
IN THIS CHAPTER

Java and Flex Concepts

J2EE Technical Architecture

Flex Technical Architecture

iteration::two Online Banking Application

Stateful J2EE Integration

CHAPTER 20
Flex Integration
with J2EE

RIA Development with Flex and J2EE
In the previous chapter, we described how Macromedia Flex integrates with business logic exposed
as a set of web services in a service-oriented architecture (SOA) environment.

In collaboration with the Flex Web Service proxy, a Rich Internet Application (RIA) delivered with
Flex can invoke web services located on a remote machine in a loosely coupled fashion, or it can be
used in a more tightly coupled way to bind a rich client interface to middleware exposed through a
web service application programming interface (API). For middleware residing in the .NET archi-
tecture, this offers a simple way of performing .NET integration, as the following example class
shows:

using System;
using System.Web.Services;

[WebService(Namespace=”http://banking.iterationtwo.com/”,Description=”Fetch Account
Details for Customers”)]
public class AccountDelegate
{
[WebMethod(Description=”Get Accounts for Given Customer Number”)]
public Account[] getAccounts (String customerID)
{
// business logic goes here...
return accounts;

}
}

In the preceding C# class, the WebMethod metadata on the getAccounts() method ensures that
.NET will expose the method on the AccountDelegate class, which itself has been exposed as a Web-
Service using the WebService metadata.

5666 CH20 4/14/04 10:30 PM Page 1

2 Chapter 20 Flex Integration with J2EE

Because Flex 1.0 is a J2EE application residing within a J2EE application server, Flex can couple
even more tightly to J2EE middleware. Similar to .NET, we can expose J2EE middleware as web
services and use the techniques discussed in the previous chapter; however, Flex also provides the
<mx:RemoteObject> tag, which offers us a means of directly invoking J2EE business logic via the
Flex server-side gateway.

Direct Invocation on .NET Infrastructure

Macromedia announced that the roadmap for Flex will include a native .NET port of Flex.
We are assured that the aim of this native port is to ensure a “write once, deploy
anywhere” approach with MXML. Consult the documentation for the .NET port of Flex
when it’s released, for details of how to perform tight Flex and .NET integration. We’ll
endeavor to update the accompanying Web site for the book with additional notes on
new product features in future versions of Flex.

In this chapter, we explore the <mx:RemoteObject> tag and gain an understanding of how to inte-
grate an RIA front-end developed in Flex with new or existing middleware deployed within a J2EE
application server.

Because many of the concepts of Remote object invocation are similar to the web service integra-
tion we discussed in the previous chapter, we’ll use this opportunity to consider best practices and
candidate architectures for both our client- and server-side development. Although we will intro-
duce these architectural discussions in the context of Remote object invocation, we should be clear
that they apply to all service integration with Flex—remote object, web service, and HTTP service.

Rather than present a property-by-property discussion of the <mx:RemoteObject> tag, our aim in
this chapter is to empower J2EE developers to recognize how they can adapt J2EE best practices
into RIA development with Flex. We’ll start by presenting some general concepts with regard to
Java and Flex integration, and show how these concepts are supported by Remote object behavior.
We’ll then suggest some best practices that can be adopted in your own development; first to expose
server-side business logic, and then to facilitate invocation of the business logic, and handling
results returned by the server in the appropriate context.

Finally, we’ll build a sample application, demonstrating many of our best practices as they apply to
the development of an RIA that requires J2EE integration. We’ll build the “account summary and
statement” feature of an online banking application, in which account information for a customer is
fetched from middleware residing on the J2EE server.

Let’s start with a general look at the concepts involved in tying Java and Flex.

Java and Flex Concepts
Prior to the release of Flex, J2EE developers could tightly integrate their middleware with a Flash-
based client by using the Flash Remoting technology. This was introduced by one of the authors in
the Macromedia Press title Reality J2EE—Architecting for Flash MX. If you’re familiar with the con-
cepts of Flash Remoting, you should be able to quickly grasp the concepts presented in this section.

5666 CH20 4/14/04 10:30 PM Page 2

3Java and Flex Concepts

The manner of invocation of Java methods residing in a J2EE application server is actually very
similar in Flex to the handling of web services and REST architectures, using the WebService and
HTTPService tags introduced in Chapter 19, “Flex Integration with Web Services.”

In our experience, however, if you’re an experienced J2EE developer who has been developing Web
applications, perhaps by using frameworks such as Jakarta Struts or based around Java Server Pages
(JSP) or similar template-driven technologies, there are some important concepts that are worth
grasping before developing rich-client interfaces for your existing or new J2EE middleware.

Maintaining State
The biggest leap in understanding to be made is that there’s no longer a need for HTTP session
state. Although your requests between rich client and server are ultimately being made over HTTP,
HTTP has been reduced to a transport technology instead of a technology that we need to inte-
grate with. J2EE developers are comfortable with the concept of placing attributes and parameters
in the HTTP request and response objects, and maintaining state by storing objects in the HTTP
session. With an RIA, state can and should be maintained in the client, which is now a stateful
client, as opposed to the stateless thin client that HTML technologies offer.

The Flex Presentation Server acts as a mediator between your Flex RIA and your J2EE middleware.
Although Flex can broker your requests, and serialize and deserialize your requests over HTTP, this
no longer need concern you in your day-to-day development.

We’ll discuss later how Flex can in fact offer access to the HTTP session and allow the Flex client
to treat the HTTP session as “just another object on the server.” However, in our experience, using
the HTTP session should be a “bad smell” that identifies a refactoring opportunity to shift some of
your application state onto the client.

Asynchronous Request-and-Response Model
With a traditional Web application, the model of request and response is such that the user makes a
request to the server (by submitting a form, for instance) and then must wait: while the request is
passed to the server, while the server processes the response, while the results are passed back to the
server, and until the page the user was viewing is refreshed with the next page in the application.
From submitting the request to receiving the response, the application is “blocked.”

With an RIA, the page-based development metaphor is finally laid to rest. An application can make
a request to the server when it needs to update information on the server or to fetch data from the
server. However, rather than “stall” or “block” the application, this activity is performed behind the
scenes, allowing the user to continue interacting with the application. At a future point—most likely
immediately as far as the user is concerned—the server will have data in the form of a result to pass
back to the RIA client. The Flex gateway notifies the client that data has arrived, allowing the client
to kick into life the client-side logic necessary to deal with the results returned from the server.

Enterprise developers entrenched in the JSP mindset—or indeed any developer who has been
developing with Web application technologies—need to remember when making a request to the
server that the application should carry on with a separate callback method prepared to handle the
response at a future point in time. We’ll discuss this topic in more detail later in this chapter.

5666 CH20 4/14/04 10:30 PM Page 3

4 Chapter 20 Flex Integration with J2EE

Exposing J2EE Classes to an RIA
The Flex Presentation Server incorporates a gateway servlet, which acts in role of “front con-
troller,” brokering all requests between the Flex client and the J2EE middleware, and manages the
serialization and deserialization of data in both directions.

With a Flex RIA development, the gateway is deployed within the same application server as your
J2EE middleware, which means that the gateway is capable of invoking business methods on behalf
of the Flex client. For J2EE developers, this means that there is zero additional work required to
prepare middleware for an RIA front-end.

AMF versus SOAP

An RIA client built with Flex makes requests from the client to invoke business methods residing in
the J2EE application server. These requests might require the passing of data as parameters to the
request, which will start life as types or objects in the client-side ActionScript 2.0 language, but will
become the equivalent Java types or objects by the time the Flex gateway invokes the methods on
the server-side.

Furthermore, the middleware is likely to return results to the client; these will be Java types or
objects passed “over the wire” from server to client. As these objects are passed over the wire, Flex
transparently converts them from Java objects into appropriate ActionScript objects. We’ll discuss
shortly some design patterns that allows us to maintain a consistent object model across the client
and server.

In many enterprises, standards-based support is considered to be of paramount importance; conse-
quently, Flex is capable of wrapping the invocation of methods and the passing of data between
client and server as Simple Object Access Protocol (SOAP) calls. As developers, we can use the
Remote object features of Flex without having to get our hands dirty with SOAP, but can assure
management that all client-server communication is a standards-based SOAP message transfer
underneath the covers.

However, there is a performance penalty to be paid when objects are serialized and deserialized into
an XML structure because XML is a text-based format. Flash Remoting introduced the Action
Media Format (AMF) protocol as a means of passing messages and data over HTTP using a binary
protocol proprietary to Flash. Flash Player—the virtual machine that resides in the browser—can
make and receive AMF requests, which show significant performance benefits over equivalent
SOAP requests.

By default, Flex uses the AMF protocol behind the scenes for all Java method invocations and data
transfers using the <mx:RemoteObject> tag. We recommend changing these to SOAP if and only if
the business insists on standards-based communication, and would otherwise enjoy the perfor-
mance achieved with the AMF protocol, particularly when passing large data sets.

Interacting with Java Objects

The Flex gateway enables us to invoke methods from a Flex RIA client, upon Java objects that
reside in the same J2EE application server as Flex.

5666 CH20 4/14/04 10:30 PM Page 4

5Java and Flex Concepts

Flex can invoke methods on Plain Old Java Objects (POJOs) that live in the Web application class-
path, as well as being able to invoke methods on Enterprise JavaBeans (EJBs). Additionally, we can
invoke methods on servlets that are deployed within the Web application. Because a JSP is essen-
tially a servlet, we can invoke methods that are exposed on a JSP as well.

Servlet and EJB Integration

In this book, we focus on integration with POJOs, and further advocate that even if you
have an EJB tier, you should access these EJBs through a Business Delegate class on
the server that is itself a POJO responsible for JNDI lookup and invocation of EJB
methods. This will also allow you to use SOAP rather than AMF, if you prefer, to invoke
business logic in your EJB tier.

We wouldn’t typically advocate integration with a Servlet tier—this most often indicates
too fine-grained invocation of methods between client and server, and suggests that
some business logic could be moved onto the client. However, if you’re implementing an
RIA interface on an existing J2EE infrastructure that has business logic contained in your
Servlet tier, consult the Flex documentation to see how you can use RemoteObject to
invoke methods exposed on Servlets in your app server.

As discussed in the previous section, the AMF protocol is used by default for remote method invo-
cation and data transfer. Using the AMF protocol, we can invoke methods on all the Java objects
described previously. However, if we want to use the SOAP protocol for our client-server integra-
tion, this will limit us to integrating with POJOs.

In our discussion on technical architecture later in this chapter, we present a strong case for archi-
tecting our applications so that we need only invoke methods on POJOs anyway.

Making Objects Available for Remote Invocation

So how do we make a Java object available to a Flex client? We’ll discuss shortly the <mx:RemoteOb-
ject> tag, which is responsible for invoking business methods on a Java object—however, we must
first consider how to make these objects visible to Remote object invocation.

Unsurprisingly, the core requirement for Remote object is that a Java class be available on the class-
path of the Flex application. This means that classes will be deployed into the WEB-INF/classes
directory under the Flex application or contained in JAR files in the Web application’s WEB-
INF/lib directory.

