

243

C H A P T E R

8

Entity Bean Application
Example

T

HIS

 chapter uses an example of a distributed application to illustrate how enter-
prise applications use entity beans to model business entities. The example applica-
tion uses entity beans to store the persistent state of the enterprise application. The
chapter also shows how organizations develop the respective components of the
application and how, ultimately, the customer deploys the entire application. The
example application illustrates

¥

The implementation of several entity beans to highlight the various issues
in managing persistence.

 Entity beans use various styles to implement their
persistence; thus, we illustrate the use of both CMP and BMP. We focus on the
CMP programming model defined in the EJB 2.0 and 2.1 specifications. The
example shows how to construct an abstract schema consisting of multiple en-
tity beans related through their local interfaces, using container-managed rela-
tionships.

¥ The use of local interfaces to develop lightweight entity beans.

The example
contains several entity beans that have local interfaces. Local interfaces allow
clients to access the entity beans in an efficient manner and also avoid the com-
plexities of programming distributed objects.

¥

The use of EJB QL to develop portable queries on the applicationÕs per-
sistent state.

 The example illustrates the use of EJB QL queries for find meth-
ods that can be directly invoked from clients, as well as for select methods,
which are used internally by the bean.

¥

The use of home business methods

. We show how home business methods

matena8.fm Page 243 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE

244

are used to model aggregate operations that do not operate on a specific entity
bean instance.

¥

The techniques for developing applications for different customers with
different operational environments.

An ISV would like to sell the applica-
tion to as broad a range of customers and operational environments as possible.
Our example illustrates how the ISV (1) uses entity beans with CMP to inte-
grate its application with the customerÕs existing applications and database and
(2) uses remote interfaces to allow flexibility in the deployment of the applica-
tion with respect to client applications.

¥

The design issues for remote interfaces.

 The developer should design the re-
mote interface so that its methods take into account the costs of distribution.

¥

The techniques for caching an entity objectÕs persistent state.

 The example
illustrates how to use the instance variables of an entity bean class, along with
the

ejbLoad

 and

ejbStore

 methods, to cache the entity objectÕs persistent state.

¥ The correct approach that a client application, such as

EnrollmentBean

,
takes to use the entity bean client-view API.

¥

The techniques for ÒsubclassingÓ an entity bean with CMP to create an
entity bean with BMP.

 The subclass implements the data access methods.

¥

The packaging of enterprise beans into J2EE standard files.

 The example
illustrates the packaging of enterprise beans and their dependent parts into the
standard ejb-jar file and the J2EE enterprise application archive file (

.ear

 file).

¥

The parts of an application that do

not

 have to be developed.

 The example
code is also interesting in what it does not includeÑ namely, database access
code in the CMP entity beans and no transaction or security managementÐre-
lated code. The deployment descriptors describe declaratively the transaction
and security requirements for entity beans. Transaction management is de-
scribed in Chapter 10, Understanding Transactions; security management, in
Chapter 11, Managing Security.

This chapter begins with the description of the problem. Then, to give you a
feel for the scope of the application, the application components are described
from a high level, followed by detailed information on each part of the applica-
tion, from the perspective of the vendor that developed the part.

matena8.fm Page 244 Tuesday, January 7, 2003 4:34 PM

 APPLICATION OVERVIEW

245

8.1 Application Overview

Our example application illustrates the development and deployment of an enter-
prise application that consists of components developed by multiple vendors.

8.1.1 Problem Description

The example entity bean application implements a beneÞts self-service application.
An employee uses this application to select and enroll in the beneÞts plans offered
by the company. From the end-user perspective, the application is identical to the
beneÞts application built using session beans, described in Chapter 4, Working with
Session Beans. However, the design of the two applications differs as follows:

¥ The application uses entity beans with CMP to manage their persistent state.
Because the entity beans use CMP, the benefits application contains no explicit
database access code, and the amount of code in each entity bean is reduced
drastically. Using CMP also facilitates storing the applicationÕs persistent state
in a wide variety of persistence stores, including relational databases.

¥ Wombat Inc. developed the benefits application. Wombat is an ISV that spe-
cializes in the development of benefits applications used by enterprises. Be-
cause Wombat wants to sell its application to as many different enterprises as
it can, its application must work in a myriad of operational environments. In
contrast, Star EnterpriseÕs IT department developed the application illustrated
in Chapter 4. Because it was intended to be used only within Star EnterpriseÕs
own environment, that application was developed with no regard for the appli-
cationÕs portability to other operational environments.

¥ The application described in this chapter allows dynamic changes to the con-
figuration of the available medical and dental plans. For example, a benefits
administrator at Star Enterprise can add and remove medical and dental plans
to the benefits application. In contrast, the application in Chapter 4 requires re-
deployment to change the configuration of the available plans.

8.1.2 Main Parts of the Application

The example application presented here consists of multiple enterprise beans, Web
applications, and databases. Typical for an application such as this, some parts

matena8.fm Page 245 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE

246

already existed at Star Enterprise, whereas outside organizations developed the
other parts. Figure 8.1 illustrates the logical parts of the application.

The application consists of two principal parts, which come from two sources:

1. The preexisting employee and payroll databases and PayrollEJB bean in the
Star Enterprise operational environment

2. The Wombat benefits application, which consists of multiple enterprise beans
and Web applications

Figure 8.1

Logical Parts of the Entity Bean BeneÞts Application

EmployeeDatabase

<<Session Bean>>
PayrollEJB

<<Web App>>
EnrollmentWeb

<<Session Bean>>
EnrollmentEJB

<<Entity Bean>>
EmployeeEJB

Parts Developed by Wombat

<<Entity Bean>>
SelectionEJB

BenefitsDatabase

<<Entity Bean>>
PlanEJB

<<Web App>>
BeneÞtsAdminWeb

Parts Preexisting at
Star Enterprise

PayrollDatabase

<<Entity Bean>>
DoctorEJB

matena8.fm Page 246 Tuesday, January 7, 2003 4:34 PM

 APPLICATION OVERVIEW

247

Prior to the deployment of WombatÕs beneÞts application, Star Enterprise
used the

EmployeeDatabase

,

PayrollDatabase

, and PayrollEJB parts. These parts
pertain to the following aspects of Star EnterpriseÕs business:

¥

EmployeeDatabase

 contains information about Star Enterprise employees.

¥

PayrollDatabase

 contains payroll information about Star Enterprise.

¥ PayrollEJB is a stateless session bean that provides nonpayroll applications
with secure access to the payroll database. Nonpayroll applications, including
WombatÕs benefits application, use PayrollEJB as the payroll integration
interface.

Wombat, an ISV, has implemented the bulk of the beneÞts application.
Wombat develops multiple Web applications and enterprise beans, as follows:

¥ EnrollmentWeb is a Web application that implements the presentation logic
for the benefits enrollment process. A Wombat customerÕs employees, such as
Star Enterprise employees when the application is deployed at Star Enterprise,
access EnrollmentWeb via a browser.

¥ BenefitsAdminWeb is a Web application that implements the presentation logic
for business processes used by the customerÕs benefits administration depart-
ment. The benefits administration department uses BenefitsAdminWeb, for
example, to customize the portfolio of plans offered to the employees.

¥ EnrollmentEJB, a stateful session bean that implements the benefits enroll-
ment business process, uses several entity beans to perform its function.

¥ EmployeeEJB, an entity bean that encapsulates access to the customerÕsÑStar
Enterprise, in this exampleÑemployee information, uses CMP, and its main
role is to allow deployment binding with the customerÕs employee database.

¥ SelectionEJB, PlanEJB, and DoctorEJB are entity beans that encapsulate the
benefits selections, medical and dental plan information, and physician infor-
mation, respectively.

¥

BenefitsDatabase

 stores the information used by the SelectionEJB, PlanEJB,
and DoctorEJB entity beans.

matena8.fm Page 247 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE

248

8.1.3 Distributed Deployment

The EJB architecture provides the power and ßexibility necessary to enable distrib-
uted deployment of various components in an enterprise application. Although it is
possible to deploy all the Web and EJB components in a single J2EE server and to
aggregate all the databases into a single database, the traditional division of Òinfor-
mation ownershipÓ by multiple departments within a large enterprise leads to a dis-
tributed deployment scenario illustrated in Figure 8.2. Star Enterprise has deployed
the beneÞts application across multiple servers, including six servers within its own
enterprise intranet.

The beneÞts department has deployed the EnrollmentWeb and BeneÞtsWeb
Web applications on the BeneÞts Web server, and the enterprise beans Enroll-
mentEJB, SelectionEJB, EmployeeEJB, PlanEJB, and DoctorEJB on the BeneÞts
App server.

BenefitsDatabase

 is stored on the BeneÞts Database server. The
enterprise bean PayrollEJB is deployed on the Payroll App server, which in turn
provides access to the

PayrollDatabase

 server.

EmployeeDatabase

 is stored on the
Human Resources (HR) Database server.

Figure 8.2

BeneÞts Application Deployment

<<EJB Container>>
BeneÞts App Server

Deploys
EnrollmentEJB
SelectionEJB
EmployeeEJB
PlanEJB
DoctorEJB

<<Web Container>>
BeneÞts Web Server

Deploys
EnrollmentWeb
BeneÞtsAdminWeb

<<Database Server>>
HR DB Server

Deploys
EmployeeDatabase

Star Enterprise

<<Database Server>>
BeneÞts DB Server

Deploys
BeneÞtsDatabase
Premium

HealthDatabase

<<EJB Container>>
Payroll App Server

Deploys
PayrollEJB

<<Database Server>>
PayrollDatabase

matena8.fm Page 248 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT

249

8.2 Parts Developed by Wombat

Wombat Inc. is an ISV specializing in the development of applications for enter-
prises to use to administer beneÞts plans, such as medical and dental insurance
plans. One Wombat application is a Web-based self-service BeneÞts Enrollment
application. Employees of an enterprise use the application to make selections from
multiple medical and dental plans offered to them by their employer.

WombatÕs goal is to develop a single, generic BeneÞts Enrollment application
and sell it to many customer enterprises. The BeneÞts Enrollment application is
not an isolated application: It uses data provided by other applications or data-
bases that exist in the customersÕ operational environment. This presents a chal-
lenge for Wombat: Every customer is likely to have a different implementation of
the application or data with which the BeneÞts Enrollment application needs to
integrate. For example, the enrollment application needs access to a database that
contains information about employees, as well as access to the payroll system so
that it can update beneÞts-related paycheck deductions. In addition, the enroll-
ment application needs to have access to the plan-speciÞc information provided
by the insurance companies.

