease of development purposes.

Design of Our Sample Database

Figure 5.2 shows a PDM, denormalized a bit from our Domain Model and with data
types (for example, varchar) added to it. The denormalization is related only to the
Timesheet and Time tables.

Timesheet
timesheetId int <Pk
employeeld int «FKs
e e i g |
int <P char(2) «Fis»
R varchar(100) |1 0..* periodEndingDate date 0.* 1 Department
employeeCode char(1) minutesMon int departmentCode char(2) «PKs»
password varchar(10) minutes Tue int name varchar(255)
manager Employeeld int minutesWed int :
email vanchar(255) minutes Thu int
minutesFri int
minutesSat int
minutesSun int

Figure 5.2 Physical database model for Time Expression.

Naming Convention

You will notice we are using Java-like naming conventions for the table and column
names. This makes our job easier because we can use the same names across all artifacts
related to Time Expression while also gaining consistency across them. In other words,
we have matching names from User Story tag/name to controller classes to model
(domain) objects to the Hibernate persistent bean Java code and finally, to the database
tables and columns (shown in Figure 5.2).

This naming approach makes our job easier in two ways. First, we don’t need to think
about the naming convention for each layer, and second, it reduces the amount of map-
ping details we need to specify in our Hibernate class mapping files because we do not
have to specify a corresponding column name for each property being mapped (as we
will see later in this chapter).

However, in the real world, you might not have control over the database table/
column naming because a database group might have their own set of naming standards.
In this case, it is easy to use Hibernate’s column attribute to specify the database column
name. [would also encourage following your organization’s naming standards for consis-
tency sake.

Note that for database objects (such as tables and sequences), I tend to use names
starting with an uppercase letter, whereas column names start with a lowercase letter.

Database Design Disclaimers

The following are some disclaimers and/or explanations for the PDM we looked at in
Figure 5.2.

Unused Columns

By combining the Timesheet and Time entities into one physical table, there is the possi-
bility of wasted database space by unused columns. For example, there is a good chance

85

86

Chapter 5 Using Hibernate for Persistent Objects

that MinutesSat and MinutesSun will be less frequently used (unless employees in this
company work most or all weekends). However, the advantages of the simpler design and
performance arguably outweigh the disadvantages of a bit of wasted space.

Int Versus Float

We have used Minutes<Day> columns to store fractional hours worked (for example,
30 minutes or 0.5 hour) in the Timesheet table versus Hours<Day> columns or even
float data types. The reason we did this is because I want to demonstrate how we can use
the Spring Web MVC framework (in Chapter 7, “The Spring Web MVC Framework™)
to do automatic data conversions between the Ul and the database. Also, an int will
typically take up less physical storage space than a £loat will (for example, 2 bytes versus
4 bytes).

Password

We have a Password column in the Employee table. Typically, in larger organizations, you
might end up using something like a central Lightweight Directory Access Protocol
(LDAP) authentication service. However, this works well for our small (and sample)
application, Time Expression.

DDL Script

Now that we have a PDM (see Figure 5.2), we can move to the next level down, which
is to write a DDL script that can be used to create the actual databse. Our DDL script is
embedded inside one of our Ant scripts, named timexhsqgldb.xml.The table names, col-
umn names, and data types in our DDL script closely match the PDM in Figure 5.2, as
they should.

Our DDL file primarily contains CREATE TABLE statements. However, I would
like to point out a couple of additional notable items.

First, the primary key column of the Timesheet table is of data type identity, as
shown in this code excerpt:

CREATE TABLE Timesheet

(
timesheetId IDENTITY NOT NULL,

As you might already know, an identity is an auto increment database column (and
is directly supported by Hibernate). For databases that do not support identity types, we
can use a sequence type instead.

Second, we have seen some test data being inserted; this is for use by our JUnit test
cases covered later in this chapter. For the sake of simplicity, I have not created any pri-
mary or foreign key constraints, as we typically should in a real-world application. Also,
the focus of this chapter is to demonstrate features of Hibernate and not necessarily
database design.

HSQLDB

Where HSQLDB and Hibernate Fit into Our
Architecture

Before we get too far along with HSQLDB and Hibernate, it 1s a good idea to revisit
our architecture diagram that we developed earlier in this book. Figure 5.3 shows the
diagram; notice where HSQLDB and Hibernate fit into the big picture (top-right).

I
| Gl Model
ontroller Busi
Browser 1 _ Spring objects, ':EBﬁg
I | DispatcherServiet Hibernate (HSQLDB)
} beans
I
| | P N
} View (Spring)
| JSF/HTHML Scheduler
} o
I
I

Java Servlet Container (Apache Tomcat)

Figure 5.3 High-level architecture for Time Expression.

In later chapters, when we develop our web and schedule job-related code, we will need
the classes and database we will create in this chapter.

HSQLDB

HSQLDB is a lightweight Java database engine that has been around since 2001.
However, because it is a continuation of Thomas Mueller’s closed Hypersonic SQL
Project, it has actually been around longer than 2001. In short, the product is fairly
mature.

HSQLDB provides a good amount of ANSI-92 SQL-compliant features (and many
enhancements from more recent SQL standards)—more than we will need in this book.
Furthermore, most of the features defined by JDBC 2, and some from JDBC 3, are also
supported. HSQLDB’s popularity has grown significantly since its inception a few years
ago, and it is commonly found bundled with open source and commercial Java-related
products such as JBoss, OpenOffice.org, Atlassian’s JIRA, and many more.

At the time of this writing, the HSQLDB project was one of the top 50 ranking in
more than 100,000 SourceForge.net projects.

HSQLDB can be found at http://hsgldb.org. There are ample setup instructions on
this site to download, install, and configure it. 'm using version 1.8.x in this book.

HSQLDB Server and Convenient Ant Tasks

Now we need to start the HSQLDB server and create the database using our DDL file.
However, first, let’s copy the hsqldb.jar file from the HSQLDB install directory to our

87

http://hsqldb.org

88

Chapter 5 Using Hibernate for Persistent Objects

1ib/ directory; for example, on my Microsoft Windows XP-based system, I typed the
following:

copy \hsgldb\lib\hsgldb.jar \anil\rapidjava\timex\lib\

We will use our Ant script, timexhsgldb.xml, to start the server and also to create
the database. This file is placed in the top-level directory of our sample application (in
my case, this is C:\anil\rapidjava\timex).