Turning this requirement on its head, we can see that an existing Web application that has the
appropriate Flex libraries and configuration files deployed within it, can become the middleware for
an RIA without any changes to the application itself.

The astute software engineer might at this stage be concerned about the entire application suddenly
being available for an RIA client to invoke methods on. Thankfully, Flex not only offers integration
with the J2EE security architecture, but honors deployment descriptors that allow us to configure
access on a class-by-class basis within the middleware. We’ll explore the securing of Java objects as
well as web services and HTTP services in the following chapter—for now, we can be confident
that security of our middleware is in no way compromised by exposing it to an RIA interface.

5666 CH20 4/14/04 10:30 PM Page 5

6 Chapter 20 Flex Integration with J2EE

Having made an object or class on the server available to our Flex client, we use the <mx:RemoteOb-
ject> tag in MXML to name the services on the server that we intend invoking methods on.

Let’s now see how to make these method invocations.

Invoking Java Methods with Remote Objects
We’ll explore the syntax for the <mx:RemoteObject> tag later in this chapter in the context of an
online banking example. Right now, you need to get a grasp of the concepts.

Having declared the Remote object in our MXML application on the client, we now have a proxy
for the Remote object on the server. Having declared the Remote object proxy, which is a client-
side object, we can then call methods on the proxy as if they were methods on the client-side. This
concept will be comfortable and familiar to developers who have worked with the EJB specifica-
tion—the <mx:RemoteObject> tag is equivalent to creating a home interface that proxies methods on
the remote EJB. In the same way that we can invoke methods on the home interface and leave the
EJB container to worry about passing data over the wire, invoking the method on the remote EJB
and passing data back to the client, we can use the Remote object to pass data over the wire, invoke
the remote Java object, and pass data back to the client.

With an EJB, we have to specifically name the methods on the EJB that we want to invoke on our
home interface. However, with the Remote object, we have the added luxury of only having to
name the class on the server and being able to invoke public methods on it by name. We can name
the services if we choose to, and doing so affords us the ability to configure how Flex behaves when
invoking the method, such as specifying the way multiple calls to the same method should be han-
dled. We’ll demonstrate this shortly in our online banking example.

Handling Results from Method Calls

If you’re new to RIA development, the following point is worth reiterating—method calls in RIA
development with Flex are asynchronous. This means that the method call is made, control is
returned immediately to the application, and at some future point the client is notified of results
being returned from the server.

To handle the notification, when we call a method on Remote object we specify a handler function
that’s called when the result is passed back from the server. Although we can specify a global result
handler that is responsible for handling the results of all method calls on a class, it makes more
sense for us to specify result handlers for every method that we call on a Remote object. We’ll dis-
cuss strategies for handling method results in our online banking application later in this chapter.

In addition to handling results from method calls, we also need to be able to handle errors that
occur. Borrowing the language of web service invocation (and to offer a common interface across
different service types), Flex offers the concept of fault-handling on Remote object calls.

Passing Data Between a Flex Client and Java Server
We discussed how to declare the classes on the server on which we want to invoke business logic, and
how to call methods on these Remote objects and handle the results from these Remote object
method calls. All that remains is to understand how data is passed backward and forward over the wire.

5666 CH20 4/14/04 10:30 PM Page 6

7Java and Flex Concepts

Java supports a number of different types and collections, such as Number, Boolean, String,
ArrayList, and Date. Similarly, ActionScript 2.0 has its own concept of types, including Number,
Boolean, String, Array, and Date. In these base cases, it’s easy to see what must be done to pass data
across the client/server divide.

Consider a client-side method call on a Remote object responsible for making a reservation. The
makeReservation() method accepts as arguments startDate, endDate, numberOfAdults, and num-
berOfChildren, which are Date and Number objects, respectively.

The Remote object call is defined as follows:
<mx:Remote object id=”bookings”

source=”com.iterationtwo.ReservationManager”>
<mx:method name=”makeReservation” />

</mx:Remote object>

The com.iterationtwo.ReservationManager class has been assigned an ID of bookings, which is now
the local proxy to the Remote class.

When we call the makeReservation() method from the client, we can use ActionScript 2.0 as follows:
var startDate:Date = bookingForm.startDate.selectedDate;
var endDate:Date = bookingForm.endDate.selectedDate;
var numberOfAdults:Number = bookingForm.adults;
var numberOfChildren:Number = bookingForm.children;
bookings.makeReservation(startDate, endDate,

numberOfAdults, numberOfChildren);

When the method call is made on the Remote object, Flex collects the parameters and serializes
them for the remote method call made over HTTP to the Flex gateway on the server.

On the server side, the Flex gateway receives the HTTP request, recognizing not only the method
call it’s being instructed to make, but the data that has been passed. The Flex gateway is then
responsible for creating the equivalent request parameters on the server side before invoking the
remote method.

The Flex gateway then passes results from the method invocation back to the client over the HTTP
connection. On the client side, the results are translated into the equivalent ActionScript 2.0 types,
which correspond to what was returned from Java.

What’s important to understand here is that Flex insulates us from the details of mapping types
between the client and the server; we can invoke methods from within ActionScript, passing
ActionScript arguments to the method calls. Flex then invokes the methods on the server using
equivalent Java arguments, and returns to the client the results from the Java method call with the
results translated once again to appropriate ActionScript objects on the client.

Translation of Custom Objects

In a typical enterprise development, the arguments to business methods and the return types from
business methods are less likely to be native attributes such as Strings or Numbers; they are more
likely to be complex business objects such as Customer, Account, Product, or CreditCard.

5666 CH20 4/14/04 10:30 PM Page 7

8 Chapter 20 Flex Integration with J2EE

A number of recognized design patterns, such as the Value Object or Data Transfer Object, are used
to represent business objects that are typically transferred between different tiers of a software
application. A typical business method on a J2EE middleware might look like this:

public AccountVO getShareDealingAccount(CustomerVO customer) { ... }

In the preceding code line, AccountVO and CustomerVO are both value objects that can contain a
number of attributes, some of which can be native types such as String or Number; others can be
other custom objects (a CustomerVO can contain an AddressVO, for instance, or an AccountVO can
contain an array of TransactionVO objects).

The good news is that the Flex gateway assumes responsibility for passing these custom objects
back and forth across the wire as well—if we define these objects on the server and also define the
objects on the client, Flex can map between these objects.

In the online banking application example later in this chapter, we’ll discuss the design patterns and
techniques that enable us to maintain a consistent object model across the client and server,
abstracting the developer entirely from the details of mapping objects between the client and server.

J2EE Technical Architecture
Before we embark on the development of a sample online banking application, let’s consider some
of the design patterns and techniques that are useful in RIA development.

At iteration::two, we embraced and advocated the “Core J2EE Design Patterns” in our server-side
architecture, and have extended this experience onto client-side development in ActionScript 2.0.

In this section, we offer a brief discussion of the J2EE architectures that are most suited to immedi-
ate RIA development, before introducing a number of design patterns that can be implemented in
the client-tier to enable the building of robust, scalable, and maintainable RIAs using techniques
and patterns that will be familiar to seasoned J2EE developers.

Considerations for J2EE Architecture
The Service Oriented Architecture (SOA) describes a software architecture in which middleware is
exposed as business services that can be invoked in some manner by an external client. These busi-
ness services are typically loosely coupled services that can be aggregated to solve a particular busi-
ness problem.

SOA has gained widespread popularity due to its suitability as an architecture from which web ser-
vices can be exposed. Similarly, adopting a SOA facilitates the provision of a rich-client user inter-
face and specifically aids in the provision of an RIA user experience on existing or custom
middleware deployed in a J2EE application server.

The technologies that can be employed in a middleware solution are numerous, requiring their own
specific domain experience. If we consider the problem of persistence alone, in a J2EE environment
we can choose a number of technology offerings.

5666 CH20 4/14/04 10:30 PM Page 8

9J2EE Technical Architecture

The JDBC specification allows us to develop code that interrogates a database directly, taking
responsibility for sending of SQL queries to a database and parsing of the RecordSets that are
returned.

Alternatively, we might elect to use a technology such as Entity EJB, which offers a form of object-to-
relational mapping while managing additional features such as security and transactions on our behalf.
More recently, lightweight persistence frameworks such as the Hibernate tool are becoming common-
place, which again require specific domain knowledge as to how to build a hibernate solution.

Business Delegates
The Core J2EE Pattern catalog from Sun describes the Business Delegate design pattern as a
means of providing a business interface that hides the developer from the implementation details of
underlying technologies.

The Business Delegate pattern offers the “point of contact” with the business tier in an applica-
tion. Whether the underlying technologies comprise JDBC database integration, stateless session
bean facades on a tier of entity beans, or a persistence framework such as Hibernate, the end devel-
oper doesn’t care. Similarly, if middleware is integrating with a CICS mainframe, an MQ Series
message queue using a JMS provider, or web service integration, presenting a Business Delegate
class offers a technology-independent means of using these services.

More importantly, the Business Delegate pattern forms a point of integration where all necessary
business logic is pulled up, exposing a well-defined API that can be used to employ the underlying
services.

At iteration::two, we recommend pulling all related business logic in our middleware into a Busi-
ness Delegate class, and configuring the Flex whitelist so that the Delegate class or classes are the
only classes exposed to the Flex client.

Flex Whitelist

The Flex whitelist is the means by which you can define which Java classes and web
services that Flex applications are allowed to execute through the server-side proxy. The
whitelist is covered in more detail in the next chapter.

Though Flex is capable of invoking methods directly on EJBs, we still suggest that an EJB—even if
a stateless session façade that aggregates EJB access into a business objects—be exposed to an RIA
through a plain old Business Delegate Java object.

Although this requirement is by no means strict, we advocate that this architecture allows simple
unit testing of our service interface, provides a simple interface to the RIA client that is completely
agnostic of server-side implementation, and encourages the “stubbing” of business services during
development of new business logic.

5666 CH20 4/14/04 10:30 PM Page 9

10 Chapter 20 Flex Integration with J2EE

Flex Technical Architecture
The discussion that follows is not necessarily particular to J2EE integration, but can apply equally
well to the integration of an RIA client using other services such as web services or HTTP services.
However, we introduce these concepts now because the decision to integrate with J2EE middleware
is typical for the development of an enterprise RIA, in which the number of use cases or tasks is typ-
ically high—tens or hundreds, rather than ones or twos.

As the number of tasks scales, so too does the number of methods we want to invoke, as well as the
number of different contexts in which we want to invoke these methods. We must consider how
best to manage these different services, and how to partition our application architecture so that the
invocations of these services are not scattered around our application, but are catalogued in well-
defined places in our architecture.

These problems that we want to address are not unique to RIA development, and have been docu-
mented and solved by the software community using a collection of different design patterns.

What we describe here are the best-practices advocated at iteration::two. They are not the best prac-
tices, but simply practices that fit with our understanding of building enterprise RIAs in a pre-
dictable and repeatable fashion. You might find best practices that fit within your own development
practices—consider the patterns and practices that follow as a starting point for your own develop-
ment only.

