

Java EE 5 Development using
GlassFish Application Server
The complete guide to installing and
configuring the GlassFish Application
Server and developing Java EE 5
applications to be deployed to this server

David R. Heffelfinger

Chapter No. 8
"Security"

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

In this package, you will find:
A Biography of the author of the book

A preview chapter from the book, Chapter NO. 8 "Security"

A synopsis of the book’s content

Information on where to buy this book

About the Author
David Heffelfinger has been developing software professionally since 1995; he has been
using Java as his primary programming language since 1996. He has worked on many large-scale
projects for several clients including Freddie Mac, Fannie Mae, and the US Department of
Defense. He has a Masters degree in Software Engineering from Southern Methodist University.
David is editor in chief of Ensode.net (http://www.ensode.net), a website about Java,
Linux, and other technology topics.

First and foremost, I would like to thank my family for putting up with me spending
several hours a day working on this book; without your support, I wouldn't have been
able to accomplish this.

I would also like to thank the Packt Publishing staff for their help and support in getting
this book published. I am especially grateful to Priyanka Baruah, who first contacted me
regarding this book, Patricia Weir for her patience regarding the several changes to the
book's outline, Sagara Naik for keeping track of the schedule. I would also like to thank
the technical reviewers, Kim Lewis and Meenakshi Verma for providing excellent
suggestions. Last but not least, I would also like to thank Douglas Paterson, who gave me
the opportunity to get my first book published (and who wished to work on a second
book with me) for supporting my decision to work on this book.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Java EE 5 Development using
GlassFish Application Server

The complete guide to installing and
configuring the GlassFish Application
Server and developing Java EE 5
applications to be deployed to this server

Project GlassFish was formally announced at the 2005 JavaOne conference. Version one of the
GlassFish application server was released to the public approximately a year later, at the 2006
JavaOne conference. GlassFish version one became the reference implementation for the Java EE
5 specification, and as such, was the first available application server compliant with this
specification.

While releasing the first available Java EE 5 application server was a tremendous accomplishment,
the first version of GlassFish lacked some enterprise features such as clustering and High
Availability. GlassFish version 2, released in September 2007, added these and other enterprise
features, in addition to other features such as an enhanced web based administration console.

This book will guide you through the development and deployment of Java EE 5-compliant
application on GlassFish version 2. It also covers application development using frameworks that
build on top of the Java EE 5 specification, including Facelets, Ajax4jsf, and Seam.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

What This Book Covers
Chapter 1 provides an overview of Glassfish, including how to install it, configure it, and verify
the installation.

Chapter 2 covers how to develop server-side web applications using the Servlet API.

Chapter 3 explains how to develop web applications using JavaServer Pages (JSPs), including
how to develop and use JSP custom tags.

Chapter 4 discusses how to develop Java EE applications that interact with a relational database
system through the Java Persistence API (JPA) and through the Java Database Connectivity API
(JDBC).

Chapter 5 explains how to use the JSP Standard Tag Library (JSTL) when developing JavaServer
Pages.

Chapter 6 covers how to develop applications using the JavaServer Faces (JSF) component
framework to build web applications.

Chapter 7 explains how to develop messaging applications though the Java Messaging Service
(JMS) API.

Chapter 8 covers securing J2EE applications through the Java Authentication and Authorization
Service (JAAS).

Chapter 9 discusses how to develop Enterprise Java Beans that adhere to the EJB 3 specification.

Chapter 10 explains how to develop and deploy web services that conform to the JAX-WS 2.1
specification.

Chapter 11 covers frameworks that build on top of the Java EE 5 specification, including Seam,
Facelets, and Ajax4Jsf.

Appendix A covers sending email from Java EE Applications.

Appendix B covers IDE integration.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Security
In this chapter, we will cover how to secure Java EE applications by taking
advantage of GlassFish's built-in security features. Java EE security relies on the Java
Authentication and Authorization Service (JAAS) API. As we shall see, securing
Java EE applications requires very little coding; for the most part, securing an
application is achieved by setting up users and security groups in a security realm in
the application server, then confi guring our applications to rely on a specifi c security
realm for authentication and authorization.