Assuming our HSQLDB configuration is set up correctly, we can now type the
ant -f timexhsqgldb.xml starthsqgl command to start the HSQLDB server, as
demonstrated here:

C:\anil\rapidjava\timex>ant -f timexhsgldb.xml starthsqgl

From another command window, we can type the ant -f timexhsqldb.xml
execddl command to execute our DDL script for creating our database within
HSQLDB, as demonstrated here:

C:\anil\rapidjava\timex>ant -f timexhsgldb.xml execddl

Before we move on, let’s review parts of timexhsgldb.xml.

The following properties are related to HSQLDB; that is, the hfile property points
to a local set of files under the timex/data/ directory, the halias is the alias we will use
in our client applications to connect to the HSQLDB server, and the hport is the port
number the HSQLDB server will listen to:

<property name="hfile" value="-database.0 data/timexdb"/>
<property name="halias" value="timex"/>
<property name="hport" value="9005"/>

Next, the starthsqgl Ant target starts the HSQLDB server using the built-in Ant
java task, as shown here:

<java fork="true"

classname="${hclass}" classpath="${hjar}
args="${hfile} -dbname.0 ${halias} -port ${hport}"/>

The execddl Ant target uses the built-in sql task to execute our SQL DDL script, as
shown here:

<sql classpath="s${hjar}
driver="org.hsgldb.jdbcDriver"
url="jdbc:hsgldb:hsqgl://localhost:${hport}/s{halias}"

userid="sa" password=
print="yes">

HSQLDB Database Manager and SqlTool

HSQLDB is bundled with two tools you should read about in the HSQLDB documen-
tation: HSQL Database Manager (GUI) and SqlTool (command-line based). These are

HSQLDB

nice tools for working with our database. Meanwhile, you will find two convenient ant
tasks in our timexhsqgldb.xml file, hsqldm and sgltool, which can be used to start
these two tools. For example, to start HSQL Database Manager, type the following on
the command line:

ant -f timexhsgldb.xml hsgldm

After the Database Manager comes up, we can change the following parameters on
the screen and work with our database in a GUI fashion, instantly (assuming the
HSQLDB server is running in another window):

Type: HSQL Database Engine Server

URL: jdbc:hsqldb:hsql://localhost:9005/timex

HSQLDB Persistent and In-Memory Modes

Be sure to read about the various modes HSQLDB can run in (such as local versus
server and in-memory versus persistent); we will use the server and persistent mode. For
example, we could also use the very same HSQLDB database files (found under our
timex/data/ directory) as follows:

jdbc:hsgldb:file:${catalina.base}/webapps/timex/WEB-INF/data/timexdb

Incidentally, this is a feature that ties in nicely with the next section on bundling
HSQLDB in an archive file.

Bundling HSQLDB in a Deployable Archive File

As an added benefit, HSQLDB has a small enough footprint to run entirely in memory.
For example, we could deploy our sample application with HSQLDB, bundled in the
same web archive (WAR) file, essentially making the WAR file a fully self-contained sys-
tem with no need for an external database!

Personal Opinion: Data Is the Customer's Most Valuable Asset!

After all my years developing software, | still find that some people miss the whole point of Information
Technology (IT). In my words, IT means technology for managing information. Information. As in data
(databases).

Data is the customer's asset and hence the single most important component of a system. The data out-
lives most programs written to use it. This is precisely why the domain model, physical data model, and

database refactoring are more important aspects of software development than, for example, cool tools

or adding layers of unnecessary abstractions in your code.

When you're designing the database, one important thing to keep in mind is that the database can be
used by multiple applications, not just a single, well-designed, object-oriented, n-tier application. For
example, querying and reporting tools could also access the database for customer reports. So, as much

89

90 Chapter 5 Using Hibernate for Persistent Objects

as possible, the structure of the database should be somewhat independent of a single application.
Furthermore, even the original application designed for the database can be retired after a few years,
but the database will likely live on for a long time to come on.

For further reading on this matter, visit the agiledata.org website to learn more about database refactor-
ing techniques. You may also want to visit the domaindrivendesign.org website, which is complementary
to the AM website. For example, | found this line from an article by Eric Evans on this website, "the
complexity that we should be tackling is the complexity of the domain itself—not the technical architec-
ture, not the user interface, not even specific features.”

To summarize, the data is the customer's asset, so focus on getting the domain model and database
structure right using a combination of some upfront design and database refactoring as necessary.

Working with Hibernate

Hibernate has recently gained a lot of momentum in the world of Java database applica-
tion development. Although products such as Toplink and others have been around for
many years, Hibernate is open source (hence, free), stable, mature, well documented, and
relatively easy to learn; these are probably just a few reasons why it is as popular as it is.
Hibernate has been around for several years but was recently acquired by the JBoss
group. (However, it continues to operate autonomously as an open source project.)

The Hibernate persistence framework can make working with relational databases
using Java a pleasant experience. This is especially true if you have been developing using
JDBC or using heavy-handed type entity beans. Defining the mappings can seem like a
slight pain initially, but as you will see in later in this book, there are tools to generate
these mapping files.

No Need for DAOs or DTOs

The extra work of defining mappings is well worth it because our persistence code will
be cleaner and we will have automatically eliminated the need for Data Access Objects
(DAOs), which typically are objects that know how to persist themselves. We also won’t
need Data Transfer Objects (DTOs), which are objects used to encapsulate business data
and get transferred between layers of an application.

Supported Databases

As of the writing of this book, Hibernate supported the following databases (other data-
bases are supported via community efforts):

= DB2

» HSQLDB

= Microsoft SQL Server
» MySQL

Working with Hibernate

= Oracle

= PostgreSQL
= SAP DB

= Sybase

= TimesTen

Note
The databases are supported via Hibernate's SQL Dialect classes such as org.hibernate.dialect.HSQLDialect,
org.hibernate.dialect.OracleDialect, org.hibernate.dialect.MySQLDialect, and so on.

Hibernate and EJB 3.x

One thing worth mentioning here is that members of the Hibernate/JBoss team are part
of the EJB 3.0 expert group, a group that helped simplify the EJB specifications. It
should come as no surprise, then, that the latest version of Hibernate supports the EJB
3.0 specification. However, we will not cover the EJB 3.0 here because it is outside the
scope of this book. The focus of this book is on lighter-weight (and open source) frame-
works, not heavy-handed specifications that require commercial application servers to
use these features.