Many of the patterns presented here were already presented by the authors in “ActionScript 2.0
Design Patterns for Rich Internet Applications,” which can be found in the ActionScript 2.0 Dic-
tionary from Macromedia Press. However, Macromedia Flex encourages us to consider alternative
implementations of the patterns by using a combination of MXML and ActionScript 2.0.

RIA Service Locator
The problem of looking up remote services and establishing connections to these services is typi-
cally solved by the service locator class. Prior to Flex, we recommended a strategy whereby a single-
ton class provided the capability to look up services by name, returning an instance of a class that
could be used as a proxy to the remote service. With Flex, much of the effort required in imple-
menting the Service Locator pattern has been done for us:

� Named Services—The <mx:RemoteObject> tag allows us to specify not only the location
of a class that should be available for integration, but to specify these classes within the
flex-config.xml deployment descriptor. By using a deployment descriptor, we can name
services from configuration files, and look up these services in MXML using these
canonical names. This feature will be explained further in the next chapter.

� Return of a Service Object—Prior to Flex, our ActionScript 2.0 implementation of the
Service Locator was responsible for looking up the Remote object, creating a connection
to that object, and returning an instance of a proxy class that could be used to invoke
methods on the service. The <mx:RemoteObject> tag is an MXML construct that achieves
all this without the requirement for ActionScript 2.0 coding.

5666 CH20 4/14/04 10:30 PM Page 10

11Flex Technical Architecture

MXML and the <mx:RemoteObject> tag, in collaboration with the flex-config.xml file, provides most
of the components of a Service Locator implementation. All that we recommend in addition to
these features is that the definition of services using the Remote object, web service, and HTTP
service tags be provided in a single place in a file called services.mxml.

In our main MXML application, we can then instantiate our services as follows:
<i2:services id=”services” />

The services.mxml file shown as follows contains our service definitions:
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Canvas xmlns:mx=”http://www.macromedia.com/2003/mxml” height=”0”
visibility=”false”>

<mx:RemoteObject id=”accountDelegate”
result=”event.call.resultHandler(event.result)”
source=”com.iterationtwo.banking.business.AccountDelegate”>

<mx:method name=”createAccount”/>
</mx:RemoteObject>

</mx:Canvas>

This code then allows us to invoke services as follows:
services.accountDelegate.createAccount(customerID, account);

This code provides a simple and sufficient implementation of the Service Locator pattern.

RIA Front Controller
As an RIA scales in complexity, the number of tasks in the application increases accordingly. Fur-
thermore, as an RIA increases in size, the number of ways in which a particular task can be invoked
increases—toolbars, menu options, context menus and shortcuts such as double-clicking or drag-
ging and dropping content—all conspire to kick off the same business logic that implements a par-
ticular task.

We need a mechanism by which we can dispatch control to appropriate business logic in response
to a number of different “requests” in the form of user gestures or changes of application state. Fur-
thermore, we want to centralize the point to which these requests are routed and the dispatch takes
place, so that scaling our application is achieved by scaling a single class rather than scattering
requests around our application architecture.

This pattern should be familiar to J2EE developers as that solved by the Front Controller pattern.
In J2EE, the Front Controller is typically implemented as a single servlet to which all HTTP
requests are routed, with a request parameter indicating the nature of the request. For those famil-
iar with the Struts architecture, the Struts Controller is a specific implementation of the Front
Controller, with specific Action classes in place to handle use-case-specific business logic.

We achieve a Front Controller implementation in ActionScript 2.0 with a collaboration of two key
classes that work in an event-driven manner:

� Controller—Configured to listen for specific events and delegate control to specific
worker classes when these events occur.

5666 CH20 4/14/04 10:30 PM Page 11

12 Chapter 20 Flex Integration with J2EE

� EventBroadcaster—Responsible for broadcasting events to the controller in response to
user-gestures, changes in application state, and so on.

The EventBroadcaster class is implemented as a singleton, with a private constructor and a
getInstance() method responsible for enforcing singleton access. The class instantiates an Event-
Dispatcher class—an ActionScript 2.0 class that decorates a class with the ability to broadcast events
to registered listeners. It provides a method, broadcastEvent(), that is capable of broadcasting a
named event, with some accompanying data. The implementation of the class is shown following:

import com.iterationtwo.banking.control.Event;
import mx.events.EventDispatcher;

class com.iterationtwo.banking.control.EventBroadcaster
{
public static function getInstance()
{
if (eventBroadcaster == undefined)
eventBroadcaster = new EventBroadcaster();

return eventBroadcaster;
}

private function EventBroadcaster()
{
EventDispatcher.initialize(this);

}

public function broadcastEvent(eventName:String, eventData:Object)
{
var event:Event = new Event();
event.type = eventName;
event.data = eventData;

dispatchEvent(event);
}

public var dispatchEvent:Function;
public var addEventListener:Function;
public var removeEventListener:Function;

private static var eventBroadcaster;
}

In collaboration with the EventBroadcaster class, we have our Controller class, which is registered
with the EventBroadcaster to listen for events that it dispatches and delegate control to appropriate
worker or “command” classes as appropriate.

The code for the Controller that we’ll use shortly in the online banking example is shown as follows:
import com.iterationtwo.banking.control.*;
import com.iterationtwo.banking.commands.*;
import mx.events.*;

class com.iterationtwo.banking.control.BankingController
{
public function BankingController()

5666 CH20 4/14/04 10:30 PM Page 12

13Flex Technical Architecture

{
commands = new Array();
initialiseCommands();

}

private function initialiseCommands()
{
addCommand(“fetchPortfolio”, new FetchPortfolioCommand());
addCommand(“displayStatement”, new DisplayStatementCommand());
addCommand(“displayTransaction”, new DisplayTransactionCommand());
addCommand(“makePayment”, new PaymentCommand());

}

public function handleEvent(event:Event)
{
executeCommand(event);

}

private function executeCommand(event:Event)
{
var command:Command = getCommand(event.type);
command.execute(event);

}

private function addCommand(commandName:String, commandRef:Command)
{
commands[commandName] = commandRef;
EventBroadcaster.getInstance().addEventListener(commandName, this);

}

private function getCommand (commandName):Command
{
var command:Command = commands[commandName];
if (command == null)
trace(“Command not found for “ + commandName);

return command;
}

private var commands:Array;
}

Reminder: You Say initialize(), I Say initialise()

We emphasized this point in a previous chapter, but remember that from time to time, our
code will contain the UK English spelling of initialise()—where initialize is used as a
Flex keyword, use the U.S. spelling, but be forgiving with our code, in which we often
found ourselves reverting to the common UK spelling of the word!

The constructor of our Controller is responsible for creating a list of commands that it’s willing to
dispatch control to; the initialiseCommands() method uses the addCommand() helper method to add
these commands to a lookup table of event name and command class. In adding the commands like
this, the Controller registers itself with the dispatcher to listen for the event name, and provides a
mechanism—through the handleEvent() method—by which the appropriate command class is exe-
cuted in response to the event being broadcast.

5666 CH20 4/14/04 10:30 PM Page 13

14 Chapter 20 Flex Integration with J2EE

The key thing to notice in our Controller implementation at this stage is that the addition of a new
use-case is as simple as adding a new addCommand() method call to the initialiseCommands()
method on the Controller.

Using our Controller in a Flex application is as simple as instantiating the Controller within our
MXML application, as follows:

<mx:Script>
controller = new BankingController();
EventBroadcaster.getInstance().broadcastEvent(“fetchPortfolio”);

</mx:Script>

In the preceding example, we also cause a fetchPortfolio event to be broadcast, which (as can be
seen in our Controller implementation) causes control to pass to the FetchPortfolioCommand.

You now see how user gestures, or application states, can cause the broadcasting of an event, and
how that event can cause control to pass to an appropriate worker or command class. Let’s now take
a look at how we implement these use-case-specific command classes.

RIA Command Pattern
It’s difficult to introduce the previous Controller pattern without also talking about the Command
Pattern, which is a typical collaborator. The Controller is responsible for recognizing events corre-
sponding to user gestures and changes of application state, and then delegating the “work” associ-
ated with responding to these requests to worker or command classes.

By using the Command Pattern to manage the “work” associated with each request, we achieve a
scalable architecture in a simple fashion. As the complexity of an application increases, the number
of use-cases also typically increases—each use-case largely corresponds to the creation of a new
command class and the registering of an event name with the Controller, which should cause con-
trol to pass to this command class.

The Command Pattern

The Command Pattern, often called the “Service to Worker” pattern in J2EE literature
(and familiar to many as a “Struts Action” when using the Struts framework), is one of the
original behavioral patterns advocated in the “Gang of Four” Design Patterns book, by
Erich Gamma et al.

The Controller needs to be able to execute an arbitrary number of commands in the same way—we
achieve this in ActionScript 2.0 by defining a common class interface that all command classes are
required to implement:

import com.iterationtwo.banking.control.Event;
interface com.iterationtwo.banking.commands.Command
{
function execute(event:Event):Void;

}

5666 CH20 4/14/04 10:30 PM Page 14

15Flex Technical Architecture

If you review our Controller implementation, you’ll see the following methods:
public function handleEvent(event:Event)
{
executeCommand(event);

}

private function executeCommand(event:Event)
{
var command:Command = getCommand(event.type);
command.execute(event);

}

When the Controller receives an event, the handleEvent() method passes it to the executeCom-
mand() helper method. By inspecting the type property of the event—which corresponds to the
event name—we can fetch the command class responsible for responding to this event. Because
every command implements the Command interface, we can then invoke the execute() method on
the command with no further details as to which command we’re actually executing.

In the online banking application, which we’ll build shortly, we have a displayTransaction event
that’s broadcast when the user selects a transaction on the bank statement. In response to this event,
we want to update a read-only form with specific details regarding the transaction. Our code is as
follows:

class com.iterationtwo.banking.commands.DisplayTransactionCommand
implements Command

{
public function DisplayTransactionCommand()
{
}

public function execute(event:Event):Void
{
var transaction:TransactionVO = (TransactionVO) event.data;
updateTransactionDetails(transaction);

}
...

}

The body of the execute() method contains the code responsible for updating the display with the
details of the particular transaction selected. Ensuring that this command is called when the dis-
playTransaction event is broadcast is as simple as adding the following lines to our Controller:

private function initialiseCommands()
{
addCommand(“displayTransaction”, new DisplayTransactionCommand());

}

The command class is an incredibly powerful pattern to implement in an RIA architecture—in our
experience, it makes the addition of business logic in an enterprise RIA development significantly
easier, and it works particularly well with large development teams working on the same project. A
typical feature addition requires the addition of new command classes that might or might not
require the addition of new business services that the classes can invoke.

5666 CH20 4/14/04 10:30 PM Page 15

16 Chapter 20 Flex Integration with J2EE

As a rule, we try to keep our command classes relatively simple—they don’t perform any complex
business logic of their own; instead, they perform as follows:

1. Fetch data from the user interface.

2. Invoke business services in a particular context by using the data fetched from the user
interface.

3. Handle the results of the business service and update the user interface with these results.

Although the command classes can be considered brokers for business logic, they delegate business
logic to another class rather than perform any complex business logic on their own. Conveniently,
we call this class the Business Delegate class.

