
IN THIS CHAPTER

. Why Bother? 149

. Patching Core Java Classes
Using the Boot Class Path
150

. Example of Patching
java.lang.Integer 151

. Quick Quiz 153

. In Brief 153

15Replacing and
Patching Core Java
Classes

“A path without obstacles probably leads nowhere.”

Defalque

Why Bother?
In Chapter 5, ”Replacing and Patching Application
Classes,” we talked about the patching of Java classes to
change or extend the underlying logic. The techniques
presented in that chapter work for application and library
classes loaded by the system or a custom class loader.
However, attempting to apply the techniques to patch the
core classes in a package whose name starts with java
yields no results because the original version of the class
continues to be used. Chapter 14, “Controlling Class
Loading,” provided a detailed discussion of how the classes
are loaded, and with a little bit of reckoning, we can see
why the system classes require a different approach. Recall
that the system classes are loaded by the native bootstrap
class loader, which does not use the CLASSPATH environ-
ment variable. Although the overall approach to system
class patching is similar to application class patching, there
are a few subtle differences, and they’re the subject of this
chapter.

Is there really a need to patch the core classes? In my
career I have had to patch the application classes a lot
more often than the system classes. One of the reasons
might be that the core classes have been well designed and
by now have matured into a form that suits most develop-
ers. However, every once in a while you can bump into a
deficiency in a core class with no good workaround.

16 0672326388 CH15 4/7/04 3:15 PM Page 149

It is definitely not advisable to patch core Java classes as a permanent solution. This has legal
consequences (the JDK license prohibits modifications to core classes) and can require addi-
tional work to migrate to a new version of JDK. However, this technique provides a lot more
control to the developer. It can be used to insert traces into the JDK code and temporarily
change the implementation of the core logic to suit the application needs. Last, but not least,
it is just plain cool and being armed with this powerful technique would not hurt. Just be
sure to read the license agreement before embarking on this path.

Patching Core Java Classes Using
the Boot Class Path

As I have already mentioned, the approach to patching core classes is similar to the approach
used to patch application classes. A source file needs to be obtained for a class that requires
patching. JDK is conveniently distributed with the source code (thank you, Sun!), so most of
the time you can just obtain the code from src.jar. Note that some of the system classes are
shipped without the source code; this is true for the classes inside the sun package and other
nonpublic packages. You can decompile the class files as described in Chapter 2,
“Decompiling Classes,” although the license agreement must be observed.

CHAPTER 15 Replacing and Patching Core Java Classes
150

I worked on a product called WebCream that is capable of running multiple virtual Swing clients
inside the same JVM. While testing, it was observed that after running for a certain time the JVM
would become locked and no new clients would be able to initialize themselves. Using the JVM
thread dumps as described in Chapter 10, “Using Profilers for Application Runtime Analysis,” the
examination revealed that the locking was occurring in a call to the java.awt.Component’s
method getTreeLock(). The implementation of getTreeLock() simply returns a variable that is
declared in Component as follows:

static final Object LOCK = new AWTTreeLock();

Thus, AWT uses a global lock that is shared by all components and, if one thread fails to release the
lock monitor in a timely fashion, no other thread can perform AWT and Swing operations. This was
done by Java designers to prevent races when redoing a layout, but it is an absolute killer of scala-
bility for a product such as WebCream. An immediate solution at that time was to patch the
java.awt.Component class so that it uses a virtual client-specific lock instead of a global lock. With
the patch in place, the locking of virtual clients was no longer reported.

STORIES FROM THE TRENCHES

16 0672326388 CH15 4/7/04 3:15 PM Page 150

After you get your hands on the source code, you can insert the new logic. Compile the class
just like you would compile any other class, and please be sure to not add bugs. Now that
you have a new version of the bytecode, the remaining task is to tell the JVM to use it
instead of the original bytecode. This can be achieved by manipulating the boot class path, as
was explained in Chapter 14. The bootstrap class loader uses the boot class path to locate the
core classes. By default, it is set to include only rt.jar and possibly a few other system
libraries. rt.jar, located in JRE_HOME\lib, contains most of the core classes, so if there is no
source code for a class and you want to find its bytecode, check rt.jar first. The boot class
path can be set using the -Xbootclasspath parameter to the Java launcher command line.
Running java -X displays the following help:

C:\CovertJava\java -X

-Xbootclasspath:<directories and zip/jar files separated by ;>

set search path for bootstrap classes and resources

-Xbootclasspath/a:<directories and zip/jar files separated by ;>

append to end of bootstrap class path

-Xbootclasspath/p:<directories and zip/jar files separated by ;>

prepend in front of bootstrap class path

...

Using the command-line parameter, we can set or augment the boot class path. Because we
are interested in replacing an existing class, we use -Xbootclasspath/p: to prepend the direc-
tory that contains the patches in front of the default path. Running the JVM with this para-
meter results in the patched class being used instead of the original class.