8.2.1 Overview of the Wombat Parts

Wombat develops the Web applications and enterprise beans, which are illustrated in
Figure 8.3.

Figure 8.3

Web Applications and Enterprise Beans Developed by Wombat

<<Web App>>
EnrollmentWeb

<<Session Bean>>
EnrollmentEJB

<<Entity Bean>>
EmployeeEJB

<<Entity Bean>>
SelectionEJB

BenefitsDatabase

<<Entity Bean>>
PlanEJB

<<Web App>>
BeneÞtsAdminWeb

<<Entity Bean>>
DoctorEJB

matena8.fm Page 249 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE

250

Each of the following applications and enterprise beans is detailed throughout this
section:

¥

EnrollmentWeb

ÑA Web application that implements the presentation logic
for the benefits enrollment process. A customerÕs employees use Enroll-
mentWeb to enroll into the offered medical and dental plans.

¥

BenefitsAdminWeb

ÑA Web application that implements the presentation
logic for business processes used by the customerÕs benefits administration de-
partment to configure and customize the medical and dental plans offered to the
employees.

¥

EnrollmentEJB

ÑA stateful session bean that implements the benefits enroll-
ment business process.

¥

EmployeeEJB

ÑAn entity bean with CMP that encapsulates access to a cus-
tomerÕs employee information so that it can accommodate the different repre-
sentations of employee databases at different customer sites. CMP allows
deployment binding with the customerÕs employee database. CMP also allows
customers to implement their own database access code by writing a BMP en-
tity bean that subclasses the CMP entity bean class.

¥

SelectionEJB

ÑA CMP entity bean that encapsulates the benefits selections
chosen by each employee.

¥

PlanEJBÑ

A CMP entity bean that stores information about medical and den-
tal plans and provides operations to search through plans.

¥

DoctorEJB

ÑA CMP entity bean that stores information about physicians and
dentists and provides operations to search for doctors, based on specified cri-
teria.

The enterprise beans developed by Wombat store information in

BenefitsDa-

tabase

. Wombat designed the

BenefitsDatabase

 schema, and at deployment the
customer creates the database at the customer site. Wombat also allows the cus-
tomer to choose a different schema as a deployment option.

The following describe in greater detail the parts developed by Wombat.

matena8.fm Page 250 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT

251

8.2.2 EnrollmentEJB Session Bean

EnrollmentEJB is a stateful session bean that implements the beneÞts enrollment
business process. EnrollmentEJBÕs home and component interfaces are the same as
in the example in Chapter 4, Working with Session Beans. However, although an IT
developer at Star Enterprise deÞned the interfaces in that chapter, Wombat deÞned
the home and component interfaces shown in this chapterÕs alternative approach.
Code Example 8.1 shows the EnrollmentEJBÕs home interface deÞnition:

package com.wombat.benefits;

import javax.ejb.*;

import java.rmi.RemoteException;

public interface EnrollmentHome extends EJBHome {

Enrollment create(int emplnum) throws RemoteException,

CreateException, EnrollmentException;

}

Code Example 8.1

The

EnrollmentHome

 Home Interface DeÞned by Wombat

Code Example 8.2 shows the deÞnition of the EnrollmentEJBÕs remote com-
ponent interface:

package com.wombat.benefits;

import javax.ejb.*;

import java.rmi.RemoteException;

public interface Enrollment extends EJBObject {

EmployeeInfo getEmployeeInfo()

throws RemoteException, EnrollmentException;

Options getCoverageOptions()

throws RemoteException, EnrollmentException;

void setCoverageOption(int choice)

throws RemoteException, EnrollmentException;

Options getMedicalOptions()

throws RemoteException, EnrollmentException;

void setMedicalOption(int choice)

throws RemoteException, EnrollmentException;

Options getDentalOptions()

throws RemoteException, EnrollmentException;

matena8.fm Page 251 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE

252

void setDentalOption(int choice)

throws RemoteException, EnrollmentException;

boolean isSmoker()

throws RemoteException, EnrollmentException;

void setSmoker(boolean status)

throws RemoteException, EnrollmentException;

Summary getSummary()

throws RemoteException, EnrollmentException;

void commitSelections()

throws RemoteException, EnrollmentException;

}

Code Example 8.2

The

Enrollment

 Remote Interface DeÞned by Wombat

The

Enrollment

 and

EnrollmentHome

 interfaces presented in this chapter are
similar to those presented in Chapter 4. However, the interfaces presented here are
implemented as remote interfaces, extending

javax.ejb.EJBObject

 and

javax.ejb.EJBHome

, respectively. (The interfaces in Chapter 4 extended

javax.ejb.EJBLocalObject

 and j

avax.ejb.EJBLocalHome

.)
WombatÕs developers consciously decided to make these interfaces remote

instead of local when they designed the EnrollmentEJB entity bean. Wombat
chose to use remote interfaces because they provide a location-independent client
view. As a result, WombatÕs customers, such as Star Enterprise, can deploy the
EnrollmentEJB in a server other than the EnrollmentWeb application, thus allow-
ing more ßexible deployment choices. Moreover, the Benefits Enrollment applica-
tion can be accessed by Òrich clientÓ applications and other enterprise
applications, regardless of their location on the network. Such deployment and
client access flexibility was critical for Wombat to achieve its goal of selling its
benefits application to as many customers as possible.

However, the use of remote interfaces introduces new issues that need to be
reßected in the design of the interfaces themselves:

¥

Remote access is expensive.

 Remote calls require more resources and use
more overhead: They may traverse a network, they require client-side and
server-side software to provide the distributed object invocation infrastruc-
tures, and they require arguments to be Òdeep copiedÓ even when the client is
in the same Java virtual machine. Hence, the cost of a remote call may be a

matena8.fm Page 252 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT

253

hundred to a thousand times more than the cost of a local call.

Accordingly, the

Enrollment

 remote interface must be designed to avoid a
large number of fine-grained calls from the client and instead use a small num-
ber of large- or coarse-grained calls. Hence, the

Enrollment interface defines
the getEmployeeInfo method, which returns all employee information to the
client in one call, using the serializable value class EmployeeInfo. Similarly,
the getSummary method returns all benefits summary information in one meth-
od call, using the serializable value class Summary.

¥ Remote access can lead to errors that are not encountered in local calls.
Because remote calls make requests on another computer over the network,
any number of reasons can cause the remote call to fail, including network
problems, resource/memory limits on the target computer, software errors, and
so forth. The client must always be prepared to receive such exceptions and
handle them if necessary. (For example, a Web component might handle an er-
ror by sending a meaningful error page to the browser.) To help identify these
remote errors, the methods of the Enrollment and EnrollmentHome interface
throw java.rmi.RemoteException as required for all remote interfaces.

¥ State cannot be shared directly. Because remote calls involve copying all ar-
guments and return values, both the bean and the client code cannot assume
that they have a reference to the actual Java object used by the other side. Thus,
the bean and the client never share any state directly; they can have only copies
of each otherÕs state.

¥ Remote references behave slightly differently from local references. In
particular, casting a remote reference to a derived type requires the use of the
javax.rmi.PortableRemoteObject.narrow operation. Thus, the Enrollment-
EJBÕs clientÑthe EnrollmentWeb applicationÑmust use this narrow opera-
tion to cast EJBHome reference objects that are obtained through JNDI lookup
to the EnrollmentHome interface.

EnrollmentBean Implementation Class

The implementation of the EnrollmentBean session bean class is similar to the
implementation illustrated in Chapter 4. However, there are some key differences, as
follows:

¥ EnrollmentEJB in Chapter 4 uses command beans to access the employeeÕs da-
tabase. EnrollmentEJB in this chapter uses the EmployeeEJB entity bean to en-
capsulate access to the employee information. Because the EmployeeEJB

matena8.fm Page 253 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE254

entity bean is implemented with CMP, the deployer can bind the EmployeeEJB
bean with the customerÕs employee database in a standard way.

¥ EnrollmentEJB in Chapter 4 uses command beans to access the benefits selec-
tions in BenefitsDatabase. EnrollmentEJB in this chapter uses the Selection-
EJB entity bean to encapsulate the access to the employeesÕ current selections.
In addition, because Wombat provides a CMP version of the SelectionEJB en-
tity beanÑthe SelectionBean classÑa customer can customize the format in
which the selections are stored or even store them in a nonrelational database.

¥ EnrollmentEJB uses the PlanEJB entity bean to access the medical and dental
plans offered to the employees. PlanEJB allows the medical and dental plan in-
formation to be dynamically updated by WombatÕs customers through the
BenefitsAdmin Web application. The EnrollmentEJB implementation in
Chapter 4 relied on Java classes that hard-coded the plan information. This
hard-coding prevented the dynamic update of plan information after the bene-
fits application was deployed.

¥ EnrollmentEJB uses a command bean to update an employeeÕs payroll with the
deduction based on his or her benefits choices. Because each customer of
Wombat may have a different payroll system, Wombat defines only a com-
mand bean interface: DeductionUpdateBean. The actual implementation class
for this bean is provided by WombatÕs customer, such as Star Enterprise. The
class name is then set in the EnrollmentEJBÕs environment by the deployer.

Code Example A.4 on page 382 illustrates the source code for the Enroll-
mentBean session bean class as it has been implemented for the example in this
chapter. (Note that this implementation of EnrollmentBean differs from that in
Chapter 4.)

Using Entity Bean Client-View Interfaces

The EnrollmentBean class illustrates how applications typically use the entity bean
client-view interfaces. Recall that EnrollmentEJB is a client of the EmployeeEJB,
SelectionEJB, and PlanEJB entity beans.

For example, letÕs look at how EnrollmentEJB uses the SelectionEJB entity
bean. In the ejbCreate method, note that EnrollmentEJB uses the findBy-
PrimaryKey method to look up an existing Selection object, as follows:

selection = selectionHome.findByPrimaryKey(

new Integer(employeeNumber));

matena8.fm Page 254 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 255

After obtaining an object reference to the Selection object, EnrollmentEJB
invokes a business method on the object. Here, it invokes the Selection objectÕs
getCopy method to read the current beneÞts selection values:

selCopy = selection.getCopy();

In the commitSelections method, EnrollmentEJB either creates a new Selec-
tion object by invoking the create method on the SelectionHome interface, or it
updates the existing Selection object by invoking the updateFromCopy business
method on the Selection object, as follows:

if (recordDoesNotExist) {

selection = selectionHome.create(selCopy);

recordDoesNotExist = false;

} else {

selection.updateFromCopy(selCopy);

}

Note that EnrollmentEJB does not need to remove Selection objects. If it did,
however, it would use the following code fragment:

selection.remove();

Alternatively, EnrollmentEJB could use the SelectionHome interface to remove a
Selection object identiÞed by its primary key:

selectionHome.remove(new Integer(employeeNumber));

EnrollmentEJB uses the other entity beans in much the same manner.