Some of the topics we will cover include:

The Admin realm
The File realm
The Certifi cate realm

Creating self-signed security certifi cates
The JDBC realm
Custom Realms

Security Realms
 Security realms are, in essence, collections of users and related security groups.
Users are application users. A user can belong to one or more security group; the
groups that the user belongs to defi ne what actions the system will allow the user to
perform. For example, an application can have regular users who can only use the
basic application functionality, and it can have administrators who, in addition to
being able to use basic application functionality, can add additional users to
the system.

•

•

•

°

•

•

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Security

[248]

Security realms store user information (user name, password, and security groups);
applications don't need to implement this functionality, they can simply be
confi gured to obtain this information from a security realm. A security realm can be
used by more than one application.

Predefined Security Realms
GlassFish comes preconfi gured with three predefi ned security realms: admin-realm,
the fi le realm, and the certifi cate realm. admin-realm is used to manage user's access
to the GlassFish web console and shouldn't be used for other applications. The fi le
realm stores user information in a fi le. The certifi cate realm looks for a client-side
certifi cate to authenticate the user.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Chapter 8

[249]

In addition to the predefi ned security realms, we can add additional realms with
very little effort. We will cover how to do this later in this chapter, but fi rst let's
discuss GlassFish's predefi ned security realms.

admin-realm
T o illustrate how to add users to a realm, let's add a new user to admin-realm. This
will allow this additional user to log in to the GlassFish web console. In order to add
a user to admin-realm, log in to the GlassFish web console, expand the Confi guation
node at the left-hand side, then expand the Security node, then the Realms node,
and click on admin-realm. The main area of the page should look like the
following screenshot:

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Security

[250]

To add a user to the realm, click on the button labeled Manage Users at the top left.
The main area of the page should now look like this:

To add a new user to the realm, simply click on the New... button at the top left of
the screen. Then enter the new user information.

In t he above screenshot, we added a new user named "root", added this user to the
"asadmin" group, and entered this user's password.

The GlassFish web console will only allow users in the "asadmin" group
to log in. Failing to add our user to this security group would prevent
him/her from logging in to the console.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Chapter 8

[251]

We ha ve successfully added a new user for the GlassFish web console. We can test
this new account by logging into the console with this new user's credentials.

The file Realm
The s econd predefi ned realm in GlassFish is the fi le realm. This realm stores user
information encrypted in a text fi le. Addin g users to this realm is very similar to
adding users to admin-realm. We can add a user by expanding the Confi guration
node, then expanding the Security node, then the Realms node, then clicking on fi le,
then clicking on the Manage Users button and clicking on the New... button.

As thi s realm is meant for us to use for our applications, we can come up with our
own groups. In this example, we added a user with a User ID of "peter" to the groups
"appuser" and "appadmin".

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Security

[252]

Clicking the OK button should save the new user and take us to the user list for
this realm.

Clicking the New... button allows us to add additional users to the realm. Let's add
an additional user called "joe" and belonging only to the "appuser" group.

As we ha ve seen in this section, adding users to the fi le realm is very simple. We will
now illustrate how to authenticate and authorize users via the fi le realm.

File Realm Basic Authentication
In the p revious section, we covered how to add users to the fi le realm and how to
assign roles to these users. In this section, we will illustrate how to secure a web
application so that only properly authenticated and authorized users can access it.
This web application will use the fi le realm for user access control.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Chapter 8

[253]

The application will consist of a few very simple JSPs. All authentication logic is
taken care of by the application server, therefore the only place we need to make
modifi cations in order to secure the application is in its deployment descriptors,
web.xml and sun-web.xml. We will fi rst discuss web.xml, which is shown next.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <security-constraint>

 <web-resource-collection>

 <web-resource-name>Admin Pages</web-resource-name>

 <url-pattern>/admin/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>admin</role-name>

 </auth-constraint>

 </security-constraint>

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>All Pages</web-resource-name>

 <url-pattern>/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

 <role-name>user</role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>file</realm-name>

</web-app>

The <security-constraint> element defi nes who can access pages matching
a certain URL pattern. The URL pattern of the pages is defi ned inside the
<url-pattern> element, which, as shown in the example, must be nested inside
a <web-resource-collection> element. Roles allowed to access the pages
are defi ned in the <role-name> element, which must be nested inside an
<auth-constraint> element.