Example of Patching java.lang.Integer
To put the theory in practice, let’s write a simple patch to java.lang.Integer. For reasons
unknown to the Java community, the Integer object is immutable. After the value is set, it
cannot be changed. The idea was probably to make Integer objects behave like String
objects, in that if you need to change a value that is represented by an Integer object, you
should create a new instance and use it instead of the old value. The problem with this
approach is that it results in inefficient memory usage for applications that need dynamic
collections of integers. Java does not provide collection classes for primitive types, so the only
way to get a dynamic array of integers is to use a java.util.Array of Integer instances. If
the value of the stored integer needs to change, you must create a new instance of Integer
and place it in the array where the old value used to be. Of course, the allocations and subse-
quent garbage collections produce significant overhead. A much better approach is to change
the internal value of the Integer object. However, because java.lang.Integer is immutable,
the only legitimate workaround is to create and use your own class that mimics the Integer
and give it a setValue() method.

151
Example of Patching java.lang.Integer

16 0672326388 CH15 4/7/04 3:15 PM Page 151

We, nevertheless, are going to patch the existing java.lang.Integer class and grant it a
setValue() method. We will do this from a purely academic interest and to practice what we
preach because we do not want to commit violations to the Java license agreement.
Examining the source code for java.lang.Integer reveals that the value of the object is
stored in a private field, value. Thus we must copy the source file to the CovertJava\src\
java\lang directory and insert a method called setValue (see Listing 15.1).

LISTING 15.1 setValue() Method Source Code

public void setValue(int value) {

this.value = value;

}

The next step is to create a test class, CorePatchTest, that accesses the newly inserted
setValue() method. The code for the test class is shown in Listing 15.2.

LISTING 15.2 Using the Patched java.lang.Integer

package covertjava.patching;

public class CoreClassTest {

public static void main(String[] args) {

Integer i = new Integer(10);

System.out.println(“Old value = “ + i);

i.setValue(100);

System.out.println(“New value = “ + i);

}

}

Compiling the classes that use the patched versions of the core classes can be a little bit
tricky if the public interface of the core class has changed. Trying to run javac on our test
class results in an error because the JDK implementation of Integer does not have the
setValue() method. Because of this, we cannot use Ant to compile the patched
java.lang.Integer. The easiest workaround is to compile our patched Integer manually
using javac and then copy the class file to the CovertJava/distrib/patches directory. We
can now configure the compiler to use our patched version of Integer for our project, which
we can do by placing the patched class on the boot class path before the original version.
javac takes a -bootclasspath parameter that enables overriding the default boot class path,
as does Ant’s javac task. However, if we try to override the boot class path for javac, we must
specify the location of rt.jar and all the other system libraries. That makes the build scripts
dependent on the path to the JDK installation or environment variables. A simpler way is to
pass -Xbootclasspath/p: to the JVM that runs Ant, so that instead of overriding the default
path we just add an item in front of it. The ant.bat script uses the ANT_OPTS environment

CHAPTER 15 Replacing and Patching Core Java Classes
152

16 0672326388 CH15 4/7/04 3:15 PM Page 152

variable for passing command-line options to the Java invocation line. We will take advan-
tage of this by adding the following line to CovertJava\bin\build.bat:

ANT_OPTS=-Xbootclasspath/p:..\distrib\patches

Now we can use Ant to build the project and the distribution libraries (the release target).
Our final task after building the project is to create a batch file called corePatchTest.bat in
the CovertJava\bin directory that executes CorePatchTest. Once again, to ensure that the
patched version of Integer is used, we pass the -Xbootclasspath parameter to java. The rele-
vant source code for corePatchTest.bat is shown in Listing 15.3.

LISTING 15.3 Executing a Test of a Core Class Patch

set JAVA_OPTS=-Xbootclasspath/p:..\distrib\patches

java %JAVA_OPTS% covertjava.patching.CoreClassTest

corePatchTest.bat produces the following output:

Old value: 10

New value: 100

Voilá! One more technique is added to our bag of tricks.

Quick Quiz
1. Can you think of a case in which you would want to patch a core class?

2. How is the process of patching core classes different from patching application classes?

3. Why do we need to alter the boot class path?

In Brief
n Patching core Java classes can help in debugging and understanding the JVM.

n Core classes are always loaded by the bootstrap class loader, which uses the boot class
path to locate the bytecode.

n To patch a core class, the new version must be placed in the boot class path in front of
the old version.

n To compile a class that uses the patched version of the core class that has changed its
public interface, the patched version must be specified on the boot class path of the
Java compiler.

153
In Brief

16 0672326388 CH15 4/7/04 3:15 PM Page 153

16 0672326388 CH15 4/7/04 3:15 PM Page 154