Simple Test for Hibernate Setup

Before diving into Hibernate concepts and terminology, let’s look at a simple hibernate
program and the setup involved. The following sections outline the steps required to get
our first test program, SimpleTest, working. But first, let’s take another look at the devel-
opment directory structure we established in Chapter 3.

Figure 5.4 shows the development directory structure for Time Expression. It is
important to review this again because we will create several files in this chapter and
refer to them using their relative path names—for example, model/Department .java
means file Department .java in the timex/src/java/com/visualpatterns/timex/
model/ directory.

Hibernate XML Files and Related Java Files

We will place the three types of Hibernate files (discussed next), a Hibernate configura-
tion file, related Java classes, and table mapping files, in the same directory. This is the
practice recommended in Hibernate documentation and examples.

The naming convention for the Hibernate mapping files is typically the name of the
Java class name with a suffix of .hbm.xml—for example, Timesheet .hbm.xml.

91

92 Chapter 5 Using Hibernate for Persistent Objects

Exploded web archive

— | Compiled classes

 puldxml ["Ant build script |
O dse ——————
I lib External JAR files
_ local.properties [Properties for build.xml |
v [sec
> [_,! conf [A g i ﬁles]
v e — [Javasourcecode
v [J com
w |2 visualpatterns

timex

[3 comroller
| job

| Static web files |

v [web
» [
- l‘ includes

Figure 5.4 The Time Expression development directory structure.

Hibernate Configuration File (hibernate.cfg.xml)

First we will create a file named hibernate.cfg.xml in the timex/src/java/com/
visualpatterns/timex/model/ directory. This file will contain a SessionFactory defini-
tion (discussed later in this chapter) and reference to our first mapping file, Department .
hbm.xml. Let’s review some of the interesting lines from this file:

The following lines show the HSQLDB-related configuration (as we saw in
timexhsgldb.xml, previously):

<property name="connection.driver class">
org.hsqgldb.jdbcDriver

</propertys>

<property name="connection.url">
jdbc:hsgldb:hsgl://localhost:9005/timex

</property>

<property name="connection.username">sa</propertys>

The following lines from our hibernate.cfg.xml show the reference to the map-
ping files we will create in this chapter:
<mapping resource="Department.hbm.xml"/>
<mapping resource="Employee.hbm.xml"/>
<mapping resource="Timesheet.hbm.xml"/>

Working with Hibernate

Using the complete hibernate.cfg.xml file, we will be able to create a Hibernate
SessionFactory (discussed later in this chapter).

Mapping File (Department .hbm.xml)

We will create our first mapping file, Department . hbm.xml, in the timex/src/java/
com/visualpatterns/timex/model/ dhﬁctory

To keep things simple, I chose to start with the Department table because it is one of
the simpler tables, and we will also use it in our slightly more complex example later in
this chapter. Let’s review the Department . hbm.xml file a bit closer.

The following line maps our Java class to the database table:

<class name="com.visualpatterns.timex.model.Department" table="Department"s>

The following line establishes departmentcCode as the object id (as we discussed
earlier) and the database primary key, and also maps the two:
<id name="departmentCode" column="departmentCode">

The generator class="assigned" value shown next tells Hibernate that we will be
responsible for setting the value of this object id in our Java class, and Hibernate does

not need to do anything special, such as get the next sequence from an auto-increment
type column (for example, HSQLDB’ identity data type):

<generator class="assigned"/>
This line maps the remainder of the Department table—that is, the name column to a
name property in the Department.java class file (discussed next):

<property name="name" column="name"/>

Java Code

We will write two Java classes, one called com.visualpatterns.timex.model.
Department and another called com.visualpatterns.timex.test.HibernateTest

Department.java

’TheDepartment.java(undersrc/java/com/visualpatterns/timex/model)Conuﬂns
a simple JavaBean class, which provides accessors (get methods or getters) and mutators
(set methods or setters) for these two variables:

String departmentCode;
String name;

HibernateTest.java

Now we will write some simple code to accomplish two things: test the Hibernate
setup and also look at a basic example of how to use Hibernate. Let’s review our
HibernateTest.javafﬂe(undersrc/java/com/visualpatterns/timex/test)“ep—

by-step.

93

94

Chapter 5 Using Hibernate for Persistent Objects

The first few lines show how we obtain a Hibernate SessionFactory class and get a
single Department record back for the departmentCode “IT”:

SessionFactory sessionFactory = new Configuration() .configure ()
.buildSessionFactory () ;

Session session = sessionFactory.getCurrentSession() ;

Transaction tx = session.beginTransaction() ;

Department department;

department = (Department) session.get (Department.class, "IT");

System.out.println("Name for IT = + department.getName ()) ;

The following lines shows how to get and process a java.util.List of Department
objects.

List departmentList = session.createQuery("from Department").list();
for (int i = 0; i < departmentList.size(); i++)

{

department = (Department) departmentList.get(i);

System.out.println("Row " + (i + 1) + "> " + department.getName ()

+ " (" + department.getDepartmentCode() + ")");

The remaining notable line closes out theSessionFactory.

sessionFactory.close() ;

Note the HibernateTest .java file provides a simple example of using Hibernate by
bunching all the code in a single (main) method. Later in this chapter, we will look at a
better way of building a SessionFactory and subsequently obtaining Session objects
from it.

Now we are going to try running our test using our Ant build.xml file, introduced
in Chapter 4, “Environment Setup: JDK, Ant, and JUnit.” Our Ant target,
hibernatetest, is as follows:

<target name="hibernatetest" depends="build">
<java fork="true" classpathref="master-classpath"
classname="com.visualpatterns.timex.test.HibernateTest"/>
</target>
To run our test, we need to:
= Change (cd) to the timex/ (top-level) directory.

= Type the ant hibernatetest command, as shown in Figure 5.5.

Notice that there are errors on the screen, such as package org.hibernate does not
exist.This means it is time to download and set up Hibernate in our environment!