8.2.3 EmployeeEJB Entity Bean

EmployeeEJB is an entity bean that uses the container-managed persistence model
deÞned in the EJB 2.0 and 2.1 speciÞcations. EmployeeEJB provides an object-ori-
ented view of the employee data used by the BeneÞts Enrollment application. The
main role of this entity bean is to allow the integration between the beneÞts applica-
tion and the customerÕs employee data.

Because Wombat does not impose rules about how a customer stores the
information about its employees, customers must have the means to integrate the
application with their employee data. Wombat uses the CMP mechanism to allow
the deployer to bind EmployeeEJB with an existing employee database.

matena8.fm Page 255 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE256

WombatÕs customers have two choices while deploying the EmployeeEJB
bean:

¥ Using an object-relational mapping toolÑA customer can use an object-re-
lational mapping tool to create a mapping from the Employee beanÕs abstract
persistence schemaÑthat is, its CMP and CMR fieldsÑto the physical data-
base schema in the preexisting employee database. In this case, the object-re-
lational mapping tool generates the database access code.

¥ Using bean-managed persistenceÑAlternatively, a customer could develop
a BMP entity bean that subclasses the CMP EmployeeBean class. The customer
then would write the database access code.

However, Wombat designs the Employee and EmployeeHome interfaces to meet the
needs of the BeneÞts Enrollment application.

EmployeeEJBÕs Primary Key

Wombat uses the employee number as the primary key for the EmployeeEJB entity
bean. Its type is the class java.lang.Integer. Note that it would be an error if the
employee number were the Java primitive int, because the EJB speciÞcation
requires that the primary key type for an entity bean be a Java class. Furthermore,
this requirement implies that primitive types that are not serializable Java classes
cannot be used directly for the primary key type.

Employee Local Interface

Because EmployeeEJB is accessed only from EnrollmentEJB and both are pack-
aged in the same beneÞts application, EmployeeEJB deÞnes only local interfaces.
Code Example 8.3 shows the Employee local interface deÞnition:

public interface Employee extends EJBLocalObject {

Integer getEmployeeNumber();

String getFirstName();

String getLastName();

Date getBirthDate();

}

Code Example 8.3 The Employee Local Interface

matena8.fm Page 256 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 257

The Employee local interface deÞnes methods that allow its client, the Enroll-
mentEJB bean, to access each employeeÕs employee number, Þrst and last names,
and date of birth. Note that these methods are Þne-grained: One method returns
one piece of data rather than a single method returning an aggregation of all the
pieces of data. Typically, the EnrollmentEJB bean would make several calls on the
Employee interface to eventually retrieve all Þelds for an employee. Making multi-
ple method calls, with each method call retrieving individual data Þelds, is effec-
tive because local EJB calls are very efÞcient in typical application server
implementations.

Note that the Employee local interface does not deÞne any methods that allow
clients to modify EmployeeBeanÕs state. This implies that the EmployeeEJB is a
read-only bean. Most EJB containers are designed to efÞciently manage such
read-only beans.

The EmployeeHome Home Interface

Code Example 8.4 shows the EmployeeHome interface deÞnition:

package com.wombat.benefits;

import javax.ejb.*;

public interface EmployeeHome extends EJBLocalHome {

// find methods

Employee findByPrimaryKey(Integer employeeNumber)

throws FinderException;

}

Code Example 8.4 The EmployeeHome Home Interface

The EmployeeHome interface deÞnes only the mandatory findByPrimaryKey
method. It deÞnes no create methods, because the Wombat BeneÞts Enrollment
application does not need to create new employee objects in the customer data-
bases.

The EmployeeBean Entity Bean Class

The EmployeeBean class illustrates how simple it is to develop an entity bean with
CMP. Note that the entity bean contains no database operations. Section 8.3.1, The
Employee Database and Deployment of EmployeeEJB, on page 286 explains how

matena8.fm Page 257 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE258

the deployer binds the container-managed Þelds with the columns of the preexisting
EmployeeDatabase at Star Enterprise. Note also that the entity bean class contains
no implementations of any Þnd methods, although the home interface deÞnes the
findByPrimaryKey method. Because EmployeeEJB is an entity bean with CMP, the
EJB container supplies the implementations of its Þnd methods. Code Example 8.5
shows the source code of the EmployeeBean entity bean class:

package com.wombat.benefits;

import javax.ejb.*;

import java.util.Date;

import com.wombat.AbstractEntityBean;

public abstract class EmployeeBean extends AbstractEntityBean {

// Container-managed fields

public abstract Integer getEmployeeNumber(); // primary key field

public abstract void setEmployeeNumber(Integer n);

public abstract String getFirstName();

public abstract void setFirstName(String s);

public abstract String getLastName();

public abstract void setLastName(String s);

public abstract Date getBirthDate();

public abstract void setBirthDate(Date d);

}

Code Example 8.5 EmployeeBean Class Implementation

The EmployeeBean class, essentially a pure data object that models a business
entity, is one of the simplest examples of a CMP entity bean class. The Employee-
Bean class contains only CMP Þelds, and these Þelds deÞne the persistent state of
the employee. The class has no create methods and no relationships with other
beans.

The AbstractEntityBean class, which EmployeeBean imports, is a utility class
developed by Wombat. This class contains default implementations of the

matena8.fm Page 258 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 259

javax.ejb.EntityBean methods. The class was developed to make it easy to
implement entity bean classes that do not need to use methods in the EntityBean
interface.

There are some important things to note about the implementation of an entity
bean class, particularly concerning container-managed Þelds and the primary key.
The employeeNumber, lastName, firstName, and birthDate Þelds are container-
managed Þelds of the entity bean class and are declared as such in the
EmployeeEJBÕs deployment descriptor. These Þelds are also virtual Þelds. Virtual
Þelds are represented in the EmployeeBean class as pairs of get and set methods.
The method names are derived from the CMP Þeld names and follow the Java-
Beans design pattern. The EJB speciÞcation mandates that the get and set methods
be deÞned as public, even though a client program never directly accesses them.
The container uses these methods to synchronize the content of the Þelds they rep-
resent with the information in the database. These methods must be public so that
the container can move the data between the Þelds and the database to keep them
synchronized.

8.2.4 SelectionEJB Entity Bean

The SelectionEJB entity bean stores an employeeÕs beneÞts selections, using CMP.
By using CMP, the bean can be developed with no database dependences: WombatÕs
customers can use any database of their choice, including nonrelational databases, to
store the persistent state of the bean.

SelectionEJBÕs Primary Key

Wombat uses the employee number as the primary key for the SelectionEJB entity
bean. The type of the primary key is java.lang.Integer.

Selection Local Interface

Wombat designed SelectionEJBÕs local interface to meet the needs of its client, the
EnrollmentEJB session bean. The local interface uses the SelectionCopy value
object to pass the information between the SelectionEJB entity bean and its client,
through its getCopy and updateFromCopy business methods. Code Example 8.6
shows the Selection interface deÞnition:

package com.wombat.benefits;

matena8.fm Page 259 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE260

import javax.ejb.*;

public interface Selection extends EJBLocalObject {

 SelectionCopy getCopy()

 throws SelectionException;

 void updateFromCopy(SelectionCopy copy)

 throws SelectionException;

}

Code Example 8.6 The Selection Interface DeÞnition

The Selection interface deÞnes methods that its clients use to obtain and
update an employeeÕs beneÞts selection. In the Wombat beneÞts application, the
EnrollmentEJB session bean is the client of SelectionEJB. EnrollmentEJB uses
the Selection interfaceÕs getCopy method to obtain a transient copy of the
employeeÕs beneÞts selection. The SelectionCopy object stores this data in
memory while the employee selects the beneÞts options. When the employee
commits those selections, EnrollmentEJB uses the updateFromCopy method to
write the contents of the SelectionCopy object to the persistent Þelds of the Selec-
tionEJB entity bean, thus saving the selection information to the database. Code
Example 8.7 shows the code for the SelectionCopy class:

package com.wombat.benefits;

import com.wombat.plan.Plan;

public class SelectionCopy {

 private Employee employee;

 private int coverage;

 private Plan medicalPlan;

 private Plan dentalPlan;

 private boolean smokerStatus;

 public Employee getEmployee() { return employee; }

 public int getCoverage() { return coverage; }

 public Plan getMedicalPlan() { return medicalPlan; }

 public Plan getDentalPlan() { return dentalPlan; }

 public boolean isSmoker() { return smokerStatus; }

matena8.fm Page 260 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 261

 public void setEmployee(Employee v) { employee = v; }

 public void setCoverage(int v) { coverage = v; }

 public void setMedicalPlan(Plan v) { medicalPlan = v; }

 public void setDentalPlan(Plan v) { dentalPlan = v; }

 public void setSmoker(boolean v) { smokerStatus = v; }

}

Code Example 8.7 The SelectionCopy Value Object

You might wonder why an entity bean with a local client view uses a value
object such as SelectionCopy. Value objects are a useful way to avoid Þne-
grained data access, something you might want to consider when access is across
a distributed network. A bean can also use a value object to temporarily hold
information that the bean collects in the course of its processing but that the bean
may not ultimately save to a database.

SelectionHome Home Interface

Code Example 8.8 shows the deÞnition for the SelectionHome home interface:

package com.wombat.benefits;

import javax.ejb.*;

public interface SelectionHome extends EJBLocalHome {

Selection create(SelectionCopy copy)

 throws CreateException;

Selection findByPrimaryKey(Integer emplNumber)

 throws FinderException;

}

Code Example 8.8 The SelectionHome Home Interface

Note how the SelectionHome interface uses the SelectionCopy object as the
argument of the create method. A client uses this method to create an entity

matena8.fm Page 261 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE262

object that stores an employeeÕs beneÞts selections from a copy of the information
passed by the client.

The SelectionHome interface also deÞnes the mandatory findByPrimaryKey
method. This method Þnds the Selection object by using the primary key, which
is the employee number.