Why Delegate?

An important question to ask is this: Why should we delegate business logic, and not
perform it within the command class? Typically, business services can be used in a
number of different contexts—for instance, in the mail client we built in the previous
chapter, the service of sending an email can be used to send a new message, reply to a
message, or forward a message.

However, the way we prepare the user interface, what we do after we send our message,
might differ in these different contexts. Rather than implement the “send e-mail message”
business logic in three different places, we would find ourselves extracting a method to
send e-mail out into a common class and using that method in different contexts.

Business Delegate is the result of a common refactoring; extracting business services
into a common class, which can be used in several contexts by several command
classes. In our experience of building RIAs, this is a refactoring that is inevitably applied
and merits consideration at the outset of an RIA technical architecture.

RIA Business Delegate Pattern
The concept of the Business Delegate pattern is likely to be familiar to J2EE developers who know
of this pattern from the Core J2EE Patterns catalogue. The Business Delegate represents a clear
point of integration between client and server. Where developers are solely responsible for client-
side development and integration of the client with the server, the Business Delegate provides the
necessary level of abstraction that allows them to use server-side business services without caring
about the implementation details or location of these services.

The Business Delegate typically fulfills its role in collaboration with the Service Locator; it uses the
Service Locator to locate and look up remote services, such as web services, remote Java objects, or
HTTP services. Once located, the Business Delegate invokes these services on behalf of the class
that has delegated responsibility to it for business logic invocation.

The Command class is responsible for deciding which business services should be invoked and
ensures that the appropriate data is collected to call these services.

5666 CH20 4/14/04 10:30 PM Page 16

17Flex Technical Architecture

Handling Results from Remote Object Calls

Earlier in this chapter, we introduced the concept of asynchronous callbacks—when a Remote
object call is made, at some future point a callback method is invoked on the calling object, with the
results passed back from the server.

Consider the following Business Delegate:
class com.iterationtwo.banking.business.AccountDelegate
{
public function AccountDelegate()
{
this.delegate =
mx.core.Application.application.services.accountDelegate;
}

public function getPortfolio() : Void
{
delegate.getAccountPortfolio();
}
...
}

In our Business Delegate constructor, we look up our delegate on the Service Locator, which can be
found at mx.core.Application.application.services and subsequently invoke the getAccountPortfo-
lio() method on the Business Delegate.

The getPortfolio() method is called on the Business Delegate by using the Remote object declara-
tion found in the services.mxml file:

<mx:Remote object id=”accountDelegate”
result=”handleResult(event.result)”
source=”com.iterationtwo.banking.business.AccountDelegate”>

<mx:method name=”getAccountPortfolio”/>
</mx:Remote object>

The result property that is assigned on the <mx:RemoteObject> tag is used to specify which method
should be called with the result when a method is called on the Remote object. Hopefully, you’re
already seeing problems with this for anything but the simplest of developments.

Understanding Pending Calls

Realistically, what we want to do with the results is likely to differ for each method that we call on a
Remote object. It’s therefore more sensible that we specify when we call a method on a Remote
object that we also say what we want to do with the results. We achieve this by using the Pending-
Call object that’s returned every time we make a Remote object call in ActionScript.

We can rewrite our Delegate method, getPortfolio(), as follows:
public function getPortfolio() : Void
{
var pendingCall = delegate.getAccountPortfolio();
}

5666 CH20 4/14/04 10:30 PM Page 17

18 Chapter 20 Flex Integration with J2EE

In the preceding method, we captured the pending call object that’s returned from the method
invocation. Due to the time-based “threaded” model that Flash Player operates on, the physical call
to the server-side method doesn’t occur until the getPortfolio() function call completes. Conse-
quently, we can attach objects dynamically at runtime to the Call object that’s returned, as follows:

public function getPortfolio() : Void
{
var pendingCall = delegate.getAccountPortfolio();
pendingCall.resultHandler = mx.utils.Delegate.create(this, myHandler);
}
private function myHandler(result) : Void
{
// the results are passed by the server back to this handler
}

What we did here is dynamically attach a property to the Call object, resultHandler, which we can
point at a function in our Delegate that we want to handle the actual result of the server-side call.
All that remains is to tell the Remote object in our Service Locator class (services.mxml) to call the
resultHandler function that we attached to our Call, which we do as follows:

<mx:Remote object id=”accountDelegate”
result=”event.call.resultHandler(event.result)”
source=”com.iterationtwo.banking.business.AccountDelegate”>

<mx:method name=”getAccountPortfolio”/>
</mx:Remote object>

Business Delegate and Service Locator Collaboration

Let’s examine the collaboration between the Business Delegate and Service Locator again. The
Business Delegate will look up the Service Locator to locate the Remote object called accountDele-
gate and will then invoke the getPortfolio() method on the Remote object. Invoking the method
on the Remote object returns an object, which represents the server-side call that will be made as
soon as the Delegate method is complete.

Dynamically, before the method is complete, we attach a resultHandler property to our pending
call, which we point at runtime to the function that we want to handle the results of our Remote
object call when they’re returned from the server.

In our Service Locator, services.mxml, we tell the Remote object call that it should inspect the
pending call object for a method call when the results come in, and it should pass those results to
the resultHandler that we attached to the pending call before the server-side method was invoked.
This will pass the results back to the myHandler() method, which we attached to the resultHandler
on our call, which is free to deal with the results as we see fit! We made sure to pass in a function
Delegate, as described in Chapter 16, “Managing Application Workflow with Events,” to make sure
that we don’t run into scope issues.

This collaboration gives us a scheme whereby the results of a server-side method call can be han-
dled differently for each call we make on the server side. This liberates us to invoke our server-side
logic in many different contexts—the same server-side methods can be used in different ways in dif-
ferent aspects of our application.

5666 CH20 4/14/04 10:30 PM Page 18

19Flex Technical Architecture

We’re not done yet, though—you’ll learn one more trick that really reaps rewards for having a collab-
oration of command classes, a Business Delegate, and a Service Locator in a client-side architecture.

Handling Results in the Context of the Command Class

Remember that the users of the Business Delegate are the individual command classes that the con-
troller “passes the buck” to, depending on the user-gesture or change of application state that it has
recognized by event broadcasting.

In the preceding scheme, we specified a generic fault handler on the Remote object definition in
our Service Locator. Within the Business Delegate, we could assign a result handler to handle the
results. However, our result handler was a private method, which we had to add to the Business
Delegate. Let’s consider a typical use-case and see why this is still restrictive.

Consider the getPortfolio() method on our previous Business Delegate and the different contexts
in which we might choose to call that method:

� On application startup, we can call this method from a command class that is responsible
for displaying a summary to a banking customer of all their accounts. After the results are
returned, we would then populate the UI with the appropriate summary information,
perhaps encouraging the user to drill down into the details of one particular account.

� We might also elect to give the banking customer the ability to view detailed reports
about their current net worth. We can call the exact same getPortfolio() method on
our Business Delegate, which would invoke the same server-side business service and
return the same results. This time, however, we want to present these results to the user
in a pop-up window as graphs and data prepared in a printed report format.

In both these instances, the decision about what to do with the results is best made in the context of
the command being executed. To put it another way, we want our Business Delegate to route the
results back to the command that called it, rather than attempt to handle them itself.

Let’s look at how we can do that.

Turning Commands into Responders

First of all, let’s change the constructor of our Business Delegate class, so that each time a command
class requires to invoke business services, it creates a new Business Delegate (which essentially prox-
ies the business services) and registers itself as the “responder”—the object wanting to handle the
results of any asynchronous server-side calls.

Why Responder?

We chose the term “responder” because this was the term first used in Flash Remoting,
and one that we discussed in detail in “Reality J2EE—Architecting for Flash MX”. The
responder describes the instance of a class that’s willing to take responsibility for hosting
the method that will handle the results of a server-side method call.

5666 CH20 4/14/04 10:30 PM Page 19

20 Chapter 20 Flex Integration with J2EE

Our Delegate constructor now looks like this:
class com.iterationtwo.banking.business.AccountDelegate
{
public function AccountDelegate(callingCommand:Responder)
{
this.delegate =
mx.core.Application.application.services.accountDelegate;
this.responder = callingCommand;
}
...
private var responder:Responder;
private var delegate:Object;
}

When the Delegate is created, it now has a reference to the command that called it, which we des-
ignate as being the responder. As you can see in the constructor for our Delegate, we strongly typed
the callingCommand as having to implement a Responder interface.

This interface ensures that irrespective of what else the responder does, it provides methods called
onResult() and onFault() that are capable of handling the results or faults that are returned from
service calls.

interface com.iterationtwo.banking.business.Responder
{
public function onResult(result) : Void;
public function onFault(fault) : Void;

}

Now, when we have a command class that will invoke server-side business logic through the appro-
priate Business Delegate, we can insist upon our command implementing the responder interface,
as well as having the command register itself with the Business Delegate as responsible for handling
returned results.

class com.iterationtwo.banking.commands.FetchPortfolioCommand
implements Command, Responder

{
public var delegate:AccountDelegate;

public function FetchPortfolioCommand()
{
this.delegate = new AccountDelegate(this);

}

public function onResult(result) : Void
{
var portfolio:AccountPortfolioVO = (AccountPortfolioVO) result;
mx.core.Application.application.portfolio = portfolio;

}

public function onFault(fault) : Void
{
}
...

}

5666 CH20 4/14/04 10:30 PM Page 20

21Flex Technical Architecture

The highlighted code shows the changes we made. Our command now implements the Responder
interface and must therefore provide the onResult() and onFault() methods that the interface
defines. Furthermore, our command passes itself to the AccountDelegate as the Responder object, so
that the AccountDelegate knows to pass the results it receives from the server back to our command.

There’s one additional caveat concerning the scoping of objects—and that requires us to delve into
Event Delegates.

Using the Event Delegate to Pass Scope

In the Business Delegate class, you learned how to attach the result handler to be called to the
pending call object that’s returned from a Remote object call. Now that we’re passing a reference to
our responder (the calling command class) in the Delegate constructor, we might be tempted to use
the following line method call:

public function getPortfolio() : Void
{
var pendingCall = delegate.getAccountPortfolio();
pendingCall.resultHandler = this.responder.onResult;

}

However, there’s a problem with this code that is related to the scoping issues of event handlers that
we first highlighted in Chapter 16. When the onResult() method is called on the responder, refer-
ences to this within the responder do not necessarily refer to the Responder instance itself—it
depends entirely on the scoping rules for event handlers.