Working with Hibernate 95

C:\timex>ant hibernatetest
Buildfile: build.xml

[javac] Compiling 3 source files to C:\timex\build\timex\WEB-INF\classes

[javac] depend attribute is not supported by the modern compiler

[javac] C:\timex\srec\java\com\visualpatterns\timex\test\HibernateTest.jay|
: package org.hibernate does not exist

[javac] import org.hibernate.Session;

[javac] "

[javac] C:\timex\srec\java\com\visualpatterns\timex\test\HibernateTest.jay|

: package org.hibernate does not exist

[javac] import org.hibernate.SessionFactory;

[javac] "

[javac] C:\timex\srec\java\com\visualpatterns\timex\test\HibernateTest.jay|
: package org.hibernate does not exist

[javac] import org.hibernate.Transaction;

[javac] "

[javac] C:\timex\srec\java\com\visualpatterns\timex\test\HibernateTest.jay|
: package org.hibernate.cfg does not exist

[javac] import org.hibernate.cfg.Configuration;

[javac] "

[javac] C:\timex\srec\java\com\visualpatterns\timex\test\HibernateTest.jay|
: cannot find symbol

[javac] symbol : class SessionFactor

Figure 5.5 Ant errors due to missing 1ib/hibernate3.jar
file in classpath.

Installing Hibernate

Hibernate can be found at http://hibernate.org. At this point, we will follow the setup
instructions provided on this site to download and install it to the recommended (or
default) directory.

After we have the Hibernate installed, we will copy all the recommended libraries
(for example, hibernate3.jar and antlr.jar) in the Hibernate documentation to the
rapidjava/lib directory.

Note that I also needed to copy ehcache-1.1.jar and antlr-2.7.6rcl.jar (which
was not mentioned in the Hibernate reference documentation at the time of this writ-
ing). Here is what I ended up with, in my timex/1ib/ directory:

m antlr-2.7.6rcl.jar

= asm-attrs.jar

= asm.jar

= cglib-2.1.3.jar

® commons-collections-2.1.1.jar
= commons-logging-1.0.4.jar

s dom4j-1.6.1.jar

http://hibernate.org

96 Chapter 5 Using Hibernate for Persistent Objects

» ehcache-1.1.jar
= hibernate3.jar
= jta.jar

= Jog4j-1.2.11.jar

Before rerunning our test, we need to temporarily alter the hibernate.cfg.xml file.
Because we have only Department .hbm.xml implemented, we need to temporarily
remove the following lines (to conduct this test) from our hibernate.cfg.xml file:
<mapping resource="Timesheet.hbm.xml"/>

<mapping resource="Employee.hbm.xml"/>

Finally, we can rerun the ant hibernatetest command. If we run the ant as shown
earlier in Figure 5.5, this time our command is successful, as shown in Figure 5.6!

updateconfig:

[echo] Environment config file: local.properties

[copy] Copying 1 file to C:\timex\build\timex\WEB-INF\classes
updatelib:

build:

hibernatetest:

[java] loghj:WARN No appenders could be found for logger (org.hibernate.
.Environment).

[java] loghj:WARN Please initialize the logl4j system properly.

[java] Hibernate: select department®_.departmentCode as departmel_0_0_,
artment@_.name as name®_0_ from Department departmentO_ where departmentO_.de|
tmentCode=?

[java] Name for IT = Information Technology

[java] Hibernate: select departmentO_.departmentCode as departmel_0_, del
tment@_.name as name®_ from Department departmentO_

[java] Row 1> Accounting (AC)

[java] Row 2> Customer Support (CS)

[java] Row 3> Human Resources (HR)

[java] Row 4> Information Technology (IT)

BUILD SUCCESSFUL
Total time: 3 seconds
C:\timex>
[

Figure 5.6 Output of the HibernateTest class.

At this point, we can reinsert the following two lines into the hibernate.cfg.xml file:

<mapping resource="Timesheet.hbm.xml"/>
<mapping resource="Employee.hbm.xml"/>

Notice the log4j warning messages in Figure 5.6. We could ignore these because they
are harmless. However, we’ll go ahead and create a minimal 1og4j.properties file
(available in this book’ code zip file) in our timex/src/conf directory. Logging will be
discussed in more detail in Chapter 9, “Logging, Debugging, Monitoring, and Profiling.”

Working with Hibernate

Hibernate Basics

Now that we have looked at a small preview of Hibernate-related Java code and XML
files, let’s get a high-level understanding of some basic Hibernate concepts before we
look at slightly more complex Hibernate code for the Time Expression application.

Dialect

Hibernate provides dialect classes for the various supported databases mentioned earlier.
This 1s essentially to ensure that the correct and most optimized SQL is used for the
database product being used. For example, we are using the
org.hibernate.dialect.HSQLDialect class for HSQLDB.

SessionFactory, Session, and Transaction

SessionFactory, as you might guess, manages a collection of Session objects. Each
SessionFactory is mapped to a single database. The Session object essentially is a wrapper
for a JDBC connection and is also a factory for Transaction objects. A Transaction is a
wrapper for the underlying transaction, typically a JDBC transaction.

Built-In Connection Pooling

A side but important benefit of using Hibernate is that it provides built-in database con-
nection pooling—hence, one less thing for us to worry about. Connection pooling, as
you might be aware, is used to create a specified pool of open database connections (see
connection.pool size property in our hibernate.cfg.xml). By using a pool of con-
nections, we can achieve more efficiency in our use of the database because existing open
connections are reused. Furthermore, we get performance gains because we reuse open
connections, thereby avoiding any delays in opening and closing database connections.

Working with Database Records (as Java Objects)

Several methods available in Hibernate’s org.hibernate.Session interface enable us to
work with database records as objects. The most notable methods are save, load, get,
update, merge, saveOrUpdate, delete, and createQuery (several of these are demonstrated later
in this chapter).

Another noteworthy interface to mention is org.hibernate.Query, which is returned
by calling the Session.createQuery Hibernate method in our HibernateTest.java file.
The Query class can be used to obtain a group of records in the form of a java.util.
Collection object (for example, Hibernate provides mapping elements such as an array,
set, bag, and others).

One last interface worth mentioning here is org.hibernate.Criteria, which can be
used for database queries in an OO fashion, as an alternative to the Query class (which
is HQL based).

We will look at examples of most of these interfaces and methods in this chapter.