SelectionBean Entity Bean Class

Code Example 8.9 shows the abstract schema portion of the SelectionBean entity
bean implementation:

public abstract class SelectionBean extends AbstractEntityBean {

 // Container-managed persistence fields

public abstract Integer getEmployeeNumber(); // primary key field

 public abstract void setEmployeeNumber(Integer n);

 public abstract int getCoverage();

 public abstract void setCoverage(int c);

 public abstract boolean getSmokerStatus();

 public abstract void setSmokerStatus(boolean s);

 // Container-managed relationship fields

public abstract Plan getMedicalPlan();

 public abstract void setMedicalPlan(Plan p);

 public abstract Plan getDentalPlan();

 public abstract void setDentalPlan(Plan p);

......

}

Code Example 8.9 Abstract Schema for the SelectionBean Entity Bean Class

The abstract schema deÞnes the beanÕs persistent state. (For the complete listing of
the source code for the SelectionBean entity bean class implementation, see Code
Example A.5 on page 392.)

matena8.fm Page 262 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 263

The SelectionBean class has three CMP Þelds: coverage, smokerStatus, and
employeeNumber. These CMP Þelds are declared by using pairs of set and get
methods.

The SelectionBean class also has two container-managed relationships, rep-
resented as CMR Þelds: medicalPlan and dentalPlan. Like CMP Þelds, CMR
Þelds are declared by using pairs of set and get methods. The argument and return
value types for CMR Þelds are the local interfaces of the related beans. The medi-
calPlan and dentalPlan CMR Þelds provide references to different instances of
the PlanEJB bean. In the deployment descriptor, these Þelds are declared to be
many-to-one relationships because many instances of a SelectionEJB bean are
associated with a single medical plan or dental plan bean instance. Also in the
deployment descriptor, the medicalPlan and dentalPlan relationships are
declared to be unidirectional, implying that no corresponding CMR Þeld in the
PlanEJB bean refers to a SelectionEJB instance.

Using CMR Þelds to manage references to other enterprise beans has two
beneÞts:

1. It simplifies the development of the SelectionBean methods because they can
work directly with object references rather than having to convert object refer-
ences to primary keys.

2. It avoids hard-coding into the SelectionBean class the database representation
of the relationships to the other entity beans. As a result, a deployer is free to
choose how to represent the relationships in the underlying database schema.

Note that although it could have done so, the SelectionEJB class does not
deÞne a container-managed relationship with the EmployeeEJB bean. At Þrst
glance, it seems natural to deÞne this relationship as container managed because
there is a SelectionEJB instance for each EmployeeEJB instance. In addition,
SelectionEJB and EmployeeEJB use the same primary key: the employee number.

However, WombatÕs developers want to give their customers the ßexibility to
store instances of these two beans in separate databases and not be compelled to
store them together in the same database. To allow customers this ßexibility,
WombatÕs developers chose not to deÞne the relationship between the Selection-
EJB and EmployeeEJB beans as a container-managed relationship. Generally,
when two beans are related using a container-managed relationship, they must be
stored in the same database. Keeping related beans in the same database allows it
to manage the relationship more efÞciently; for example, a relational database

matena8.fm Page 263 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE264

might use a foreign key to model the relationship. Because Wombat knows that its
customers are likely to have two separate databasesÑan employee database
managed by the human resources department and a beneÞts database managed by
the beneÞts departmentÑthe developers decided to keep the EmployeeEJB and
SelectionEJB beans independent. By doing so, Wombat customers can store these
bean instances in separate databases or together in one database. (Although CMP
allows multiple databases to be used, EJB products that permit multiple databases
are still evolving.)

LetÕs take a closer look at the implementation of the SelectionBean methods.
The SelectionBeanCMP class implements three sets of methods:

1. The business methods defined in the Selection local interface

2. The ejbCreate and ejbPostCreate methods that correspond to the create
method defined in the SelectionHome interface

3. The container callbacks defined in the EntityBean interface

The SelectionBean class follows the EJB speciÞcation rules and does not
implement the ejbFind methods corresponding to the Þnd methods deÞned in the
SelectionHome interface.

Business Methods

The business methods getCopy and updateFromCopy read and write the container-
managed Þelds. The container loads and stores the contents of the container-
managed Þelds according to the rules deÞned in the EJB speciÞcation. The business
methods can assume that the contents of the container-managed Þelds are always
up-to-date, even if other transactions change the underlying selection record in the
database.

The code for the business methods demonstrates how an enterprise might
implement simple business rules. For example, the updateCoverage helper
method checks that the value of the coverage Þeld is an allowed value, whereas
the updateMedicalPlan helper method optionally checks that the value of medi-
calPlan is indeed a medical plan rather than a dental plan.

The ejbCreate and ejbPostCreate Methods

The ejbCreate method sets values into SelectionBeanÕs container-managed persis-
tence Þelds from the values passed to it in the method parameter. In particular, the
method sets the primary key by using the setEmployeeNumber method. Setting the

matena8.fm Page 264 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 265

primary key establishes the identity of the bean instance. After the ejbCreate
method completes, the container extracts the values of the container-managed Þelds
and creates a representation of the selection object in the database. Note that ejb-
Create returns a null value even though the return value type is declared to be the
primary key type. According to the EJB 2.1 speciÞcation, the container ignores the
value returned from an ejbCreate method of an entity bean with container-managed
persistence. However, the EJB 2.1 speciÞcation requires that the type of the ejbCre-
ate method be the primary key type to allow a subclass of the SelectionBean class
to be an entity bean with bean-managed persistence.

The ejbPostCreate method sets values of the CMR Þelds medicalPlan and
dentalPlan. The EJB 2.1 speciÞcation does not allow CMR Þelds to be set in the
ejbCreate method. Thus, CMR Þelds should be set either in the ejbPostCreate
method or in a business method.

Life-Cycle Methods

The SelectionBean class inherits most of the default EntityBean life-cycle method
implementations from the AbstractEntityBean class, providing an implementation
only of the setEntityContext method. Entity bean classes typically use the setEn-
tityContext method to query their environment and customize their business logic
as part of their initialization. SelectionBeanÕs setEntityContext method calls the
readEnvironment helper method, which accesses the environment entry available
with the key java:comp/env/checkPlanType to do the lookup operation in Code
Example 8.10:

private void readEnvironment() {

try {

Context ictx = new InitialContext();

Boolean val = (Boolean)ictx.lookup(

“java:comp/env/checkPlanType”);

checkPlanType = val.booleanValue();

employeeHome = (EmployeeHome)ictx.lookup(

"java:comp/env/ejb/EmployeeEJB");

} catch (Exception ex) {

throw new EJBException(ex);

}

}

Code Example 8.10 SelectionBeanÕs readEnvironment Method

matena8.fm Page 265 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE266

The value of the entry parameterizes the business logic of the bean. If the
value of the environment entry is true, the setMedicalPlan and setDentalPlan
methods check that the value of the plan to be set is indeed of the expected plan
type. If the value is false, they do not perform these checks. The application
assembler sets the value of the environment entry at application assembly.
Wombat made the plan type checks optional to allow the application assembler to
improve performance by omitting them if the clients of SelectionEJB are known
to set the plan types correctly. We added this somewhat artiÞcial optional check to
illustrate how to use the enterprise bean environment entries to parameterize the
business logic at application assembly or deployment.

8.2.5 PlanEJB Entity Bean

The PlanEJB entity bean represents medical and dental plan information that is
obtained from insurance providers. This entity bean has been implemented to use
container-managed persistence. PlanEJB is accessed from the EnrollmentEJB bean,
as well as from the beneÞts administration Web application. This entity bean allows
client applications to obtain details of medical and dental plans, as well as to run
queries on all existing plan objects. The bean also has a facility, which uses the timer
service, to e-mail to administrators on a daily basis statistics of employee enrollment
in each plan.

The primary key for the PlanEJB entity bean is a unique plan identiÞer that is
a java.lang.String type. The beneÞts department assigns unique identiÞers to
plan instances.

Plan Local Interface

Code Example 8.11 shows the methods deÞned by the Plan local interface:

public interface Plan extends EJBLocalObject {

 // values of planType CMP field

public final int MEDICAL_PLAN = 1;

public final int DENTAL_PLAN = 2;

int getPlanType() throws PlanException;

String getPlanId();

String getPlanName();

double getAgeFactor();

void setAgeFactor(double a);

matena8.fm Page 266 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 267

double getCoverageFactor();

void setCoverageFactor(double c);

double getSmokerCost();

void setSmokerCost(double cost);

double getCost(int coverage, int age, boolean smokerStatus)

throws PlanException;

void addDoctor(Doctor doctor) throws PlanException;

boolean removeDoctor(Doctor doctor) throws PlanException;

Collection getAllDoctors() throws PlanException;

Collection getDoctorsByName(Doctor template)

throws PlanException;

Collection getDoctorsBySpecialty(String specialty)

throws PlanException;

}

Code Example 8.11 The Plan Local Interface

The Plan local interface methods perform the following operations:

¥ The getPlanType method returns an integer value that indicates the type of
benefits plan. The value is equal to Plan.MEDICAL_PLAN if the plan is a medical
plan and to Plan.DENTAL_PLAN if the plan is a dental plan.

¥ The getPlanId method returns the unique identifierÑthe primary keyÑof the
plan.

¥ The getPlanName method returns the name of the medical or dental plan.

¥ The getCost method returns the monthly premium charged by the plan provid-
er. The premium is determined by the benefits enrolleeÕs coverage category,
age, and smoker status.

¥ The set/getSmokerCost, set/getAgeFactor, set/getCoverageFactor
methods retrieve and update the smoker cost, age factor, and coverage factor
of the plan.

¥ The addDoctor method adds a doctor to the plan.

¥ The removeDoctor method removes a doctor from the plan.

matena8.fm Page 267 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE268

¥ The getAllDoctors method returns a collection of Doctor objects that partici-
pate in the plan. The Doctor class is described later.

¥ The getDoctorsByName method returns a collection of participating doctors
whose names match the information in the template supplied as a method
argument.

¥ The getDoctorsBySpecialty method returns all the doctors of a given special-
ty.