To ensure that this in our responder refers to the Responder instance, we can use a feature of Flex
called the Event Delegate. The following implementation of getPortfolio()ensures that when the
command class handles the result from server-side calls in its onResult() method, the command can
use the this keyword to safely refer to its own scope:

public function getPortfolio() : Void
{
var pendingCall = delegate.getAccountPortfolio();
pendingCall.resultHandler = mx.utils.Delegate.create(Object(

this.responder), this.responder.onResult);
}

Casting the Responder as an Object

We used a cast to turn this.responder into an Object. The implementation of strict-typing
in ActionScript 2.0 currently doesn’t recognize that an instance of an object that has been
previously defined as an Interface type (that is, Responder) is a valid type-match in a
signature expecting an Object. Our workaround is to cast our responder to an Object
explicitly, which keeps the type-checker happy and allows our code to compile. Expect
this workaround to be no longer required in future revisions of ActionScript 2.0.

Let’s summarize the collaboration of our Business Delegate and command classes that allow our
commands to act in the role of responders for service results.

5666 CH20 4/14/04 10:30 PM Page 21

22 Chapter 20 Flex Integration with J2EE

The command class registers itself with the Delegate as a responder by passing a reference to itself
in the Delegate constructor. Furthermore, if the command invokes business services through the
Business Delegate, it implements the responder interface and provides appropriate onResult() and
onFault() methods.

Our Delegate now captures the pending call object that’s returned when any service calls are made,
such as when using the <mx:RemoteObject> tag. Knowing that the service call is not actually made
until the method executing the call returns, we can attach a resultHandler function to the pending
call object, which allows us to route results and faults from the service call back to the command
class, which can handle them in context. Finally, to ensure that there are no issues with regard to
scoping when the responder handles the result or fault events, we use the mx.utils.Delegate.cre-
ate() method to delegate the event handling to our command, rather than assume that the com-
mand can handle it without any scoping issues.

Let’s now take a look at one final but highly important design pattern—the value object—which we
can use to pass data between our application tiers, irrespective of whether they reside on the Flex
client or the application server.

RIA Value Objects
In an enterprise application, several tiers are likely to exist in the software architecture. Architects
often talk of a three-tier or n-tier design to describe the layers of architecture that are logically
decoupled from each other. In the Microsoft Enterprise Patterns, this architecture is described as
the “layered architecture.” In this book, we have been clear about advocating a three-tier client-side
architecture of presentation, business, and integration tier.

The different tiers in the application also reflect different levels of abstraction; at the presentation
tier, we’re concerned only with the visible properties of an object from the perspective of a user.
Within the business tier, an object can be furnished with additional information for the purposes of
computation or to reflect relationships between business objects. Finally, in the integration tier,
data is represented at its lowest level, using language-specific features such as SQL result sets.

Rather than expose developers to the implementation details of the integration tier, we can define
data transfer objects (DTOs) that are responsible for passing data between these tiers as business
data that reflects the domain objects in our system—customers, bank accounts, employees, flights,
reservations, and so on. Because these objects are free of implementation detail and business logic—
and instead reflect only the value of data, such as the specific age of a customer or the specific bal-
ance of a bank account—we call these objects value objects.

The value object pattern is documented in the Core J2EE Pattern catalogue as a pattern that allows
the bulk transfer of serialized data. At iteration::two, we embraced this pattern in our own Action-
Script 2.0 Pattern catalogue to ensure that we could do the following:

� Encapsulate the implementation of business objects

� Establish a “currency” for data passed between the various tiers on the client

� Establish a common object model on the client and the server

5666 CH20 4/14/04 10:30 PM Page 22

23Flex Technical Architecture

� Enable data to be passed transparently between the client and the server, and treated in
the same manner on both sides of the “wire”

In all of our business methods, in the Business Delegate class for instance, we enforce by conven-
tion that parameters to method calls and return-types from method calls are scalar types, value
objects, or arrays of value objects.

Anatomy of a Value Object

Let’s take a look at asample value object that represents a customer account in an online banking
application:

class com.iterationtwo.banking.vo.AccountVO
{
public function AccountVO()
{
_remoteClass = “com.iterationtwo.banking.vo.AccountVO”;

}

public var _remoteClass : String;

public var accountNumber:String;
public var sortCode:String;
public var title:String;
public var transactions:Array;

}

We are interested initially in the highlighted lines of code; quite simply, they describe the public
attributes that we want to expose on our value object to hold specific business data concerning a
bank account.

As shown in our declarations of the Transactions attribute, we defined an Array for transactions—
this Array can correspond to an Array of other value objects, as you’ll see shortly in our example.

Value Object Accessors

In J2EE, we would likely encapsulate our attributes as private attributes, with public getters and set-
ters, but in ActionScript, we recommend that you consider the following strategy that we adopt at
iteration::two.

In the simplest case in which we expect to be only getting or setting attributes, we choose to declare
the attributes as we’ve just shown, with public variables. Setting or getting attributes on a value
object is then as simple as this:

var account:AccountVO = new AccountVO();
account.accountNumber = “00310712”;
mx.core.Application.alert(“Account Number is “+account.accountNumber);

If the requirement on our value objects becomes more complex; perhaps we can do something a lit-
tle more clever in setting an attribute, for instance. Then we can encapsulate it by adding getter and
setter methods for the attribute.

5666 CH20 4/14/04 10:30 PM Page 23

24 Chapter 20 Flex Integration with J2EE

In ActionScript 2.0, we can use a feature known as implicit getters and setters and perform the follow-
ing refactoring:

public get accountNumber():String;
public set accountNumber(account:String)
{
this._accountNumber = “RN/”+account;
}
private var _accountNumber:String;

In this refactoring, we change the access of our accountNumber attribute from public to private, and
rename the attribute. (At iteration::two, our convention is to prefix with an underscore, although
many Macromedia classes use underscores in their implementations—and the compiler might warn
you if you happen to clash.) We then use the notation for an implicit getter and setter function, with
our function containing the same name we had for our public attribute. This then ensures that the
following code calls our setter—the implicit getter and setter ensure that a function call is treated as
if it were an attribute:

account.accountNumber = “00310712”;

In the preceding example, our motivation for the refactoring is shown as a requirement that
account numbers be prefixed with the fixed length string “RN/”.

This refactoring allows us to migrate from public attributes to public implicit getters and setter,
without affecting any client code (code that performs gets or sets).

We recommend this strategy over coding your own Java Bean style getters and setters.

Saving a Private Variable

When a value object is serialized from ActionScript and sent over the wire to be deserialized into a
Java object, you should be aware that private attributes on the client side are serialized and sent over
the wire as well.

A easy mistake is to assume that only public attributes will be passed over the wire, according to the
Java Bean serialization model. We recommend that you simply be mindful this issue when storing
data in your value objects that you want to pass over the wire. However, if you really want to prevent
your variables from being serialized, you can add the following code to the value object constructor:

class com.iterationtwo.banking.vo.AccountVO
{
public function AccountVO()
{
_remoteClass = “com.iterationtwo.banking.vo.AccountVO”;
_global.ASSetPropFlags(this, “accountNumber”, 1);

}

public var _remoteClass : String;
private var accountNumber : String;
...

}

The highlighted line of code instructs the ActionScript compiler to mark the accountNumber prop-
erty as hidden.

5666 CH20 4/14/04 10:30 PM Page 24

25Flex Technical Architecture

ASSetPropFlags—Magic Numbers

The number 1 in ASSetPropFlags is actually the decimal for the bit-pattern 001, in which
the most-significant bit (MSB) of the pattern represents “protect from overwriting,” the
middle bit represents “protect from deletion,” and the least-significant bit (LSB) represents
the “hidden” property. Thus, a pattern of 101 not only hides the property, but also
prevents it from being overwritten. Note that ASSetPropFlags is not an officially
documented method, so it might go away in future versions of Flex; but it’s safe to use in
version 1.0 and is actually used internally in many mx classes.

Mapping Client-Side Value Objects to the Server

Notice that we placed our value objects in the namespace com.iterationtwo.banking.vo. At itera-
tion::two, our practice is to keep the same package structure on the client as we maintain on the
J2EE server—making it simple for developers working on the integration of client and server to
find their way around the package structure.

As value objects are passed to arguments on our Business Delegate class and ultimately passed over
the wire in Remote object calls, they can be mapped to their server-side equivalents. We say “can be
mapped” because it’s up to us to coerce Flex into performing the mapping by somehow tying the
client and server-side value objects together:

class com.iterationtwo.banking.vo.AccountVO
{
public function AccountVO()
{
_remoteClass = “com.iterationtwo.banking.vo.AccountVO”;

}

public var _remoteClass : String;

public var accountNumber:String;
public var sortCode:String;
public var title:String;
public var transactions:Array;

}

Let’s look at our initial value object definition again; we highlighted the pertinent sections of code.

_remoteClass and Object.registerClass()

Implicitly, Flex maps objects between the client and server using a default set of mappings. (You’ll
find these mappings in the Flex documentation that ships with the product.)

For a value object that is not a type implicitly handled by Flex, we can specify a _remoteClass prop-
erty on the client-side value object that specifies the name of the equivalent server-side value object.
We don’t need to make any changes to the server-side value objects; the knowledge of the mapping
is required on the client-side only.

5666 CH20 4/14/04 10:30 PM Page 25

26 Chapter 20 Flex Integration with J2EE

Server-Side VOs: Keeping It Serializable

Here’s a common mistake made byJ2EE developers who already have a server-side data
model comprising a collection of value objects: forgetting to make these value objects
implement the java.io.Serializable interface. Flex is actually a bit clever about this,
and the serializable implementation isn’t essential—however, if you build an RIA that may
also use Flash Remoting, this is essential.

If a _remoteClass attribute is not supplied to point at an appropriate Java class, Flex deserializes the
object into a HashMap on the server by using the property names in the client-side value objects as
HashMap keys with appropriate values.

If a client-side value object contains other value objects or even Arrays of value objects as attributes,
Flex recursively traverses these during serialization and deserialization, provided that the “depen-
dant value objects” (the child value objects) also have the _remoteClass property correctly specified.

Beware of the Circular Reference

When recursively traversing an object graph, the graph must be in the form of a tree in
which where there are no circular references—a child containing a reference back to its
parent. If the object graph is cyclic (containing circular references), the server will
ultimately throw a StackOverflowException because the serialization and deserialization
get stuck running around the parent-child cycle in the graph.

If you’re asking Flex to serialize and deserialize object graphs, be careful to ensure that
these object graphs are always “non-cyclic;” that is, in tree or list form.

The previous scheme will work irrespective of whether the protocol used for the Remote object is
AMF or SOAP encoding.

If you’ve developed RIAs using J2EE, Flash Remoting, and Flash, you might be familiar with the
Object.registerClass() scheme for value object mapping, which the authors first discussed in
“Reality J2EE—Architecting for Flash MX.” In our client-side value object, we can place the fol-
lowing line of code in our attribute declarations as an alternative to _remoteClass:

private static var doRegister:Boolean = Object.registerClass(
“com.iterationtwo.banking.vo.AccountVO”, AccountVO);

This line of code registers our mapping between the fully qualified server-side value object class
name (the first argument) to the constructor of our client-side value object. With this line of code
in place, our serialization and deserialization of value objects and value object graphs also works.
However, the Object.registerClass() scheme works only with AMF encoding;—not with SOAP
encoding. We recommend that you stick with the Flex strategy of _remoteClass being defined on
the client-side value object, so that your value objects can be mapped between the client-side and
server-side of your Flex RIA, irrespective of using the AMF or SOAP protocol.