97

98

Chapter 5 Using Hibernate for Persistent Objects

Object States

Hibernate defines three states for object instances: persistent, detached, and transient.
Persistent objects are ones that are currently associated with a Hibernate session; as soon
as the session is closed (or the object is evicted), the objects become detached. Hibernate
ensures that Java objects in a persistent state for an active session match the correspon-
ding record(s) in the database. Transient objects are ones that are not (and most likely,
never were) associated with Hibernate session and also do not have an object identity.

Data Types

Hibernate supports a large number of Java, SQL, and Hibernate types—more than you
will probably need for a typical application. Also, you can have Hibernate automatically
convert from one type to another by using a different type for a given property in a
entity/class mapping file.

The following is a partial list of types supported: integer, long, short, float, double,
character, byte, boolean, yes_no, true_false, string, date, time, timestamp, calendar,
calendar_date, big_decimal, big_integer, locale, timezone, currency, class, binary, text,
serializable, clob, and blob.

Hibernate Query Language (HQL)

HQL is Hibernate’s robust SQL-like query language, which is not case sensitive. HQL
has many of the features defined in ANSI SQL and beyond, because it is fully object-
oriented and supports OO concepts such as inheritance, polymorphism, and more. The
following are some basic clauses and features supported in HQL.You will see some
examples of these later in the chapter:

= SELECT, UPDATE, DELETE, INSERT, FROM, WHERE, GROUP BY,
ORDER BY

= Joins (inner, outer)
= Subqueries
= Aggregate functions (for example, sum and count)

= Expressions and functions (mathematical, string, date, internal functions, and more)

Furthermore, Hibernate provides methods that enable you to use native SQL (dis-
cussed in Chapter 10, “Beyond the Basics”) for the somewhat rare occasions when HQL
is insufficient.

You will see basic examples of HQL throughout this chapter.

Unique Object Identifier (<id>)

Hibernate requires mapped classes to identify a table’s primary key via the <id> element.
For example, the following code excerpt from our Department .hbm.xml file shows
departmentCode defined as the primary key (for the Department table mapping):

Working with Hibernate

<id name="departmentCode" column="departmentCode">
<generator class="assigned"/>
</id>

Notice the generator class of type “assigned” in this code excerpt; this means the
application will provide a value for this id property prior to any database operations on
this object.

Hibernate provides several ways to generate unique ids for inserted records, including
increment, identity, sequence, hilo, seqhilo, uuid, guid, native, assigned, select, and foreign.
The hibernate reference documentation provides ample explanation of each of these. We
will use the assigned and identity generators for our examples.

Mandatory Hibernate Transactions

According to the Hibernate documentation related to working with this API, “transac-
tions are never optional, all communication with a database has to occur inside a transac-
tion, no matter if you read or write data.”

Hence, you will find the following types of calls in all our Hibernate-related code:

» session.beginTransaction()
= session.getTransaction() .commit ()

® session.getTransaction() .rollback()

HibernateUtil.java

The Hibernate reference documentation recommends the use of a helper class (named
HibernateUtil, for example) for setting up a SessionFactory and providing access to it
(via a getter method).

A sample HibernateUtil.java class file can be found under the timex\src\java\
com\visualpatterns\timex\test directory. This helper class contains only a few lines
of actual code. The first notable lines are the following, which build a SessionFactory
object:
sessionFactory = new Configuration() .configure ()

.buildSessionFactory () ;

The only other interesting code in this class is a convenient getter method to return
the SessionFactory, as shown here:

public static SessionFactory getSessionFactory ()

{

return sessionFactory;

Then we can obtain a Session object, as demonstrated in this code snippet, which
fetches a list of Department database objects:

99

100

Chapter 5 Using Hibernate for Persistent Objects

List departmentlList=null;

Session session = HibernateUtil.getSessionFactory () .getCurrentSession() ;
session.beginTransaction() ;

departmentList = session.createQuery("from Department ORDER BY name").list();
session.getTransaction() .commit () ;

Further Reading

Again, we have looked only at high-level explanations of the various Hibernate con-
cepts. I will refer you to the Hibernate documentation (found on their website) for
detailed information on the concepts discussed here; however, we will be using many of
these concepts in our examples, so I will provide additional explanations and code exam-
ples along the way.

Now that we have the basics covered, let’s begin doing some real work by imple-
menting a full-fledged example to exercise some of Hibernate’s many features.

Developing TimesheetManager.java Using Hibernate

If you think about the business requirements of Time Expression, combined with the
prototyped screens we looked at in Chapter 2, “The Sample Application: An Online
Timesheet System,” and the database model shown in Figure 5.2, you can easily see that
the Timesheet table is at the heart of our sample application (Time Expression). Hence,
I've chosen to use this table as an example in this chapter because our requirements will
exercise both read and write type database operations on this table. For example, most
screens in Time Expression will either modify data in this table or fetch data from it.
Based on the class/package design we defined in Chapter 3 and the Hibernate con-

figuration files needed, here are the files we will end up with for the example to follow:

= test/TimesheetManagerTest.java
® model/TimesheetManager.java
® model/Timesheet.java

® model/Timesheet .hbm.xml
The following sections review each of these files in more detail.

TimesheetManagerTest.java

Let’s begin by writing a little JUnit test class. Remember, write tests first whenever pos-
sible. We already looked at the reasons and benefits of writing tests first in Chapter 4, so I
won't repeat the same information here.

The only class we need to write a unit test for is TimesheetManager because
Timesheet.java is a JavaBean and hence has no real logic in its methods (just setters and
getters).

If we analyze the following two screens from Chapter 2, we can come up with the
type of functionality we need our TimesheetManager class to provide:

Working with Hibernate

= Timesheet List—A list of Timesheet records for a given employeeld.

= Enter Hours—The capability to insert and update a single Timesheet record.

Let’s look at an example of the functionality we need and how we might implement it.
We know we need a list of Timesheet records for the Timesheet List screen (shown in
Figure 5.7); this list will be fetched from the database using an employeeld (that is, the
employee who is logged in) and also for the current pay period. Hence, I can already
picture a method in the TimesheetManager class with a signature that looks something
like this: getTimesheet (int employeeId, Date periodEndingDate). So, we can easily
write a test case (method) such as testGetByEmployeeIdAndPeriod ().

Timesheet List

Click here to add a new timesheet, or select one from the list below.