PlanHome Home Interface

Code Example 8.12 shows the deÞnition of the PlanHome home interface:

public interface PlanHome extends EJBLocalHome {

// create methods

 Plan create(String planId, String planName, int planType,

double coverageFactor, double ageFactor, double smokerCost)

throws CreateException;

// find methods

Plan findByPrimaryKey(String planID) throws FinderException;

Collection findMedicalPlans() throws FinderException;

Collection findDentalPlans() throws FinderException;

Collection findByDoctor(String firstName, String lastName)

throws FinderException;

// home business methods

void updateSmokerCosts(double cost) throws FinderException;

String[] getMedicalPlanNames() throws FinderException;

String[] getDentalPlanNames() throws FinderException;

}

Code Example 8.12 The PlanHome Home Interface

The PlanHome interface deÞnes one create method. The beneÞts administra-
tion Web application uses this create method to add a new medical or dental plan
to the beneÞt options provided to employees. The PlanHome interface also deÞnes
the Þnd methods used by the beneÞts application. The Þnd methods that can

matena8.fm Page 268 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 269

potentially return more than one object return these objects as a Java Collection
and are also implemented as EJB QL queries in the deployment descriptor for
PlanEJB.

¥ The findByPrimaryKey method returns the Plan object for a given plan identi-
fier. The plan identifier is the primary key that uniquely identifies the plan.

¥ The findMedicalPlans method returns as a Collection all the medical plans
configured in this home interface. Each object in the returned Collection im-
plements the Plan interface. The EJB QL query for this method is provided in
PlanEJBÕs deployment descriptor. The query is as follows:

SELECT DISTINCT OBJECT(p) FROM PlanBean p WHERE p.planType = 1

¥ The findDentalPlans method returns all the dental plans configured in this
home interface. Each object in the returned Collection implements the Plan
interface. The EJB QL query for this method is as follows:

SELECT DISTINCT OBJECT(p) FROM PlanBean p WHERE p.planType = 2

¥ The findByDoctor method returns configured in this home interface all the
plans that include a specified doctor in their doctors list. This find method is
implemented with an EJB QL query that navigates from the PlanEJB bean to
the DoctorEJB bean. The EJB QL query for the findByDoctor method is as fol-
lows:

SELECT DISTINCT OBJECT(p) FROM PlanBean p, IN(p.doctors) d

WHERE d.firstName = ?1 AND d.lastName = ?2

In this query, the FROM clause declares an identiÞcation variable d whose
values are DoctorEJB instances belonging to PlanEJBÕs one-to-many CMR Þeld
doctors. The WHERE clause restricts the set of doctors to those having the requested
Þrst and last names. The SELECT clause thus returns PlanEJB instances containing
doctors satisfying the condition in the WHERE clause.

In addition, the PlanHome interface deÞnes the home business methods, whose
operations are not restricted to a particular bean instance. Instead, home business

matena8.fm Page 269 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE270

methods are used to implement aggregate operations or queries on an entire set of
beneÞts plans. The home business methods are

¥ updateSmokerCostÑupdates the smoker cost for all plans

¥ getMedicalPlanNamesÑreturns an array of medical plan names

¥ getDentalPlanNamesÑreturns an array of dental plan names

PlanBean Implementation Class

The PlanBean class is an abstract class that follows the requirements for an entity
bean class with container-managed persistence. Code Example A.6 on page 396
lists the complete source code for the PlanBean entity bean class implementation.

Code Example 8.13 shows just the abstract schema for PlanBean. The abstract
schema deÞnes the beanÕs persistent state:

public abstract class PlanBean extends AbstractEntityBean implements

TimedObject {

// Container-managed persistence fields

public abstract String getPlanId();

public abstract void setPlanId(String s);

public abstract String getPlanName();

public abstract void setPlanName(String s);

public abstract int getPlanType();

public abstract void setPlanType(int s);

public abstract double getCoverageFactor();

public abstract void setCoverageFactor(double s);

public abstract double getAgeFactor();

public abstract void setAgeFactor(double s);

public abstract double getSmokerCost();

public abstract void setSmokerCost(double s);

// container-managed relationships (CMR fields)

public abstract Collection getDoctors();

matena8.fm Page 270 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 271

public abstract void setDoctors(Collection doctors);

...

}

Code Example 8.13 Abstract Schema for the PlanBean Entity Bean Class

PlanBean has six CMP Þelds that represent the persistent state of PlanEJB.
These Þelds, declared in the deployment descriptor, are planId, planName,

planType, coverageFactor, ageFactor, and smokerCost. In the PlanBean class,
the CMP Þelds are represented as pairs of get and set methods.

PlanBean also has one CMR Þeld, doctors, which represents a container-
managed relationship to the DoctorEJB bean. This relationship is a many-to-many
relationship: Each plan is associated with multiple doctors, and each doctor may
participate in several plans. As a result, the setDoctors and getDoctors methods
have argument and return types that are java.util.Collection types. The doc-
tor/plan relationship is also declared as a bidirectional relationship. In a bidirec-
tional relationship between two entity beans, each bean has a CMR Þeld
referencing the other bean. For the doctor/plan bidirectional relationship, PlanEJB
declares a CMR Þeld doctors that references DoctorEJB, which in turn has a
CMR Þeld referencing back to PlanEJB. Section 8.2.6, DoctorEJB Entity Bean,
on page 279 discusses this in more detail.

Remember from the previous section that SelectionEJB declared two one-to-
one relationships to PlanEJB. However, those were declared as unidirectional
relationships from SelectionEJB to PlanEJB. Hence the PlanBean class does not
declare a CMR Þeld referencing back to SelectionEJB.

PlanBean has five types of methods:

¥ Business methodsÑPlanBean implements the business methods declared in
the local interface.

¥ Home business methodsÑPlanBean implements the home business methods
from the home interface.

¥ Select methodsÑPlanBean includes ejbSelect methods that are used to de-
clare and invoke EJB QL queries from other methods of PlanBean.

¥ ejbTimeout methodÑPlanBean includes the ejbTimeout method, which is
called when the beanÕs timer expires.

matena8.fm Page 271 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE272

¥ Life-cycle methodsÑPlanBean includes the life-cycle methods ejbCreate
and ejbPostCreate.

Business Methods

The business methods implement the operations declared in the local interface. The
business methodsÑgetCost, addDoctor, removeDoctor, getAllDoctors, get-

DoctorsByName, and getDoctorsBySpecialtyÑare called from EnrollmentEJB and
from the beneÞts administration Web application.

The addDoctor and removeDoctor methods operate on the Collection
returned from the getDoctor method. The code for these methods is shown in
Code Example 8.14:

public void addDoctor(Doctor doctor) throws PlanException {

Collection doctors = getDoctors();

doctors.add(doctor);

}

public boolean removeDoctor(Doctor doctor) throws PlanException {

Collection doctors = getDoctors();

return doctors.remove(doctor);

}

Code Example 8.14 Implementation of the addDoctor and removeDoctor Methods

The addDoctor method Þrst obtains the doctors managed Collection, a live
Collection; any changes made to the Collection cause the beanÕs persistent state
to be changed. The addDoctor method simply adds the new DoctorEJB instance
represented by the doctor argument to the managed Collection. Note that it is
not necessary to add the PlanEJB instance to the corresponding plans Collection
held by the DoctorEJB instance; the container automatically sets the other side of
a bidirectional relationship when the Þrst side is set.

The removeDoctor method obtains the doctors managed Collection and
removes the doctor argument from the Collection. Again, it is not necessary to
remove this PlanEJB instance from the corresponding Collection held by the
DoctorEJB instance, because the container automatically does this for you.

The getAllDoctors method returns a Collection of all DoctorEJB instances
related to a PlanEJB instanceÑthat is, all the doctors participating in a particular
insurance plan. Code Example 8.15 shows the code for getAllDoctors:

matena8.fm Page 272 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 273

public Collection getAllDoctors() throws FinderException {

 Collection doctors = getDoctors();

 Collection doctorsCopy = new ArrayList(doctors);

return doctorsCopy;

}

Code Example 8.15 Implementation of the getAllDoctors Method

You might wonder why the Plan local interface does not expose the getDoc-
tors method. You might also wonder why the getAllDoctors method returns a
new Collection rather than returning the doctors managed collection directly.
The answer lies in the behavior of managed collections and transactions.

Managed collections are live collections whose state needs to be saved to the
database when the transaction to which they are involved commits. Thus,
managed collections are valid only in the transaction in which they were obtained.
If a client of PlanEJB does not have an active transaction, the container starts a
new transaction before calling the getAllDoctors method and commits the trans-
action immediately after the getAllDoctors method ends. In this situation, if it
were given the doctors managed collection directly, the client would not be able
to access the collection, as the transaction would have already committed. Opera-
tions on the collection at this point, such as obtaining an iterator, are out of the
context of a transaction and would throw IllegalStateException.

To avoid such problems, WombatÕs developers instead return a copy of the
managed collection doctors to the client. The doctorsCopy collection is an
unmanaged collection. A client can access an unmanaged collection at any time,
without having to be within the context of a transaction, and changes to the
unmanaged collection are not saved to the persistent state of the PlanEJB instance.

The getDoctorsByName method returns all doctors with the given Þrst name
and last name. To do this, the method invokes the ejbSelectDoctorsByName
method. Similarly, the getDoctorsBySpecialty method returns all doctors with
the given specialty. The method invokes the ejbSelectDoctorsBySpecialty
method to accomplish this.

Home Business Methods

The home business methods implement the methods declared in the home interface.
These methods execute on an instance that is not associated with a speciÞc identity.
As a result, they can perform only the logic that does not operate on a speciÞc bean

matena8.fm Page 273 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE274

instance. They cannot access the identity of the bean instance that is executing the
method through the getPrimaryKey, getEJBObject, and getEJBLocalObject

methods on the EntityContext interface. Usually, the home business methods
implement aggregate operations or queries on an entire set of beans.

The ejbHomeUpdateSmokerCosts method implements the updateSmokerCosts
method declared in the PlanHome home interface (Code Example 8.16):

public void ejbHomeUpdateSmokerCosts(double cost)

throws FinderException {

Collection allPlans = ejbSelectAllPlans();

Iterator itr = allPlans.iterator();

while (itr.hasNext()) {

Plan plan = (Plan)itr.next();

plan.setSmokerCost(cost);

}

}

Code Example 8.16 Implementation of the ejbHomeUpdateSmokerCosts Method

This method uses the cost argument value to set one smoker cost for all plans.
The method Þrst obtains a Collection of all plans, using the ejbSelectAllPlans
method, and then iterates over all the plans, setting the cost for each plan.