5666 CH20 4/14/04 10:30 PM Page 26

27iteration::two Online Banking Application

iteration::two Online Banking Application
In this chapter so far, we introduced the <mx:RemoteObject> tag as an alternative service to the web
service and HTTP service tags. This tag offers a tightly coupled service invocation between a Flex
client and J2EE middleware.

More importantly, we used this final discussion of service integration technologies to introduce
some design pattern concepts that can be applied from our previous experience of J2EE and RIA
development to the architecture and development of Flex applications.

In the pages that follow, we’ll put some of this design and architecture into practice with the begin-
nings of an application for online banking. In the sample application that follows, we’ll put in place
an architecture of Controller and Event Broadcaster, commands, Business Delegate, and Service
Locator to invoke business logic on a J2EE application server.

User Interface
The user interface for our finished application is shown in Figure 20.1. The interface is contained
within a Panel layout, adding a MenuBar and a two-panel layout to show a summary of the cus-
tomer’s account portfolio, and the detailed transactions in the currently selected account. In the
right panel (underneath the bank statement), a number of tabs offer the opportunity to perform
common operations on the currently selected account—including paying bills, making account
transfers, setting up debits and standing orders, or simply viewing the details of a selected transac-
tion and allowing that transaction to be assigned to a spending category.

Figure 20.1

The iteration::two
online banking RIA
demonstration.

5666 CH20 4/14/04 10:30 PM Page 27

28 Chapter 20 Flex Integration with J2EE

The user interface comprises the following MXML files and custom components:

� bankaccounts.mxml—The main MXML file, which builds the UI, instantiates the Service
Locator, and constructs the MenuBar, AccountSummary panel, and AccountDetails
panel.

� appMenubar.mxml—The application MenuBar.

� AccountSummary.mxml—The left panel that displays summary information for each
account in the customers portfolio.

� AccountDetails.mxml—The right panel that displays the DataGrid of detailed account
transactions, as well as the TabNavigator allowing different operations to be performed
on the account shown.

The AccountDetails component instantiates a custom component for each of the five operations
that appear in the TabNavigator:

TransactionDetails.mxml—A form that uses data binding to display the details of the
currently selected item in the DataGrid of transactions, contained within the
AccountDetails component.

Transfer.mxml—A form that enables the user to transfer money between the accounts in
the portfolio.

Payments.mxml—A form that allows the user to schedule payments to be made from his
account to another bank account, such as a bill payment.

StandingOrder.mxml—A form that allows the user to instruct a standing order payment
to be made from their account, such as a mortgage payment.

DirectDebit.mxml—A form that allows the user to set up a debit instruction that allows a
utility company for instance, to draw funds directly from the account each month to
settle a bill payment.

In addition to these user interface components, the project includes two other files:

� main.css—A stylesheet responsible for embedding fonts and setting the styles used in the
application.

� services.mxml—Our MXML Service Locator class that contains the Remote object
definitions for the J2EE banking services.

Because the focus of this chapter is on Remote object behavior and how to implement Remote
object invocation within a scalable software architecture, we won’t list the code in theabove files
here—the code is available for download from the companion Web site for this book.

J2EE Middleware: Server-Side AccountDelegate and Value Objects
It’s not our intention to present the complete source for the J2EE middleware that we’re using in
our sample application because it also available for download from the companion Web site.

5666 CH20 4/14/04 10:30 PM Page 28

29iteration::two Online Banking Application

In summary, however, we implemented an AccountDelegate Business Delegate on the server that
exposes a getPortfolio() method on the server and passes back an AccountPortfolioVO value
object to the client as follows:

package com.iterationtwo.banking.business;

import com.iterationtwo.banking.vo.*;

public class AccountDelegate
{
public AccountDelegate()
{
}

public AccountPortfolioVO getAccountPortfolio()
{
}
...

}

The AccountPortfolioVO value object contains an Array of AccountVO value objects. The AccountVO
value object contains miscellaneous attributes that correspond to an account, along with an Array of
TransactionVO value objects that represent the individual transactions that have been performed on
an account.

In a real-world implementation, the getAccountPortfolio() method would construct the Account-
PortfolioVO as the result of a number of CICS mainframe transactions using the Java Connector
Architecture (JCA) or perhaps be built as from a call to a stateless session EJB that performs a
façade function to several entity EJBs. In our example, to enable the reader to deploy and test the
example with minimum fuss, we elected to construct a fake AccountPortfolioVO in the body of the
Business Delegate method ourselves.

Our value objects reside in the com.iterationtwo.banking.vo package; we’ll mirror the package
structure and class naming for the client side ActionScript 2.0 value objects in the same way as on
the server.

The compiled classes can be packaged in a JAR file and deployed into the WEB-INF/lib directory
under your Flex Web application context, or the classes themselves can be deployed in a package
structure underneath the WEB-INF/classes directory on your application server.

Fetching the Portfolio of Accounts
The first task we want to complete is to ensure that on application startup, the summary panel on
the left side of the screen displays a summary of the accounts in the user’s portfolio.

Using the pattern-based framework described earlier in this chapter, this requires that we do the
following:

1. Create the client-side value objects to map to the server-side value objects.

2. Create a Remote object in our Service Locator that will contain our server-side business
method getPortfolio().

5666 CH20 4/14/04 10:30 PM Page 29

30 Chapter 20 Flex Integration with J2EE

3. Add a business method, getPortfolio(), to our Business Delegate to call the remote
service.

4. Register a fetchPortfolio event with the Front Controller.

5. Create a FetchPortfolioCommand command class that will call the Business Delegate to
fetch the account portfolio from the server, acting as a responder to handle the results of
the Remote object call, so that it can populate the left-hand panel with the account
summary.

Let’s follow each of these steps in turn.

Creating AccountPortfolioVO in ActionScript 2.0

The first thing we need to do is create a client-side value object that will map to the AccountPortfo-
lioVO class on our server. It’s our convention at iteration::two to package and name these classes
identically on the server, so developers can quickly begin to treat the classes the same, irrespective
of which side of the wire they’re working on. Our class definition is as follows:

class com.iterationtwo.banking.vo.AccountPortfolioVO
{
public function AccountPortfolioVO()
{
_remoteClass = “com.iterationtwo.banking.vo.AccountPortfolioVO”;

}

public var accounts:Array;
public var _remoteClass : String;

}

Essentially, the value object sets the _remoteClass attribute to map to the server-side value object
and declares the accounts Array, which will contain the AccountVO objects we described earlier in
this chapter.

Adding a Remote Object to the Service Locator

On the server-side, we have an AccountDelegate class in the package
com.iterationtwo.banking.business that contains our getPortfolio() method that we’ll be using
to fetch our portfolio of accounts.

In our architecture discussion, we described how we could add all our services to a single Service
Locator implemented in MXML and reference that Service Locator from our delegate whenever
we wished to invoke business services.

We add the following implementation of services.mxml:
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Canvas xmlns:mx=”http://www.macromedia.com/2003/mxml” height=”0”
visible=”false”>

<!— == —>
<!— Remote Java Objects —>
<!— == —>

5666 CH20 4/14/04 10:30 PM Page 30

31iteration::two Online Banking Application

<mx:Remote object id=”accountDelegate”
result=”event.call.resultHandler(event.result)”
source=”com.iterationtwo.banking.business.AccountDelegate”>

<mx:method name=”getAccountPortfolio”/>
</mx:Remote object>

</mx:Canvas>

Notice that we configured the result callback on our Remote object definition, enabling us to spec-
ify the responder as the resultHandler attribute on the pending call object returned to our delegate
when services are invoked.

Finally, we add the following line to our main application, bankaccounts.mxml, to instantiate our
Service Locator:

<i2:services id=”services” />

Now our main application has a lookup facility for services, and we defined a Remote object service
for the server-side AccountDelegate.

Adding getPortfolio() to the Client-Side AccountDelegate

Next, we need to implement the getPortfolio() method on our client-side business delegate; the
method will invoke the getPortfolio() method on our server-side delegate, located through our
<i2:services /> component, and will pass the result back to the Responder object that registered
itself with the delegate when the delegate was created.

Our method is as follows:
class com.iterationtwo.banking.business.AccountDelegate
{

public function AccountDelegate(callingCommand:Responder)
{
this.delegate =

mx.core.Application.application.services.accountDelegate;
this.responder = callingCommand;

}

public function getPortfolio() : Void
{
var pc = delegate.getAccountPortfolio();
pc.resultHandler = mx.utils.Delegate.create(Object(this.responder),

this.responder.onResult);
}

...

}

The constructor for our delegate registers the calling command as the responder, and looks up our
server-side delegate through the services component. We then invoke the server-side method in the
highlighted line of code and attach a result handler to the pending call that will pass the results of
the server-side call back to the command that called the client-side delegate.

5666 CH20 4/14/04 10:30 PM Page 31

32 Chapter 20 Flex Integration with J2EE

Registering the Event with the Controller

We’re almost ready to create our FetchPortfolioCommand class; however, control will pass to that
class only in response to an event that has been mapped to the invocation of that command. Using
the Controller architecture, we add the following line to the initaliseCommands() method of our
Controller class, located in com.iterationtwo.banking.control.BankingController:

private function initialiseCommands()
{
addCommand(“fetchPortfolio”, new FetchPortfolioCommand());

}

This ensures that in response to a fetchPortfolio event being broadcast anywhere in our applica-
tion, the execute() method on FetchPortfolioCommand will be called. We’ll leave the reader to
take a look at the implementation of the controller from the code on the companion Web site.

Creating the Command Class

The full code for our FetchPortfolioCommand is given below:
import com.iterationtwo.banking.business.*;
import com.iterationtwo.banking.commands.*;
import com.iterationtwo.banking.vo.*;
import com.iterationtwo.banking.control.*;

class com.iterationtwo.banking.commands.FetchPortfolioCommand
implements Command, Responder

{
public var delegate:AccountDelegate;

public function FetchPortfolioCommand()
{
this.delegate = new AccountDelegate(this);

}

public function execute(event:Event):Void
{
delegate.getPortfolio();

}

public function onResult(result) : Void
{
var portfolio:AccountPortfolioVO = (AccountPortfolioVO) result;
mx.core.Application.application.portfolio = portfolio;

}

public function onFault(fault) : Void
{
}

}

The key here is that our command class creates a new instance of the client-side AccountDelegate
in its constructor, passing itself as the responder argument to the Delegate.

By implementing the Responder interface, our FetchPortfolioCommand is obliged to provide an
onResult() and onFault() method as the Responder interface demands.

5666 CH20 4/14/04 10:30 PM Page 32

33iteration::two Online Banking Application

In the body of the execute() method, our command invokes the getPortfolio() command on the
AccountDelegate, with our onResult() method handling the return of the AccountPortfolioVO.

In bankaccounts.mxml, the application state is maintained as a global variable, portfolio, of type
AccountPortfolioVO, allowing the binding of UI components to the portfolio. By updating the
global portfolio object from our command, any bindings for areas of the UI responsible for dis-
playing portfolio information will be fired.