Period Ending Hours | Timesheet Id
January 21, 2007 39.50 1234
January 14, 2007 43.00 1239
January 07, 2007 40.00 1242
December 31, 2006 | 40.00 1299

Figure 5.7 Timesheet list prototype screen (from Chapter 2).

This book’s code zip file contains TimesheetManagerTest.java, a complete JUnit test
suite class to exercise all the methods in our TimesheetManager class.

Note

Note that | didn't write the entire test class in one shot. As | mentioned earlier, unit testing and coding hap-
pen in the same sitting. So you would write a little test code (perhaps a few lines in a single method), write
a little implementation code, compile, try, and repeat the steps until the method has been fully imple-
mented. The idea is to write small methods, which can be tested relatively easily. This technique also enables
us to write the minimal code required to satisfy our user requirements (nothing more, nothing less).

Let’s review some of the test code behind this class next; we won’t walk through the
entire file because we only require fetching (get) of Timesheet objects and saving of
individual ones, so let’s review methods related to these operations next.

testGetByEmployeeId()

Let’s start with the testGetByEmployeeId() method. The first few lines of this code
ensure that we get a java.util.List of Timesheet objects back before proceeding:

101

102

Chapter 5 Using Hibernate for Persistent Objects

List timesheetlist = timesheetManager.getTimesheets() ;
assertNotNull (timesheetList) ;

assertTrue (timesheetlList.size() > 0);

After we know we have at least one Timesheet object, we can fetch Timesheet
records using the employeeld found in the first Timesheet object, as shown here:

int employeelId=((Timesheet)timesheetList.get (0)).getEmployeeId() ;
timesheetList = timesheetManager.getTimesheets (employeeId) ;
assertNotNull (timesheetList) ;

Now we can simply test each Timesheet object in the list to ensure that these records
belong to the employeeld we requested, as demonstrated next:

Timesheet timesheet;
for (int i=0; i < timesheetList.size(); i++)

{

timesheet = (Timesheet)timesheetList.get (i) ;
assertEquals (employeeId, timesheet.getEmployeeId());

System.out.println(">>>> Department name =
+ timesheet.getDepartment () .getName()) ;

testSaveSingle ()

Let’s review one more test method from our TimesheetManagerTest.java file,
testSaveSingle. The first half of this method sets up a Timesheet object to save; how-
ever, the following lines are worth exploring:

timesheetManager.saveTimesheet (timesheet) ;

Timesheet timesheet2 = timesheetManager.getTimesheet (EMPLOYEE ID,
periodEndingDate) ;

assertEquals (timesheet2.getEmployeeId(), timesheet.getEmployeeId());

assertEquals (timesheet2.getStatusCode(), "P");

We essentially save a Timesheet object, and then fetch it back from the database and
compare the two objects’ attributes using the assertEquals method.

TimesheetManager.java

Next we will look at our bread-and-butter class (so to speak). We will use this class
extensively in Chapter 7 when we implement our user interfaces (for example,
Timesheet List and Enter Hours).

The key methods we will review here are getTimesheets, getTimesheet, and
saveTimesheet.

Let’s start with the TimesheetManager. getTimesheets (int employeeId) method.
The key lines code essentially get a java.util.List of Timesheet objects from the database
using the Hibernate Session.createQuery method, as shown here:

Working with Hibernate

timesheetList = session.createQuery(
i

"from Timesheet" + " where employeeld = ?").setInteger (0,
employeeId) .list();

The next method, TimesheetManager.getTimesheet (int employeeld, Date
periodEndingDate), is slightly different from the getTimesheets (int employeeId)
method we just looked at; the key difference is the use of Hibernate’s uniqueResult
method, which is a convenient method to get only one object back from a query. The
following code shows the notable lines from our get Timesheet method:

timesheet = (Timesheet) session.createQuery(

"from Timesheet" + " where employeeld = ?"
"

+ " and periodEndingDate = ?").setInteger (0,
employeeld) .setDate(l, periodEndingDate) .uniqueResult () ;

The last method in TimesheetManager that we will review here is
saveTimesheet (Timesheet timesheet).This is a very straightforward method, and the
only code worth showing here is the Hibernate’s session.saveorUpdate method,
which either does an INSERT or UPDATE underneath the covers, depending on
whether the record exists in the database:

session.saveOrUpdate (timesheet)

Timesheet.java (and Timesheet .hbm.xml)

Before we can successfully compile and use TimesheetManager.java, we need to
quickly write files it relies on, namely Timesheet.java and its mapping file,

Timesheet .hbm.xml (both available in this book’s code file). There is not much to these
files; the Java code is a simple JavaBean and the XML file simply maps the bean’s proper-
ties to the appropriate database columns.

Employee.* and DepartmentManager.java

The other files provided in this book’ code zip file but not explicitly discussed here
include the following as we will need these to implement our first five user stories

(page 36).
At this point, we will create these files in our src/java/com/visualpatterns/
timex/model directory:

= DepartmentManager.java
= Employee.hbm.xml
= Employee.java

= EmployeeManager.java

103

104

Chapter 5 Using Hibernate for Persistent Objects

Files Required in Classpath

The various Hibernate files, such as the hibernate.cfg.xml and mapping files (for
example, Department . hbm.xml) need to be in the CLASSPATH; accordingly our Ant
script, build.xml, automatically copies these files to the timex/build/timex/WEB-INF/
classes directory during a build process.

Running the Test Suite Using Ant

Now we can run our test suite (TimesheetManagerTest) discussed previously. However,
before we can run the test suite, we need to run HSQLDB in server mode. We can
either do it manually as shown here:

java -cp /hsqgldb/lib/hsgldb.jar org.hsqgldb.Server
w -database.0 data\time xdb -dbname.0 timex -port 9005

Note
I've assumed the HSQLDB directory is installed under the root directory (that is, /hsqgldb); alter the java
command shown here according to your environment.

Or we can run it using our handy Ant script, as follows:

ant -f timexhsgldb.xml starthsqgl

After we start up the HSQLDB server successfully and have all our files created in the
correct directories, we can test our new classes by typing ant rebuild test on the
command line (from the timex/ top-level directory). The output of this command is
shown Figure 5.8.