Two other home business methodsÑthe ejbHomeGetMedicalPlanNames and
the ejbHomeGetDentalPlanNames methodsÑare shown in Code Example 8.17:

// get all medical plan names

public String[] ejbHomeGetMedicalPlanNames()

throws FinderException {

Collection names = ejbSelectPlanNames(Plan.MEDICAL_PLAN);

return (String[])names.toArray(new String[names.size()]);

}

// get all dental plan names

public String[] ejbHomeGetDentalPlanNames()

throws FinderException {

Collection names = ejbSelectPlanNames(Plan.DENTAL_PLAN);

matena8.fm Page 274 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 275

return (String[])names.toArray(new String[names.size()]);

}

Code Example 8.17 Implementation of Home Business Methods

Depending on the applicationÕs needs, it can be more efÞcient to use a home
business method than a Þnd method. For example, a client can use the home busi-
ness method ejbHomeGetMedicalPlanNames to retrieve an array of all medical plan
names in one operation. The home business method returns a Collection or array
of Þelds of a bean. This is often more efÞcient than using a Þnd method, which
can return only a Collection of enterprise bean local or remote interfaces. If the
client instead uses the PlanHome findMedicalPlans method, the client gets back a
Collection of enterprise bean interfaces. The client then has to iterate over the
Collection and extract each plan name one at a time.

Select Methods

The ejbSelect methods declare EJB QL queries that are used internally by a bean
class. The queries themselves are deÞned in the deployment descriptor. The Plan-
Bean class declares five ejbSelect methods, shown in Code Example 8.18:

public abstract Collection ejbSelectAllPlans()

throws FinderException;

public abstract Collection ejbSelectPlanNames(int planType)

throws FinderException;

public abstract Collection ejbSelectDoctorsByName

(String planId, String fname, String lname)

throws FinderException;

public abstract Collection ejbSelectDoctorsBySpecialty

(String planId, String specialty) throws FinderException;

public abstract long ejbSelectNumEmployeesInPlan(Plan plan)

throws FinderException;

Code Example 8.18 The ejbSelect Method Declarations in the PlanBean Class

The ejbSelectAllPlans method returns all PlanEJB instances. The EJB QL
query for this select method does not have a WHERE clause:

matena8.fm Page 275 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE276

SELECT DISTINCT OBJECT(p) FROM PlanBean p

The ejbSelectPlanNames method returns the names of all plans of a given
plan type. The EJB QL query for this method is

SELECT p.planName FROM PlanBean p WHERE p.planType = ?1

The ejbSelectDoctorsByName method returns for a given plan all participat-
ing doctors whose Þrst and last names match the speciÞed name parameters. The
EJB QL query for this method is

SELECT DISTINCT OBJECT(d) FROM PlanBean p, IN(p.doctors) d WHERE

p.planId = ?1 AND d.firstName = ?2 AND d.lastName = ?3

The ejbSelectDoctorsBySpecialty method returns for a given plan all partic-
ipating doctors with a particular specialty. The returned Collection of doctors is
ordered by each doctorÕs last name. The EJB QL query for this method is

SELECT DISTINCT OBJECT(d) FROM PlanBean p, IN(p.doctors) d WHERE

p.planId = ?1 AND d.specialty = ?2 ORDER BY d.lastName

The ejbSelectNumEmployeesInPlan method returns the number of employees
who have chosen a given plan. The EJB QL query for this method is

SELECT COUNT(s) FROM SelectionBean s WHERE s.medicalPlan = ?1

OR s.dentalPlan = ?1

Life-Cycle Methods

There are two life-cycle methods in the PlanEJB bean. The ejbCreate method ini-
tializes the container-managed persistence Þelds of PlanBean, using arguments that
the client passes to the method. The ejbPostCreate initializes the timer that pro-
vides daily statistics to plan administrators. Code Example 8.19 shows the code
used to create a timer:

TimerService timerService = entityContext.getTimerService();

timerService.createTimer(midnight, interval, null);

Code Example 8.19 Creating a Timer

matena8.fm Page 276 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 277

To create a timer, the entity beanÕs identityÑits primary keyÑneeds to be
available, because a Timer object is associated with the instance of the entity bean
that created it. Hence, the timer can be created in the ejbPostCreate method but
not in the ejbCreate method.

The TimerService.createTimer method used in Code Example 8.19 takes
three parameters, two of which have values:

¥ midnightÑA java.util.Date object whose value corresponds to midnight on
the day the bean instance was created

¥ intervalÑA long type whose value represents the number of milliseconds in
one day

Together, these parameters indicate that the timer will Þrst expire at midnight on the
Þrst day and then at midnight every day thereafter. LetÕs now look at what happens
when the timer expires.

ejbTimeout Method

The PlanBean class has an ejbTimeout method. This method is deÞned in the Time-
dObject interface, which the PlanBean class implements. This method is called by
the EJB container when the timer expiresÑat midnight every day. The code in the
ejbTimeout method gets statistics about the PlanBean instancesÑthe number of
employees who have subscribed to each planÑand sends them to the administra-
tors. It obtains these numbers by calling the select method ejbSelectNumEmploy-
eesInPlan. Code Example 8.20 shows the code for the ejbTimeout method:

public void ejbTimeout(javax.ejb.Timer timer) {

try {

// get the number of employees who have subscribed to

// this plan

long numEmployeesInThisPlan = ejbSelectNumEmployeesInPlan(

(Plan)entityContext.getEJBLocalObject());

String emailText = "Plan " + getPlanName() + " has "

+ numEmployeesInThisPlan +" employees.";

// email the text

InitialContext ic = new InitialContext();

Session session = (Session)ic.lookup(

matena8.fm Page 277 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE278

"java:comp/env/MailSession");

String toAddress = (String)ic.lookup(

"java:comp/env/toAddress");

String fromAddress = (String)ic.lookup(

"java:comp/env/fromAddress");

Message msg = new MimeMessage(session);

msg.setFrom(new InternetAddress(fromAddress));

msg.addRecipient(Message.RecipientType.TO,

new InternetAddress(toAddress));

msg.setSubject("Statistics");

msg.setText(emailText);

Transport.send(msg);

} catch (Exception ex) {

throw new EJBException(ex);

}

}

Code Example 8.20 The ejbTimeout Method

The ejbTimeout method obtains the statistics by calling a select method and
composing a text message string to be sent by e-mail to the plan administrator. It
sends the e-mail message using the JavaMailª APIs. Because these APIs are a
standard part of the J2EE platform, they are available in all application servers
that support J2EE. Typically, application servers provide an implementation of
these APIs, which can send messages using SMTP (Simple Mail Transfer Proto-
col). The ejbTimeout method Þrst looks up a JavaMail Session object using JNDI
and then uses that object to create a JavaMail MimeMessage, which represents an e-
mail message with MIME (Multipurpose Internet Mail Extensions) attachments.
Next, the method sets in the MimeMessage object the sender, receiver, subject, and
content text of the e-mail message. Finally, it sends the message using the default
mail transport, usually SMTP. For more information about JavaMail, refer to
http://java.sun.com/products/javamail.

matena8.fm Page 278 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 279

8.2.6 DoctorEJB Entity Bean

The DoctorEJB entity bean, like PlanEJB, manages its state and relationships by
using container-managed persistence. This entity bean essentially functions as a data
object that stores information about physicians and dentists.

DoctorEJB Primary Key

The DoctorEJB primary key sets this bean apart from other entity beans in the bene-
Þts application. The DoctorEJB entity bean has a composite primary key consist-
ing of two CMP ÞeldsÑfirstName and lastNameÑand also uses a special
primary key class, DoctorPkey, created by WombatÕs developers. Code Example
8.21 shows the code for DoctorPkey:

public class DoctorPkey implements java.io.Serializable {

public String firstName;

public String lastName;

public boolean equals(Object other) {

if (other instanceof DoctorPkey) {

DoctorPkey pkey = (DoctorPkey)other;

return (firstName.equals(pkey.firstName) &&

lastName.equals (pkey.lastName));

}

return false;

 }

public int hashCode() {

return (firstName.hashCode() | lastName.hashCode());

}

}

Code Example 8.21 The DoctorPkey Primary Key Class

Because it uses a composite primary key, DoctorEJB needs to declare these
two CMP Þelds as public Java Þelds in its DoctorPkey primary key class. The
names of the Þelds in the primary key class need to be a subset of the names of the
CMP Þelds in the bean class. In addition, the DoctorPkey class needs to provide

matena8.fm Page 279 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE280

implementations of the equals and hashCode methods, which allow the EJB con-
tainer to use DoctorPkey as a key into the containerÕs internal data structures, such
as hash tables.

Doctor Local Interface

The DoctorEJB entity bean is accessed from EnrollmentEJB and from the beneÞts
administration Web application, both of which are packaged in the same beneÞts
application. This copackaging of the bean with its clients ensures that only local
access is required. As a result, the DoctorEJB entity bean deÞnes only local inter-
faces. Code Example 8.22 shows the Doctor local interface deÞnition:

public interface Doctor extends EJBLocalObject {

String getLastName();

String getFirstName();

String getSpecialty();

String[] getHospitals();

int getPracticeSince();

}

Code Example 8.22 The Doctor Local Interface

The Doctor local interface deÞnes methods that allow clients to view its per-
sistent Þelds but does not deÞne any other business methods. Note that the local
interface does not allow clients to modify any information in the bean. Because
the DoctorEJB bean is a read-only bean, the EJB container can manage it more
efÞciently.

DoctorHome Home Interface

The DoctorHome interface deÞnes a create method that allows the beneÞts admin-
istration Web application to create DoctorEJB instances when doctors are added
to a plan. This interface also deÞnes the mandatory findByPrimaryKey method,
which takes the DoctorPkey primary key class as its argument. Code Example 8.23
shows the DoctorHome interface deÞnition:

public interface DoctorHome extends EJBLocalHome {

Doctor create(String firstName, String lastName,

String specialty, String hospital, int practiceSince)

matena8.fm Page 280 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 281

throws CreateException;

Doctor findByPrimaryKey(DoctorPkey pkey) throws FinderException;

}

Code Example 8.23 The DoctorHome Home Interface

DoctorBean Entity Bean Class

Code Example 8.24 shows the source code of the DoctorBean entity bean class:

public abstract class DoctorBean extends AbstractEntityBean {

public abstract String getFirstName();

public abstract void setFirstName(String v);

public abstract String getLastName();

public abstract void setLastName(String v);

public abstract String getSpecialty();

public abstract void setSpecialty(String v);

public abstract String[] getHospitals();

public abstract void setHospitals(String[] v);

public abstract int getPracticeSince();

public abstract void setPracticeSince(int v);

// CMR fields

public abstract Collection getPlans();

public abstract void setPlans(Collection c);

// Life-cycle methods

public DoctorPkey ejbCreate(String firstName, String lastName,

String specialty, String[] hospitals, int practiceSince)

throws CreateException {

setFirstName(firstName);

setLastName(lastName);

setSpecialty(specialty);

setHospitals(hospitals);

setPracticeSince(practiceSince);

matena8.fm Page 281 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE282

return null;

}

public void ejbPostCreate(String firstName, String lastName,

String specialty, String[] hospitals, int practiceSince)

throws CreateException {}

}

Code Example 8.24 The DoctorBean Class Implementation

The DoctorBean class is a simple entity bean class that uses container-
managed persistence: CMP Þelds deÞne the persistent state of each DoctorEJB
instance. The CMP Þelds, declared in the deployment descriptor, are firstName,
lastName, specialty, hospitals, and practiceSince. Each Þeld is represented as
a pair of get and set methods in the DoctorBean class.