In the above example, we defi ne two sets of pages to be protected. The fi rst set of
pages is any page whose URL starts with /admin. These pages can only be accessed
by users with the role of admin. The second set of pages is all pages, defi ned by the
URL pattern of /*. Only users with the role of user can access these pages. It is

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Security

[254]

worth noting that the fi rst set of pages is a subset of the second set, that is, any page
whose URL matches /admin/* also matches /*; in cases like this the most specifi c
case "wins". In this particular case, users with a role of user (and without the role of
admin) will not be able to access any page whose URL starts with /admin.

The next element we need to add to web.xml in order to protect our pages is the
<login-config> element. This element must contain an <auth-method> element
that defi nes the authorization method for the application. Valid values for this
element include BASIC, DIGEST, FORM, and CLIENT-CERT.

BASIC indicates that basic authentication will be used. This type of authentication
will result in a browser-generated popup, prompting the user for a user name and
password, being displayed the fi rst time a user tries to access a protected page. Unless
using the HTTPS protocol, when using basic authentication, the user's credentials are
Base64 encoded, not encrypted. It would be fairly easy for an attacker to decode these
credentials; therefore using basic authentication is not recommended.

DIGEST is similar to basic authentication except it uses an MD5 DIGEST to encrypt
the user credentials instead of sending them Base64 encoded.

FORM uses a custom HTML or JSP page containing an HTML form with user
name and password fi elds. The values in the form are then checked against the
security realm for user authentication and authorization. Unless using HTTPS, user
credentials are sent in clear text when using form-based authentication, therefore
using HTTPS is recommended because it encrypts the data. We will cover setting up
GlassFish to use HTTPS, later in this chapter.

CLIENT-CERT uses client-side certifi cates to authenticate and authorize the user.

The <realm-name> element of <login-config> indicate which security realm to use
to authenticate and authorize the user. In this particular example, we are using the
fi le realm.

All of t he web.xml elements we have discussed in this section can be used with
any security realm; they are not tied to the fi le realm. The only thing that ties our
application to the fi le realm is the value of the <realm-name> element. Something
else to keep in mind is that not all authentication methods are supported by all
realms. The fi le realm supports only basic and form-based authentication.

Before we can successfully authenticate our users, we need to link the user roles
defi ned in web.xml with the groups defi ned in the realm. We accomplish this in the
sun-web.xml deployment descriptor.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Application Server 9.0 Servlet 2.5//EN" "http://www.sun.com/software/

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Chapter 8

[255]

appserver/dtds/sun-web-app_2_5-0.dtd">
<sun-web-app>
 <security-role-mapping>

 <role-name>admin</role-name>

 <group-name>appadmin</group-name>

 </security-role-mapping>

 <security-role-mapping>

 <role-name>user</role-name>

 <group-name>appuser</group-name>

 </security-role-mapping>

</sun-web-app>

As can be seen in the example, the sun-web.xml deployment descriptor can have
one or more <security-role-mapping> elements; one of these elements for each
role defi ned in web.xml is needed. The <role-name> subelement indicates the role to
map. Its value must match the value of the corresponding <role-name> element in
web.xml. The <group-name> subelement must match the value of a security group in
the realm used to authenticate users in the application.

In this example, the fi rst <security-role-mapping> element maps the "admin" role
defi ned in the application's web.xml deployment descriptor to the "appadmin" group
we created when adding users to the fi le realm earlier in the chapter. The second
<security-role-mapping> maps the "user" role in web.xml to the "appuser" group
in the fi le realm.

As we mentioned earlier, there is nothing we need to do in our code in order to
authenticate and authorize users. All we need to do is modify the application's
deployment descriptors as described in this section. As our application is nothing but
a few simple JSPs, we will not show the source code for them. The structure of our
application is shown in the following screenshot:

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Security

[256]

Based on the way we set up our application in the deployment descriptors, users
with a role of "user" will be able to access the two JSPs at the root of the application
(index.jsp and random.jsp). Only users with the role of "admin" will be able to
access any pages under the "admin" folder, which in this particular case is a single
JSP named index.jsp.

After pack aging and deploying our application and pointing the browser to the URL
of any of its pages, we should see a popup asking for a user name and a password.