Deleting Records

We covered database reads and writes. However, we have not covered deleting records, a
basic need in any CRUD application. Deleting records is not part of our Time
Expression application’s requirement. Nevertheless, I've added one for demonstration
purposes. The only thing different from what we have already seen is the Session.delete,
which deletes a database record (object) and Session.load, which fetches a record from
the database, as demonstrated here:

session.delete (session.load (Timesheet.class, new Integer (timesheetId)));

Alternatively, the delete code can be written using the Query.executeUpdate ()
method, useful for bulk processing, as shown here:
int updated = session.createQuery ("DELETE from Timesheet"
+ " where timesheetId = ?")
.setInteger (0, timesheetId)
.executeUpdate () ;

Working with Hibernate

" Command rrom 5]

timesheet®_.minutesMon as minutesMonl_, timesheet®_.minutesTue as minutesTue[|

timesheetO_.minuteslled as minuteslled1_, timesheetO_.minutesThu as minutesThu

timesheetO_.minutesFri as minutesFril_, timesheetO_.minutesSat as minutesSat

timesheetO_.minutesSun as minutesSuni_ from Timesheet timesheet®_ order by t
sheetO_.timesheetId

[junit] Hibernate: select department®_.departmentCode as departmel_6_0_,
artmentO_.name as name0_0_ from Department departmentO_ where departmentO_.de|
tmentCode=?

[junit] Hibernate: select department®_.departmentCode as departmel_0_0_,
artmentO_.name as name0_0_ from Department departmentO_ where departmentO_.de|
tmentCode=?

[junit] Hibernate: select timesheetO_.timesheetId as timesheel1_1_0_, time|
etd_.employeeld as employeeIdl_0_, timesheetO_.statusCode as statusCodel_0_,
esheet®_.periodEndingDate as periodEn4_1_0_, timesheetO_.departmentCode as de|
tmeS5_1_0_, timesheetO_.minutesMon as minutesMon1_0_, timesheetO_.minutesTue a|
inutesTuel_0_, timesheet®_.minutesled as minuteslledl_0_, timesheetd_.minutesT|
as minutesThul_0_, timesheetd_.minutesFri as minutesFril_o0_, timesheetO_.minu]
Sat as minutesSat1_0_, timesheetO_.minutesSun as minutesSun1_0_ from Timeshee|
imesheet®_ where timesheetd_.timesheetId=?

[junit] Hibernate: select department®_.departmentCode as departmel_6_0_,
artmentO_.name as name0_0_ from Department departmentO_ where departmentO_.de|
tmentCode=?

[junit] Tests run: 5, Failures: @, Errors: 0, Time elapsed: 1.609 sec

BUILD SUCCESSFUL
Total time: Y4 seconds
C:\anil\rapidjava\timex>

Figure 5.8 Running JUnit test suites via Ant.

Criteria Queries

Until now, we have utilized Hibernate’s Query interface (via the Session.createQuery
method) to fetch records from the database. However, there is a slightly more dynamic,
and arguably cleaner, way of fetching records using Hibernate’s Criteria interface. This
provides a more object-oriented approach, which can result in fewer bugs because it can
be type checked and can avoid potential HQL-related syntax errors/exceptions. This
method is cleaner because developer does use a more object-oriented approach—more
objects rather than simple text queries, hence, more type checking, hence fewer
bugs, especially, QueryExceptions. It could be a problem though if query syntax is
too complex.

The Criteria interface can be obtained using the Session.createCriteria method
as shown in the following code excerpt:

timesheetList = session.createCriteria(Timesheet.class)
.add (Restrictions.eq("employeeId", employeeld))
Llist();

In addition, Hibernate provides several classes in the org.hibernate.criterion package,
which work with the Criteria interface to provide robust querying functionality using
objects. Some examples of these classes are Restrictions, Order, Junction, Distinct, and
several others.

105

106

Chapter 5 Using Hibernate for Persistent Objects

Exception Handling

Most of the database-related exceptions thrown while using the Hibernate API are
wrapped inside org.hibernate.HibernateException; more details on this can be found
in Hibernate’s reference manual. Meanwhile, the following strategy is recommended in
Hibernate’s reference manual for handling database exceptions:

“If the Session throws an exception (including any SQLException), you should
immediately rollback the database transaction, call Session.close() and discard the Session
instance. Certain methods of Session will not leave the session in a consistent state. No
exception thrown by Hibernate can be treated as recoverable. Ensure that the Session
will be closed by calling close() in a finally block.”

We are following these guidelines, of course. However, you might also have noticed in
our model code that we rethrow any caught exceptions. It is generally a good idea to
pass exceptions up the call stack, so the top-level methods can determine how to process
the exception. We will discuss exception handling in more detail in Chapter 10.

I think the problem with this piece of code may be that the developer will never
know what exception has actually occurred, because all we do in the catch block is roll
back the transaction. Some kind of logging mechanism or exception propagation mecha-
nism to outer callers is necessary to make sure the exception is noticed and handled
properly (otherwise, we’ll never know about the failure details, except by knowing that
timesheet did not get saved).

Other Hibernate Features

Up to now in this chapter, we have looked at some basic Hibernate features. Next, let’s
review some additional, slightly more advanced, Hibernate concepts.

Associations

The physical database design, the mapping, and the Java classes for Time Expression are
all fairly straightforward. We have essentially used a one-class-per-table mapping strategy
to keep the design simple and fast. However, we have utilized a many-to-one association
to fetch the corresponding Department record, which we can use to obtain the name of
the department. We will need this functionality on various Time Expression screens that
display the full Department.name (versus just the Department.departmentCode).

Let’s dissect the Java code and XML mapping related to this association.

First, the persistent attribute Java bean code can be found in Department.java file; an
excerpt of it, is shown here:

private Department department;

public Department getDepartment ()

{

return department;

Other Hibernate Features

public void setDepartment (Department department)

{

this.department = department;

Secondly, the many-to-one mapping can be found in our Timesheet .hbm.xml file:

<many-to-one name="department" column="departmentCode"
class="com.visualpatterns.timex.model.Department"
lazy="false" not-found="ignore" cascade="none"
insert="false" update="false"/>

Finally, the code on how we obtain the department name can be found in our
TimesheetManagerTest.java file:

System.out.println(">>>> Department name = +

timesheet.getDepartment () .getName ()) ;

Locking Objects (Concurrency Control)

Database locking can apply to any database applications, not just ones based on ORM
technologies. There are two common strategies when dealing with updates to database
records, pessimistic locking and optimistic locking.