The DoctorBean class also deÞnes a CMR Þeld for its relationship with the
PlanEJB entity bean. This CMR Þeld, plans, is represented by the methods set-
Plans and getPlans. (Recall that the description of the PlanBean class discussed
this relationship. See the section PlanBean Implementation Class on page 270.)
The relationship between DoctorBean and PlanBean is bidirectional; hence, both
classes have a CMR Þeld to refer to each other. Because this relationship is many-
to-many, the get and set methods in DoctorBean operate on a Collection of Plan
objects.

The DoctorBean class deÞnes an ejbCreate method that initializes the values
of the CMP Þelds, including the two primary key Þelds firstName and lastName.
The class also has an empty ejbPostCreate method.

8.2.7 EnrollmentWeb Web Application

The EnrollmentWeb Web application is a set of JSPs. See the example in Chapter 4,
Working with Session Beans, for a description of the EnrollmentWeb Web applica-
tion.

matena8.fm Page 282 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 283

8.2.8 BenefitsAdminWeb Web Application

The BeneÞtsAdminWeb Web application is a set of JSPs used by the customerÕs
beneÞts administration department to administer its beneÞts plans. The BeneÞts-
AdminWeb Web application does the following work:

¥ Uses the find methods on the PlanHome interface to find the deployed plan
beans from the respective insurance companies

¥ Allows the plan administrator to use the business methods on the Plan inter-
face to query the doctors associated with a plan

¥ Uses the business methods on the Plan interface to allow doctors to be added
and removed from a plan

¥ Allows the plan administrator to add or remove plans from the set of config-
ured plans

Code Example 8.25 shows the skeleton code for adding an insurance plan to
the set of conÞgured plans. (Note that the example shows only those parts relevant
to using the PlanEJB entity bean.)

...

// Create an entity object for the new plan.

InitialContext initialContext = new InitialContext();

PlanHome planHome = (PlanHome)initialContext.lookup

(“java:comp/env/ejb/Plan”);

Plan plan = planHome.create

(planId, planName, planType, coverageFactor, ageFactor,

smokerCost);

...

Code Example 8.25 Code for Adding a Plan

After the create method completes, the created plan entity object is saved to
the database and becomes available to the BeneÞts Enrollment application. A plan
administrator wanting to remove a plan from the list of conÞgured plans invokes
the remove method on the PlanHome interface and passes it the plan identiÞer,
planId, which is PlanEJBÕs primary key:

matena8.fm Page 283 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE284

...

planHome.remove(planId);

...

8.2.9 The Benefits Database

BenefitsDatabase stores the persistent state of the three entity beans SelectionEJB,
PlanEJB, and DoctorEJB. All three beans use container-managed persistence, so
Wombat does not need to specify a schema for this database. The schema is created
by WombatÕs customer, which in this case is Star Enterprise, using the object-rela-
tional mapping tools provided by the J2EE application server product on which
these CMP entity beans are deployed.

8.2.10 Packaging of Parts

This section describes how Wombat packages its beneÞts application for distribution
to customers.

benefits.ear File

Wombat packages the beneÞts application as a single J2EE enterprise application
archive Þle, which it names benefits.ear. (An .ear Þle is an enterprise application
archive resource Þle.) Figure 8.4 depicts the contents of the benefits.ear Þle.

The benefits.ear Þle contains

¥ The enrollment.war file with the EnrollmentWeb Web application. (A .war
file is a Web archive file.) The EnrollmentWeb Web application consists of
several JSPs.

¥ The benefits_admin.war file with the BenefitsAdminWeb Web application.
The BenefitsAdminWeb Web application consists of several JSPs.

¥ The benefits_ejb.jar file. This is the ejb-jar file that contains the enterprise
beans developed by Wombat.

matena8.fm Page 284 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED BY WOMBAT 285

Figure 8.4 Contents of the benefits.ear File

benefits_ejb.jar File

The benefits_ejb.jar Þle contains the enterprise beans developed by Wombat.
Code Example 8.26 lists the classes that the Þle contains:

com/wombat/AbstractEntityBean.class

com/wombat/benefits/DeductionUpdateBean.class

com/wombat/benefits/Employee.class

com/wombat/benefits/EmployeeBean.class

com/wombat/benefits/EmployeeHome.class

com/wombat/benefits/EmployeeInfo.class

com/wombat/benefits/Enrollment.class

com/wombat/benefits/EnrollmentBean.class

com/wombat/benefits/EnrollmentException.class

com/wombat/benefits/EnrollmentHome.class

EAR

beneÞts.ear

EJB-JAR

WAR

WAR

beneÞts_ejb.jar

beneÞts_admin.war

enrollment.war

Contains
EnrollmentWeb

Contains
BeneÞtsAdminWeb

Contains
EnrollmentEJB
SelectionEJB
PlanEJB
DoctorEJB
EmployeeEJB

matena8.fm Page 285 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE286

com/wombat/benefits/Options.class

com/wombat/benefits/Selection.class

com/wombat/benefits/SelectionBean.class

com/wombat/benefits/SelectionCopy.class

com/wombat/benefits/SelectionException.class

com/wombat/benefits/SelectionHome.class

com/wombat/benefits/Summary.class

com/wombat/plan/Doctor.class

com/wombat/plan/DoctorBean.class

com/wombat/plan/DoctorHome.class

com/wombat/plan/DoctorPkey.class

com/wombat/plan/Plan.class

com/wombat/plan/PlanBean.class

com/wombat/plan/PlanException.class

com/wombat/plan/PlanHome.class

Code Example 8.26 Contents of the benefits_ejb.jar File

8.3 Parts Developed at Star Enterprise

Prior to the deployment of WombatÕs beneÞts application, Star Enterprise already
had a BeneÞts Enrollment application that it had developed internally. (See Chapter
4 for the description of the BeneÞts Enrollment application using session beans.)

With the deployment of WombatÕs beneÞts application, Star Enterprise needs
to integrate some parts of its application into WombatÕs application. This section
addresses these issues.

8.3.1 The Employee Database and Deployment of EmployeeEJB

The human resources department at Star Enterprise maintains the information about
employees and company departments in EmployeeDatabase. The information is
stored in multiple tables. The Employees table within the database is relevant to the
beneÞts application. The schema for EmployeeDatabase is described in Section
4.6.1, The Employee Database, on page 120.

Note that as an ISV, Wombat had no knowledge of the schema of EmployeeDa-
tabase and did not need that knowledge. Coding its beneÞts application as gener-
ically as possible, WombatÕs primary consideration was that the application work
regardless of an individual customerÕs schema and type of DBMS. If Wombat

matena8.fm Page 286 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED AT STAR ENTERPRISE 287

coded the beneÞts application according to the Star Enterprise schema, the appli-
cation would be unusable by customers having a different schema or even a differ-
ent type of DBMS.

Star Enterprise has two choices for deploying the EmployeeEJB entity bean
developed by the ISV Wombat:

1. It can use an object-relational mapping tool to map the CMP fields of the Em-
ployeeEJB to the columns of the Employees table in its relational database Em-
ployeeDatabase. An example of such a mapping of fields follows:

2. It can develop an entity bean by using bean-managed persistence and can write
the database access code in the BMP bean class. This approach is described in
the next section.

8.3.2 EmployeeBeanBMP Entity Bean Class

The EmployeeBeanBMP bean class uses bean-managed persistence to manage the
state of the EmployeeEJB entity bean. This class uses the same local interface
Employee and local home interface EmployeeHome as in the EmployeeEJB entity
bean. (See Section 8.2.3, EmployeeEJB Entity Bean, on page 255.) The Employee-
BeanBMP class subclasses the EmployeeBean container-managed persistence class.

This section discusses some of the important issues that need to be kept in
mind when developing entity beans with bean-managed persistence. Portions of
code from the EmployeeBeanBMP class are used to illustrate these points. See
Section A.7, EmployeeBeanBMP Class, on page 402 for the complete code for the
EmployeeBeanBMP class.

The EmployeeBeanBMP class has three types of methods:

¥ Get and set methods for CMP fields

¥ EntityBean interface life-cycle methods

¥ Database access helper methods

CMP Field in EmployeeBean Column Name in Employees Table

employeeNumber empl_id

firstName empl_first_name

lastName empl_last_name

birthDate empl_birth_date

matena8.fm Page 287 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE288

CMP Field Methods

The EmployeeBeanBMP class needs to implement all abstract methods deÞned in the
EmployeeBean class. These methods correspond to the abstract get and set
methods for the CMP Þelds declared in the EmployeeBean CMP class. These
methods get and set concrete Þelds in the EmployeeBeanBMP class corresponding to
the CMP Þelds. Code Example 8.27 shows the code for these methods:

public class EmployeeBeanBMP extends EmployeeBean {

// this field holds the JDBC DataSource for the employee database

private DataSource dataSource;

// the following fields hold the persistent state of

// the EmployeeBean.

private Integer employeeNumber;

private String firstName;

private String lastName;

private Date birthDate;

// The following methods implement the abstract CMP

// field getters/setters declared in the EmployeeBean class.

public Integer getEmployeeNumber() {

return employeeNumber;

}

public void setEmployeeNumber(Integer n) {

employeeNumber = n;

}

public String getFirstName() {

return firstName;

}

public void setFirstName(String s) {

firstName = s;

}

public String getLastName() {

return lastName;

}

public void setLastName(String s) {

lastName = s;

}

matena8.fm Page 288 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED AT STAR ENTERPRISE 289

public Date getBirthDate() {

return birthDate;

}

public void setBirthDate(Date d) {

birthDate = d;

}

....