After entering the correct user name and password, we are directed to the page we
were attempting to see.

At this poin t, the user can navigate to any page he or she is allowed to access in the
application, either by following links or by typing the URL in the browser, without
having to re-enter his/her user name and password.

Notice that we logged in as user joe; this user belongs only to the user role, therefore
he does not have access to any page with a URL that starts with /admin. If joe tries to
access one of these pages, he will see the following error message in the browser.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Chapter 8

[257]

Only users belonging to the admin role can see pages that match the above URL.
When we were adding users to the fi le realm, we added a user named peter that had
this role. If we log in as peter, we will be able to see the requested page. For basic
authentication, the only way possible to log out of the application is to close the
browser, therefore to log in as peter we need to close and reopen the browser.

As we mentio ned before, one disadvantage of the basic authentication method we
used in this example is that login information is not encrypted. One way to get
around this is to use the HTTPS (HTTP over SSL) protocol; when using this protocol
all information between the browser and the server is encrypted.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Security

[258]

The easiest way to use HTTPS is by modifying the application web.xml
deployment descriptor.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admin Pages</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AllPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>file</realm-name>
 </login-config>
</web-app>

As we can see, all we need to do to have the application be accessed only through
HTTPS is to add a <user-data-constraint> element containing a nested
<transport-guarantee> element to each set of pages we want to encrypt traffi c.
Sets of pages to be protected are declared in the <security-constraint> elements
in the web.xml deployment descriptor.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Chapter 8

[259]

Now, when we access the application through the (unsecure) HTTP port (by default
this is 8080), the request is automatically forwarded to the (secure) HTTPS port
(default of 8181).

In this example, we set the value of the <transport-guarantee> to CONFIDENTIAL.
This has the effect of encrypting all the data between the browser and the server,
also, if the request is made through the unsecured HTTP port, it is automatically
forwarded to the secured HTTPS port.

Another valid value for the <transport-guarantee> element is INTEGRAL. When
using this value, the integrity of the data between the browser and the server is
guaranteed; in other words, the data cannot be changed in transit. When using this
value, requests made over HTTP are not automatically forwarded to HTTPS; if a user
attempts to access a secure page via HTTP when this value is used, the browser will
deny the request and return a 403 (Access Denied) error.

The third and last valid value for the <transport-guarantee> is NONE. When using
this value, no guarantees are made about the integrity or confi dentiality of the data.
NONE is the default value used when the <transport-guarantee> element is not
present in the application's web.xml deployment descriptor.

After making the above modifi cations to the web.xml deployment descriptor,
redeploying the application and pointing the browser to any of the pages in the
application, we should see the following.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Security

[260]

The reason we s ee this warning window is that, in order for a server to use the
HTTPS protocol, it must have an SSL certifi cate. Typically, SSL certifi cates are issued
by certifi cate authorities such as Verisign or Thawte. These certifi cate authorities
digitally sign the certifi cate; by doing this they certify that the server belongs to the
entity to which it claims to belong.

A digital certifi cate from one of these certifi cate authorities typically costs around
$400 USD, and expires after a year. As the cost of these certifi cates may be
prohibitive for development or testing purposes, GlassFish comes preconfi gured
with a self-signed SSL certifi cate. As this certifi cate has not being signed by a
certifi cate authority, the browser pops up the above warning window when we try to
access a secured page via HTTPS. We can simply click OK to accept the certifi cate.

Once we accept the certifi cate, we are prompted for a user name and password; after
entering the appropriate credentials, we are allowed access to the requested page.

Notice the URL i n the above screenshot; the protocol is set to HTTPS, and the
port is 8181. The URL we pointed the browser to was http://localhost:8080/
filerealmauthhttps/random.jsp; because of the modifi cations we made to
the application's web.xml deployment descriptor, the request was automatically
forwarded to this URL. Of course, users may directly type the secure URL and it will
work without a problem.

Any data transferred over HTTPS is encrypted, including the user name and
password entered at the pop-up window generated by the browser. Using HTTPS
allows us to safely use basic authentication. However, basic authentication has
another disadvantage, which is that the only way that a user can log out from
the application is to close the browser. If we need to allow users to log out of the
application without closing the browser, we need to use form-based authentication.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Chapter 8

[261]

When using form-based authentication, we need to make some modifi cations to the
application's web.xml deployment descriptor.