Optimistic locking is more scalable than pessimistic locking when dealing with a
highly concurrent environment. However pessimistic locking is a better solution for situ-
ations where the possibility of simultaneous updates to the same data by multiple sources
(for example, users) is common, hence making the possibility of “data clobbering,” a
likely scenario. Let’s look at a brief explanation of each of these two locking strategies.

Pessimistic locking is when you want to reserve a record for exclusive update by
locking the database record (or entire table). Hibernate supports pessimistic locking
(using the underlying database, not in-memory) via one of the following methods:

m Session.get

= Session.load

= Session.lock

= Session.refresh

= Query.setLockMode

Although each of the methods accepts different parameters, the one common parameter
across all is the LockMode class, which provides various locking modes such as NONE,
READ, UPGRADE, UPGRADE_NOWAIT, and WRITE. For example, to obtain a
Timesheet record for updating, we could use the following code (assuming the underlying
database supports locking):

public Timesheet getTimesheetWithLock (int timesheetId)

{

Session session =

107

108 Chapter 5 Using Hibernate for Persistent Objects

HibernateUtil.getSessionFactory () .getCurrentSession() ;
session.beginTransaction() ;
Timesheet timesheet = (Timesheet)session.get (Timesheet.class,
new Integer (timesheetId), LockMode.UPGRADE) ;
session.getTransaction () .commit () ;
session.close() ;0

return timesheet;

Optimistic locking means that you will not lock a given database record or table and
instead check a column/property of some sort (for example, a timestamp column) to
ensure the data has not changed since you read it. Hibernate supports this using a
version property, which can either be checked manually by the application or automati-
cally by Hibernate for a given session. For example, the following code excerpt is taken
verbatim out of the Hibernate reference documentation and shows how an application
can manually compare the oldversion with the current version using a getter method
ﬁbrexanqﬂe,getVersiony

// foo is an instance loaded by a previous Session

session = factory.openSession() ;

int oldVersion = foo.getVersion() ;

session.load(foo, foo.getKey());

if (oldversion!=foo.getVersion) throw new StaleObjectStateException();
foo.setProperty ("bar") ;

session.flush() ;

session.connection () .commit () ;

session.close() ;

StaleObjectStateException, shown in the previous example, is an exception in the
org.hibernate package.

Lots More Hibernate

Although we covered a lot of material in this chapter, there is much more to Hibernate.
However, as I mentioned earlier, entire books exist on Hibernate, and we cannot cover
everything about this technology in one chapter. Nevertheless, I have given you enough
here to build some reasonably complex applications using Java, Hibernate, and relational
databases.

Other Hibernate advanced topics not covered here, but ones you might want to
explore, include

= Advanced mappings (for example, bidirectional associations, ternary associations,
sorted collections, component mapping, inheritance mapping, and more)

= Advanced HQL
= Annotations (and XDoclet)

= Filters

Summary

» Hibernate SchemaExport utility

= Inheritance mapping

= Interceptors

= Locking objects

= Performance improvement strategies (for example, fetching strategies, second-level
cache)

= Scrollable iteration and pagination

= Transaction management (advanced topics)

= Other areas such as using stored procedures, native SQL, and more

Summary

In this chapter, we developed the classes we need to implement functionality for the first
five user stories (page 36). Furthermore, these classes are directly relevant to the code we
will develop in Chapter 7 and the scheduled jobs in Chapter 10.

In this chapter, we accomplished the following:

= Learned what object-relational mapping technology is and the benefits it offers
= Installed HSQLDB

= Designed our database

= Used DDL script to create our database tables and some test data

= Setup Hibernate, covered its basic concepts, and began working with it

= Developed a simple and then a slightly more complex example (along with a cor-
responding unit test suite class) of using Hibernate for Time Expression’s
Department and Timesheet tables

= Discussed advanced Hibernate topics and other features for you to explore (should
you need them)

However, we are not done with Hibernate just yet! For example, we will use some of
the classes coded in this chapter in our web application in the next chapter. In addition, I
will demonstrate how we can use an Eclipse plug-in to generate the Hibernate mapping
files (in Chapter 8, “The Eclipse Phenomenon!”).

For now, we are ready to dive into the next two chapters where we enter the world
of user interfaces by using the Spring MVC web framework to develop our web UL

We will also begin working with the Eclipse SDK in Chapter 8 and see how much
time IDEs can save. Till now, I have intentionally used the command line because I truly
believe learning the fundamentals first by using the manual way will help you better
understand how things work behind the scenes. It can also help you drop back to the
command line in case the IDE does not provide a certain functionality or it has a
known bug.

109

110

Chapter 5 Using Hibernate for Persistent Objects

Recommended Resources

The following websites are relevant to and provide additional information on the topics

discussed in this chapter:

Agile Data http://www.agiledata.org
Agile Modeling http://www.agilemodeling.com
Apache ObJectRelationalBridge (OJB) http://db.apache.org/ojb/

Introduction to Concurrency Control http://www.agiledata.org/essays/
concurrencyControl.html

Cocobase http://www.thoughtinc.com/

Database refactoring http://www.agiledata.org/essays/databaseR efactoring.html
Domain-Driven Design http://domaindrivendesign.org/
Hibernate forums http://forum.hibernate.org/

Hibernate http://hibernate.org/

HSQLDB http://hsqldb.org/

iBATIS Java http://ibatis.apache.org

JDO and EJB 3.0 http://java.sun.com

JORM http://jorm.objectweb.org/

Object Data Management Group http://www.odmg.org/
SimpleORM http://www.simpleorm.org/

The Castor Project http://www.castor.org/

Cocobase http://www.thoughtinc.com/

http://www.agiledata.org
http://www.agilemodeling.com
http://db.apache.org/ojb/
http://www.agiledata.org/essays/concurrencyControl.html
http://www.agiledata.org/essays/concurrencyControl.html
http://www.thoughtinc.com/
http://www.agiledata.org/essays/databaseRefactoring.html
http://domaindrivendesign.org/
http://forum.hibernate.org/
http://hibernate.org/
http://hsqldb.org/
http://ibatis.apache.org
http://java.sun.com
http://jorm.objectweb.org/
http://www.odmg.org/
http://www.simpleorm.org/
http://www.castor.org/
http://www.thoughtinc.com/