}

Code Example 8.27 Implementation of EmployeeBeanBMP Get and Set Methods

Life-Cycle Methods

The EmployeeBeanBMP class also implements the entity bean life-cycle methods,
including ejbCreate and ejbPostCreate, and methods of the javax.ejb.Entity-
Bean interface. Code Example 8.28 shows the code for the ejbCreate and ejbPost-
Create methods:

public Integer ejbCreate(int emplNumber, String fname, String lname,

Date birthDate) throws CreateException {

// this sets all the CMP fields

super.ejbCreate(emplNumber, fname, lname, birthDate);

// check if the primary key exists

if (primaryKeyExists(emplNumber)) {

throw new DuplicateKeyException("Employee number " +

emplNumber + " already exists in database");

}

// create a row for this bean instance

createRow();

// return the primary key

return new Integer(emplNumber);

}

public void ejbPostCreate(int emplNumber, String fname,

matena8.fm Page 289 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE290

String lname, Date birthDate) throws CreateException

{}

Code Example 8.28 EmployeeBeanBMP ejbCreate and ejbPostCreate Methods

EmployeeBeanBMPÕs ejbCreate method Þrst calls its superclass Employee-
BeanÕs ejbCreate method, which sets the values of the CMP Þelds by calling the
respective set methods. This operation sets values in the Java Þelds in the
EmployeeBeanBMP class. EmployeeBeanBMPÕs ejbCreate method then checks
whether the primary key for the employee, which is the employee numberÑ
emplNumberÑalready exists in the database. If it does, the method throws Dupli-
cateKeyException to indicate to the client that an application-level error has
occurred. If the employee number does not exist, the ejbCreate method creates a
row for the employee in the database by calling the createRow helper method.
Finally, the ejbCreate method returns the new bean instanceÕs primary key, as
required for BMP entity beans. The container converts this primary key to an
Employee reference and returns it to the client.

Two additional entity bean life-cycle methods are in the EmployeeBeanBMP
class: setEntityContext and unsetEntityContext. Code Example 8.29 shows the
code for these methods:

public void setEntityContext(EntityContext c) {

super.setEntityContext(c);

String dataSourceName = "java:comp/env/jdbc/EmployeeDatabase";

try {

Context ctx = new InitialContext();

dataSource = (DataSource)ctx.lookup(dataSourceName);

} catch (Exception ex) {

throw new EJBException("Unable to look up dataSource "

+ dataSourceName);

}

}

public void unsetEntityContext() {

dataSource = null;

matena8.fm Page 290 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED AT STAR ENTERPRISE 291

super.unsetEntityContext();

}

Code Example 8.29 The setEntityContext and unsetEntityContext Methods

The setEntityContext method is called immediately after the EmployeeBean-
BMP class is instantiated. The method Þrst calls the EmployeeBeanBMP superclassÕs
setEntityContext method to allow the superclass to do any necessary initializa-
tion. The method then looks up the JDBC DataSource object for EmployeeData-
base from the JNDI environment.

The unsetEntityContext is the last method called before the EmployeeBean-
BMP instance is destroyed. This method clears the value of the DataSource Þeld
and calls the superclassÕs unsetEntityContext method to allow the superclass to
perform any required cleanup.

Database Access Methods

The EmployeeBeanBMP class implements the ejbFindByPrimaryKey method (Code
Example 8.30):

public Integer ejbFindByPrimaryKey(Integer emplNum)

throws FinderException {

// Try to load the row for this primary key

if (!primaryKeyExists(emplNum.intValue())) {

throw new ObjectNotFoundException("Primary key " + primaryKey

+ " not found");

}

return emplNum;

}

Code Example 8.30 The EmployeeBeanBMP Class ejbFindByPrimaryKey Method

The ejbFindByPrimaryKey method checks whether the emplNum argumentÑ
the primary key for the EmployeeEJB beanÑexists in the database, doing so by
calling the helper method primaryKeyExists. If the employee number does not
exist, the method throws ObjectNotFoundException to inform the client. If the

matena8.fm Page 291 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE292

employee number does exist, the method returns the primary key. The container
converts this primary key to an Employee reference and returns it to the client.

The EmployeeBeanBMP class also implements the ejbRemove method, as shown
in Code Example 8.31:

public void ejbRemove() throws RemoveException {

super.ejbRemove();

// remove the row for this primary key

removeRow();

// clear all CMP fields

employeeNumber = null;

firstName = null;

lastName = null;

birthDate = null;

}

Code Example 8.31 The ejbRemove Method in EmployeeBeanBMP

The ejbRemove method Þrst calls the ejbRemove method of the superclass
EmployeeBean. This allows the superclassÕs ejbRemove implementation to do any
needed work. Then EmployeeBeanBMPÕs ejbRemove method calls the helper method
removeRow to remove the row for this bean instance from the database. After this,
the ejbRemove method clears all employee-speciÞc Þelds. This is an important
step because the bean instance goes into the containerÕs pool after removal and
can be used for another employee with a different identity and different Þelds. The
ejbRemove method needs to clean up all Þelds that are speciÞc to the particular
employee. Note that ejbRemove does not need to clear the dataSource Þeld,
because that ÞeldÕs value does not depend on any particular employee.

Now letÕs examine the ejbLoad and ejbStore methods, which are used to syn-
chronize the state of the bean with the persistent state in the database. The
ejbLoad method is usually called at the beginning of a transaction, before any
business methods are called. The ejbStore method is usually called at the end of a
transaction, when a transaction is committed. Code Example 8.32 shows the code
for these methods:

matena8.fm Page 292 Tuesday, January 7, 2003 4:34 PM

 PARTS DEVELOPED AT STAR ENTERPRISE 293

public void ejbLoad() {

try {

loadRow();

} catch (Exception ex) {

throw new NoSuchEntityException(

"Exception caught in ejbLoad: "+ex);

}

super.ejbLoad();

}

public void ejbStore() {

super.ejbStore();

try {

storeRow();

} catch (Exception ex) {

throw new EJBException("Exception caught in ejbStore ", ex);

}

}

Code Example 8.32 EmployeeBeanBMPÕs ejbLoad and ejbStore Methods

The ejbLoad method calls the loadRow helper method to load the state of the
bean. The loadRow helper method does a database read, using the employee
number primary key; retrieves the row for the employee; and sets the CMP Þelds
in the EmployeeBeanBMP class. After the loadRow method completes successfully,
the ejbLoad method calls the superclass EmployeeBeanÕs ejbLoad method to allow
the superclass to initialize any cached transient variables from the CMP Þelds.

The ejbStore method Þrst calls the superclass EmployeeBeanÕs ejbStore
method. This allows the superclass to save any cached data to the CMP Þelds.
After this, the ejbStore method stores the state of EmployeeBeanBMP by calling the
storeRow helper method, which writes all the CMP Þelds to the database row rep-
resenting the employee. For better performance, EmployeeBeanBMP should perform
this database write only if the beanÕs CMP Þelds have been modiÞed since the last
time they were loaded. This optimization can be done by maintaining a ßag in the
EmployeeBeanBMPÕs instance variable that indicates whether the beanÕs state is
ÒdirtyÓÑthat is, changed. The ßag needs to be set in every set method that modi-
Þes the beanÕs state.

matena8.fm Page 293 Tuesday, January 7, 2003 4:34 PM

CHAPTER 8 ENTITY BEAN APPLICATION EXAMPLE294

An entity bean with bean-managed persistence must also implement the ejb-
Passivate and ejbActivate methods. Code Example 8.33 shows how Employee-
BeanBMP implemented these two methods:

public void ejbActivate() {

employeeNumber = (Integer)entityContext.getPrimaryKey();

}

public void ejbPassivate() {

// clear all CMP fields

employeeNumber = null;

firstName = null;

lastName = null;

birthDate = null;

}

Code Example 8.33 EmployeeBeanBMP ejbActivate and ejbPassivate Methods

The ejbActivate method is called when an entity bean instance is being asso-
ciated with a speciÞc primary key value. The EmployeeBeanBMPÕs ejbActivate
method initializes the employeeNumber Þeld to the instanceÕs primary key value.
This association step is very important because it allows subsequent methods,
such as ejbLoad, to operate on the correct primary key. In fact, ejbActivate is
typically called immediately before ejbLoad at the beginning of a transaction.

The ejbPassivate method is called when the container wants to reclaim the
memory associated with a bean instance and return the bean instance to its pool.
The ejbPassivate method clears the values of all employee-speciÞc ÞeldsÑthat
is, the CMP Þelds. After the ejbPassivate method completes, the bean instance is
no longer associated with an identity and, by calling ejbActivate, can be used to
service a request on behalf of a different employee.

8.3.3 Payroll System

Prior to the deployment of WombatÕs beneÞts application, Star EnterpriseÕs payroll
department developed a payroll application to give its enterprise applications access
to payroll information. The payroll application consists of the PayrollEJB stateless
session bean, described in Section 4.5, PayrollEJB Stateless Session Bean, on page

matena8.fm Page 294 Tuesday, January 7, 2003 4:34 PM

 CONCLUSION 295

110. The payroll information is stored in PayrollDatabase, whose schema is
described in Section 4.6.3, The Payroll Database, on page 123.

To integrate the PayrollEJB with the BeneÞts Enrollment application devel-
oped by Wombat, Star EnterpriseÕs IT department develops an implementation of
the DeductionUpdateBean command bean interface provided by Wombat. The
deployer then sets the class name of this interface in the EnrollmentEJBÕs environ-
ment. This allows EnrollmentEJB to instantiate the DeductionUpdateBean imple-
mentation and use it to update the beneÞts deduction in Star EnterpriseÕs payroll
system.

8.4 Conclusion

We have now completed our examination of entity beans. This chapter presented an
employee BeneÞts Enrollment application that was similar to the example presented
earlier. However, this example was built and deployed using entity beans when
appropriate rather than relying completely on session beans.

The example application clearly illustrated the differences, from a developerÕs
point of view, of using entity beans. The application focused on the various tech-
niques for working with entity beans, such as using container-managed persis-
tence and container-managed relationships, caching persistent state, subclassing
techniques, and so forth, and how best to use the features of these types of beans.

The example application also illustrated how to use the EJB timer service and
the JavaMail APIs to provide plan administrators with statistics about the applica-
tion by e-mail on a regular basis.

This chapter showed how entity beans are more appropriate for applications
that must be easily adapted for different customers with different operational envi-
ronments. Typically, these are applications built by ISVs rather than by an enter-
priseÕs in-house IT department.

matena8.fm Page 295 Tuesday, January 7, 2003 4:34 PM

matena8.fm Page 296 Tuesday, January 7, 2003 4:34 PM