Firing an Event on Application Startup

Finally, we add the following code to bankaccounts.mxml:
<?xml version=”1.0” encoding=”utf-8”?>
<mx:Application xmlns:mx=”http://www.macromedia.com/2003/mxml”

xmlns:i2=”*”
themeColor=”haloSilver”
initialize=”applicationInit()” >

<mx:Panel title=”iteration::two Online Banking RIA”
marginLeft=”0” marginRight=”0” marginTop=”0” marginBottom=”0”>

<mx:Script>
import mx.containers.TitleWindow;
import com.iterationtwo.banking.business.*;
import com.iterationtwo.banking.control.*;
import com.iterationtwo.banking.vo.*;

public var controller:BankingController;
public var portfolio:AccountPortfolioVO;

public function applicationInit()
{
_global.style.modalTransparency = 50;
controller = new BankingController();
EventBroadcaster.getInstance().broadcastEvent(“fetchPortfolio”);

}
</mx:Script>

Instantiating Controller as an MXML Tag

In the body of our applicationInit() method, we create an instance of our controller
explicitly in ActionScript. Because an MXML tag is essentially a class, an alternative is
that we CREATE the Controller using an MXML tag, such as <i2:BankingController
id=”controller”/>.

The choice you make is a matter of style—we simply chose to show the ActionScript
variant in this application.

We specify a startup method, applicationInit(), which creates a single instance of our Banking-
Controller before broadcasting the fetchPortfolio event. This means that on startup, our Fetch-
PortfolioCommand immediately has its execute() method called, which results in the server-side
getPortfolio() method being called. The AccountPortfolioVO returned from that server-side call

5666 CH20 4/14/04 10:30 PM Page 33

34 Chapter 20 Flex Integration with J2EE

is mapped into the appropriate AccountPortfolioVO value object on the client, including the depen-
dant AccountVO and TransactionVO objects, and returned to the FetchPortfolioCommand onResult()

handler, where the client-state is updated with the new portfolio.

All that remains is for us to display the summary details of this portfolio in our left panel.

Displaying an Account Summary
The following code demonstrates the implementation of the left panel, which shows a summary of
accounts. The custom AccountSummary component defines a portfolio attribute, which is bound
to the global Portfolio object during instantiation within bankaccounts.mxml. This ensures that
every time the portfolio is fetched or updated, the AccountSummary will update any bindings on
its Portfolio object.

<?xml version=”1.0” encoding=”utf-8”?>
<mx:Panel xmlns:mx=”http://www.macromedia.com/2003/mxml”>

<mx:Script>
<![CDATA[
import com.iterationtwo.banking.vo.*;
import com.iterationtwo.banking.control.*;

public var portfolio:AccountPortfolioVO;
]]>
</mx:Script>

<mx:Repeater id=”list” dataProvider=”{portfolio.accounts}”>
<mx:HBox>
<mx:Label text=”{list.currentItem.title}” width=”150”/>

</mx:HBox>
</mx:Repeater>

</mx:Panel>

As can be seen from the highlighted lines of code, we repeat over each of the accounts in the global
Portfolio object, and for each of those accounts, display the title attribute within a label.

Implementing a Sliding Panel Effect

Because we have more information than just the title that we might want to display, let’s implement
a “sliding panel” effect. When we click one of the labels, we want everything below to slide down,
revealing a more detailed account summary. Clicking the summary again hides the details, whereas
clicking another title hides the original details, and reveals the details for the new account.

We add the following ActionScript 2.0 into our Script block:
public function accountSummarySelected(index)
{
// Resize the summary to display more details
for (var i=0; i < portfolio.accounts.length; i++)
{
if (i == index)
{

5666 CH20 4/14/04 10:30 PM Page 34

35iteration::two Online Banking Application

slideOpen(i);
}
else
{
slideClosed(i);

}
}

}

private function slideOpen(index)
{
var e = new mx.effects.Resize(detail[index]);
e.heightTo = 120;
e.duration = 300;
e.playEffect();

}

private function slideClosed(index)
{
var e = new mx.effects.Resize(detail[index]);
e.heightTo = 0;
e.duration = 300;
e.playEffect();

}

The private helper methods are set up to slide a container within the repeater called detail,
between a height of 0 or 300, to reveal the content within. With our accountSummarySelected()
method ensuring that our selected account summary is slid open and all others are slid closed, we
make the following changes to AccountSummary.mxml:

<mx:Repeater id=”list” dataProvider=”{portfolio.accounts}”>
<mx:HBox mouseDown=”accountSummarySelected(

event.target.repeaterIndices[0])”>
<mx:Label text=”{list.currentItem.title}” width=”150”/>

</mx:HBox>
<mx:VBox id=”detail”

marginLeft=”10” marginBottom=”10” height=”0”
vScrollPolicy=”off” hScrollPolicy=”off”>

<mx:Label text=”Account Number: {list.currentItem.accountNumber}”/>
<mx:Label text=”Sort Code: {list.currentItem.sortCode}”/>
<mx:Label text=”Current Cleared Balance: 1250.00”/>
<mx:Label text=”Current Overdraft: 100.00”/>
<mx:Label text=”Funds Available: 1350.00”/>

</mx:VBox>
</mx:Repeater>

Now, our accountSummarySelected() method is called when the account titles are clicked, revealing
the contents of the VBox that we’ve named detail. These VBox containers are slid open or closed
with the ActionScript methods we just defined.

In our main bankaccounts.mxml file, the following instantiation of the AccountSummary component
ensures that the account summary reflects the portfolio fetched by our FetchPortfolioCommand:

<i2:AccountSummary title=”Accounts Summary” portfolio=”{portfolio}”
width=”350” heightFlex=”1” />

Figure 20.2 shows the summary of accounts, with an account having been selected to reveal further
details.

5666 CH20 4/14/04 10:30 PM Page 35

36 Chapter 20 Flex Integration with J2EE

Displaying Transactions on an Account Statement
When an account is selected in the Accounts Summary panel, we want the detailed list of transactions,
or “statement,” to be shown in the DataGrid that’s displayed in the AccountDetails component.

� Using our pattern-based framework, this will require that we do the following:

� Broadcast a displayStatement event to our controller with details of the account that has
been selected.

� Instruct our Controller to respond to the displayStatement event with an appropriate
DisplayStatementCommand command class.

� Implement the DisplayStatementCommand to update our DataGrid with details of the
account transactions.

Let’s deal with each of these tasks in turn.

Broadcasting the displayStatement Event

We already implemented the accountSummarySelected() method in AccountSummary.mxml. The
following amendment is all that’s necessary to ensure that an appropriately named event is broad-
cast when a summary has been selected with the mouse:

public function accountSummarySelected(index)
{

// Cause an update of the AccountDetails panel
var account:AccountVO = portfolio.accounts[index];
EventBroadcaster.getInstance().broadcastEvent(“displayStatement”,

account);
// Resize the summary to display more details
...

}

Figure 20.2

AccountSummary
component, with an
account selected to
reveal further account
details.

5666 CH20 4/14/04 10:30 PM Page 36

37iteration::two Online Banking Application

In the preceding example, not only do we broadcast the event, but we attach some data with the
event—the value object representing the account that has been selected, which will include the
account information and an Array of all the transactions that have been performed on the account,
as an Array of TransactionVO value objects.

Registering DisplayStatementCommand with the Controller

Next, we update our initialiseCommands() method on our controller as follows:
private function initialiseCommands()
{
addCommand(“fetchPortfolio”, new FetchPortfolioCommand());
addCommand(“displayStatement”, new DisplayStatementCommand());

}

In only a matter o seconds, we have enabled an entirely new use-case in our application, and pro-
vided a scenario—selecting an account in summary view—from which the use-case is kicked into
action through a Command class!

Implementing DisplayStatementCommand

The implementation of our DisplayStatementCommand is even simpler; the command is invoked as a
result of the displayStatement event, which we know broadcasts an AccountVO as accompanying
data. We pass this AccountVO to an updateStatementDetails() method, which will encapsulate the
setting of the DataGrid with all the transactions on the account:

import com.iterationtwo.banking.business.*;
import com.iterationtwo.banking.commands.*;
import com.iterationtwo.banking.vo.*;
import com.iterationtwo.banking.control.*;

class com.iterationtwo.banking.commands.DisplayStatementCommand
implements Command

{
public function DisplayStatementCommand()
{
}

public function execute(event:Event):Void
{
var account:AccountVO = (AccountVO) event.data;
updateStatementDetails(account);

}
}

In our AccountDetails custom component, the DataGrid that renders the transactions has an iden-
tifier of statement, using a local Array of TransactionVO objects as its dataProvider, picking attrib-
utes from each TransactionVO for each column, as the following code shows:

<mx:DataGrid id=”statement” widthFlex=”1” heightFlex=”7” >
<mx:dataProvider>{transactions}</mx:dataProvider>
<mx:columns>
<mx:Array>
<mx:DataGridColumn columnName=”date” headerText=”Date” />

5666 CH20 4/14/04 10:30 PM Page 37

38 Chapter 20 Flex Integration with J2EE

<mx:DataGridColumn columnName=”description” headerText=”Description”/>
<mx:DataGridColumn columnName=”type” headerText=”Type”/>
<mx:DataGridColumn columnName=”amount” headerText=”Amount”/>
<mx:DataGridColumn columnName=”balance” headerText=”Balance”/>
</mx:Array>

</mx:columns>
</mx:DataGrid>

The implementation of the private updateStatementDetails() method on our DisplayStatement-
Command is therefore as straightforward as this:

private function updateStatementDetails(account:AccountVO) : Void
{
mx.core.Application.application.account.transactions=

account.transactions;
}

Again, we can see how a collaboration of Controller and command classes makes it extremely sim-
ple to add new functionality to our application without risking consequent effects to existing func-
tionality.

Command classes and Business Delegate methods prove excellent opportunities for the unit testing
of ActionScript 2.0 code using the AS2Unit framework.

Displaying Transaction Details
One of the forms displayed in the TabNavigator of the AccountDetails component is the detail of a
transaction selected in the Data Grid.

This presents an interesting discussion—should we pull all the details that might need to be dis-
played by the client over the wire when the application starts up? Or should we operate in a mas-
ter/detail view, in which clicking a transaction causes further data to be fetched from the server to
then display more detail?

In essence, this is a trade-off of startup performance versus runtime performance, which is most
likely to be an application-specific decision. One of the great benefits of an RIA is that the
master/detail scenario can be handled “under the covers,” so that it’s almost imperceptible to the
user. If we fetch details from the server on demand, the user need not suffer a page refresh or long
wait for this information to be fetched.

At iteration::two, if we have a data set size that we think might be able to be pulled over the wire at
startup without penalty to the user, we go with this in the first instance, only optimizing for a
“deferred fetching” model when performance demands it. With a Command pattern implementa-
tion, this is a relatively simple refactoring that can be performed in a specific command class with-
out affecting any other part of the application architecture.

This is another strong case for adopting a Command pattern-based architecture; the strong encap-
sulation of business logic affords us the luxury of targeted refactorings for performance and opti-
mization as soon as they become critical.