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Admin Pages</web-resource-name>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>admin</role-name>
 </auth-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AllPages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>user</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>

 <realm-name>file</realm-name>
 <form-login-config>

 <form-login-page>/login.jsp</form-login-page>

 <form-error-page>/loginerror.jsp</form-error-page>

 </form-login-config>

 </login-config>
 <servlet>
 <servlet-name>LogoutServlet</servlet-name>
 <servlet-class>
 net.ensode.glassfishbook.LogoutServlet
 </servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>LogoutServlet</servlet-name>
 <url-pattern>/logout</url-pattern>
 </servlet-mapping>
</web-app>

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Security

[262]

 When using form-based authentication, we simply use FORM as the value of the
<auth-method> element in web.xml. When using this authentication method, we
need to provide a login page and a login error page. We indicate the URLs for the
login and login error pages as the values of the <form-login-page> and <form-
error-page> elements, respectively. As can be seen in the example, these elements
must be nested inside the <form-login-config> element.

The markup for the login page for our application is shown next.

<%@ page language="java" contentType="text/html; charset=UTF-8"
 pageEncoding="UTF-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Login</title>
</head>
<body>
<p>Please enter your username and password to access the application</
p>
<form method="POST" action="j_security_check">

<table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="right">Username: </td>
 <td>
 <input type="text" name="j_username">

 </td>
 </tr>
 <tr>
 <td align="right">Password: </td>
 <td>
 <input type="password" name="j_password">

 </td>
 </tr>
 <tr>
 <td></td>
 <td><input type="submit" value="Login"></td>
 </tr>
</table>
</form>
</body>
</html>

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Chapter 8

[263]

 The login page for an application using form-based authentication must contain
a form whose method is "POST" and whose action is "j_security_check". We
don't need to implement a servlet or anything else to process this form. The code to
process it is supplied by the application server.

The form in the login page must contain a text fi eld named j_username; this text
fi eld is meant to hold the user's user name. Additionally, the form must contain a
password fi eld named j_password, meant for the user's password. Of course, the
form must contain a submit button to submit the data to the server.

The only requirement for a login page is for it to have a form whose attributes match
those in the preceding example, and the j_username and j_password input fi elds as
described in the above paragraph.

There are no special requirements for the error page. Of course, it should show an
error message telling the user that login was unsuccessful; however, it can contain
anything we wish. The error page for our application simply tells the user that there
was an error logging in, and links back to the login page to give the user a chance to
try again.

In addition to a login page and a login error page, we added a servlet to our
application. This servlet allows us to implement logout functionality, something that
wasn't possible when we were using basic authentication.

package net.ensode.glassfishbook;

import java.io.IOException;

 import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class LogoutServlet extends HttpServlet
{
 @Override
 protected void doGet(HttpServletRequest request,
 HttpServletResponse response) throws ServletException, IOException
 {
 request.getSession().invalidate();

 response.sendRedirect("index.jsp");
 }
}

As you can see, all we need to do to log out the user is invalidate the session. In our
servlet, we redirect the response to the index.jsp page; as the session is invalid at
this point, the security mechanism will "kick in" and automatically direct the user to
the login page.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Security

[264]

We are now ready to test form-based authentication; after building our application,
deploying it, and pointing the browser to any of its pages, we should see our login
page rendered in the browser.

If we submit invalid credentials, we are automatically forwarded to the login
error page.

We can click on the Try again link to try again. After entering valid credentials, we
are allowed into the application.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Chapter 8

[265]

As you can see, we added a logout link to the page; this page directs the user to the
logout servlet, which as we mentioned before simply invalidates the session. From
the user's point of view, this link will simply log them out and direct them to the
login screen.

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

For More Information:

www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

Where to buy this book
You can buy Java EE 5 Development using GlassFish Application Server from the Packt
Publishing website:
http://www.packtpub.com/Java-EE-5-GlassFish-Application-
Servers/book
Free shipping to the US, UK, Europe, Australia, New Zealand and India.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book
http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book
http://www.packtpub.com/
http://www.packtpub.com/Java-EE-5-GlassFish-Application-Servers/book