5666 CH20 4/14/04 10:30 PM Page 38

39iteration::two Online Banking Application

Back to our example—we must make the following changes to our application:

1. Broadcast an appropriate displayTransaction event when a transaction is selected on the
DataGrid, with the event containing a TransactionVO object representing the transaction.

2. Register the displayTransaction command with the Controller.

3. Implement DisplayTransactionCommand.

Broadcasting the displayTransaction Event

Broadcasting the appropriate event is as simple as our previous example. We add the following
method to our AccountDetails component:

public function displayTransaction(event)
{
var selectedRowIndex = event.itemIndex;
EventBroadcaster.getInstance().broadcastEvent(“displayTransaction”,

transactions[selectedRowIndex]);
}

We attach it to the cellPress event on the DataGrid:
<mx:DataGrid id=”statement” widthFlex=”1” heightFlex=”7”

cellPress=”displayTransaction(event)” >

This notifies the Front Controller about our desire to display transaction details on the appropriate
tab of our TabNavigator.

Registering the displayTransaction Event with the Controller

Registering a new event with the Controller is a simple one-line addition with our pattern-based
architecture:

private function initialiseCommands()
{
addCommand(“fetchPortfolio”, new FetchPortfolioCommand());
addCommand(“displayStatement”, new DisplayStatementCommand());
addCommand(“displayTransaction”, new DisplayTransactionCommand());

}

Implementing DisplayTransactionCommand

Finally, we need to implement the DisplayTransactionCommand, which receives the TransactionVO
in the event broadcast by the Controller, and updates the user interface accordingly.

Again, we use a private helper method to update the user interface. Extracting this user interface
logic into a private method is the first step toward performing the Extract Class refactoring. At iter-
ation::two, we ultimately refactor this code into a View Helper class that’s solely responsible for
mediating between the command and the view.

Our DisplayTransactionCommand ends up as follows:
class com.iterationtwo.banking.commands.DisplayTransactionCommand

implements Command
{

5666 CH20 4/14/04 10:30 PM Page 39

40 Chapter 20 Flex Integration with J2EE

public function DisplayTransactionCommand()
{
}

public function execute(event:Event):Void
{
var transaction:TransactionVO = (TransactionVO) event.data;
updateDetails(transaction);

}

private function updateDetails(transaction:TransactionVO):Void
{
var detailForm = mx.core.Application.application.account.tabs.details;
detailForm.date.text = transaction.date;
detailForm.description.text = transaction.description;
detailForm amount.text = transaction.amount;

}
}

The highlighted code in the helper method is simply responsible for setting the appropriate form
fields, located on the Details tab in the AccountDetails panel (referenced as account.tab.details from
the top-level application), by picking out the appropriate fields from the TransactionVO that was
broadcast with the event.

Transferring Between Accounts
In this final addition to our sample application, we’ll commence the implementation of the Transfer
tab on our AccountDetails panel. The transfer panel is shown in Figure 20.3.

Figure 20.3

The Transfer panel
that allows transfer of
money into another
account.

To support the transfer of money, we register a new event, makeTransfer. In our Controller, we tie
that event to TransferCommand, which is implemented as follows:

class com.iterationtwo.banking.commands.TransferCommand
implements Command, Responder

{

public var delegate:AccountDelegate;

public function TransferCommand()
{
this.delegate = new AccountDelegate(this);

}

public function execute(event:Event):Void
{

5666 CH20 4/14/04 10:30 PM Page 40

41iteration::two Online Banking Application

mx.core.Application.alert(“Transferring Money between Accounts”);
delegate.makeTransfer();

}

public function onResult(result):Void
{
}

public function onFault(fault) : Void
{
}

}

There is something different about our implementation of TransferCommand, however—we haven’t
shown the fetching of the form elements from the view, and instead just seem to invoke the make-
Transfer() method on the Remote object.

Argument Binding

Argument binding is a quick and simple means of binding form inputs to the arguments for a
Remote object invocation, or equally for binding Remote object results to the user interface. When
we want to use our Remote object calls in a number of different contexts, argument binding can
prove quite limiting. However, for single use-cases, such as only ever wanting to make transfers
from our single form on the Transfer tab of the AccountDetails screen, we can define our Remote
object method as follows:

<mx:Remote object id=”accountDelegate”
result=”event.call.resultHandler(event.result)”
source=”com.iterationtwo.banking.business.AccountDelegate”>

<mx:method name=”getAccountPortfolio”/>
<mx:method name=”makeTransfer”>
<mx:arguments>
<paymentDate>

{mx.core.Application.application.account.tabs.transfer.paymentDate}
</paymentDate>
<amount>

{mx.core.Application.application.account.tabs.transfer.amount}
</amount>
<notes>

{mx.core.Application.application.account.tabs.transfer.notes}
</notes>
<toAccount>

{mx.core.Application.application.account.tabs.transfer.toAccount}
</toAccount>

</mx:arguments>
</mx:method>

</mx:Remote object>

Using argument binding, we can specify the arguments to our Java method in order by using any
names we like. The preceding highlighted method declaration is equivalent to calling a method on
our J2EE delegate as follows:

public void makeTransfer(Date paymentDate, double amount,
String notes, int accountId);

5666 CH20 4/14/04 10:30 PM Page 41

42 Chapter 20 Flex Integration with J2EE

One of the advantages of argument binding is that we can easily apply validators in our
services.mxml to validate the bindings that we’re making. For instance, if we want to ensure that
only real numbers are provided for the amount of money to transfer, we can add the following val-
idator to services.mxml:

<mx:NumberValidator
field=” mx.core.Application.application.account.tabs.transfer.amount”
domain=”real”/>

At iteration::two, we’re more likely to adopt a method of explicit parameter passing, calling our ser-
vice methods from within our ActionScript command classes.

Specifying Concurrency

Finally, we add the following property to our method definition in services.mxml:
<mx:method name=”makeTransfer” concurrency=”last”>

As with web services, we can specify a concurrency policy on individual method calls; in this exam-
ple, the policy of last indicates that a new request to the makeTransfer() method should cancel any
existing requests. Alternatively, we can provide a policy of multiple to allow all transfers to be
processed (the default behavior) or a policy of single to ensure that only a single request is allowed.

Stateful J2EE Integration
We kept the following discussion to be last in this chapter because it’s our experience that the
biggest hurdle for J2EE developers when working with RIA architectures for the first time is the
process of shifting state toward the client.

Many developers recognize the benefits that can be achieved with a rich-client architecture and fur-
ther recognize Flex as being able to provide the rich and interactive controls with which they can
deliver these experiences. However, it’s easy to get stuck in the “JSP mindset” and attempt to refac-
tor toward a rich-client architecture by replacing each JSP in the application with an equivalent
MXML file. Although this is certainly possible, the real rich-client rewards are to be reaped when a
collection of interacting JSPs are brought together under a single MXML application, replacing the
form submissions required to navigate between these JSPs as asynchronous Remote object (or
indeed web service or HTTP service) calls.

There might still be valid reasons why a rich-client architecture requires that some concept of state
be shared between the client and the server; let’s consider how this can be achieved with Flex.

Stateful Classes
By default, when we make a remote call on a J2EE class using the Remote object, a new object is
created for each method call, as opposed to using the same object for consecutive method calls.

The type attribute on the Remote object can be used to specify a stateful class; the only restriction
on what constitutes a stateful class is that it must reside on the server classpath and have a no-argu-
ments constructor.

5666 CH20 4/14/04 10:30 PM Page 42

43Stateful J2EE Integration

Consider a class on the server that’s responsible for processing merchant card transactions; it might
be necessary to maintain state during several transactions, requiring that we have a stateful class.
We can declare this Remote object in our Service Locator, services.mxml, as follows:

<mx:Remote object type=”stateful-class” id=”merchantPayment”
source=”com.iterationtwo.commerce.business.CardPayments” />

If not specified, the type would have defaulted to stateless class, which has been implicit in our pre-
vious examples.

Cross-Platform Compatibility and Performance

The implementation of stateful classes is achieved in Flex by using J2EE server sessions to maintain
the state of stateful Java objects. This raises two important considerations for enterprise develop-
ment: cross-platform compatibility and performance.

Session cookies are used to maintain the state; for clients that have cookie-handling disabled, the
response.encodeURL() method can be used to append the jsessionid to the URL. Irrespective of
which method is used, you should be aware that although Flash Player on Windows, Linux, and
Unix supports server sessions, the stand-alone Macintosh Flash Player (the Flash Player that resides
outside the browser, not the browser plug-in) does not have support for J2EE server sessions.

Finally, storing objects in the session has implications for memory performance because stateful ses-
sion objects are stored in the J2EE session. As with traditional J2EE development, care should be
taken with regard to the size of objects that are kept in the J2EE session—use the stateless-class
type for Remote object access wherever possible.

Gaining Access to J2EE Sessions
Flex preconfigures a session servlet in the default web.xml file, which makes available a server-side
Java object that can be used to access and modify the J2EE session for an application.

By placing one of the following Remote object definitions in our Service Locator at services.mxml,
we make available to our application a service that can get and set objects in the J2EE session, as
well as remove objects from the session:

<mx:Remote object source=”servlet” id=”sessionObject” />
<mx:Remote object source=”@ContextRoot()” id=”sessionObject”/>

As with any other <mx:RemoteObject> tag, the session service can use result and fault event handlers
to handle requests to fetch items from the session.

The web.xml descriptor defines the name of the session servlet as servlet; therefore, we use one of
the following examples to work with the J2EE session:

sessionObject.session(“set”, “customerID”, 700);
sessionObject.session(“get”, “customerID”);
sessionObject.session(“remove”, “customerID”);

These three examples demonstrate how the session service is used to get, set, or remove items in
the J2EE session from a Flex client.

5666 CH20 4/14/04 10:30 PM Page 43

44 Chapter 20 Flex Integration with J2EE

As a best-practice, we recommend that access to the J2EE session be encapsulated in a client-side
SessionDelegate Business Delegate in the same way that we recommend interaction with other
server-side Java objects. Furthermore, because setting and getting items in the J2EE session is a rel-
atively expensive operation compared with setting state on the client, we advocate using value
objects in their role as “bulk accessors” to get and set a number of related properties.

Summary
The actual mechanics of locating a Java class residing in a J2EE application server, remotely invok-
ing business methods on that class, and returning these results to a Flex client are surprisingly sim-
ple—thanks to the power and flexibility of the <mx:RemoteObject> tag. In this chapter, we exposed
the different ways in which the <mx:RemoteObject> tag can be used and explored the degree of con-
figurability we can have in what objects we can call and how to call them.

More importantly, however, this chapter has served as a stepping stone for the development of
enterprise-scale RIAs. We delved into the topic of design patterns for RIA development in more
detail than anywhere else in this book, presenting design patterns that are likely to be familiar to
J2EE developers and perhaps to a lesser extent (because we’ve drawn our Pattern catalogue from
the knowledge of the Core J2EE Pattern catalogue), to .NET developers.

We showed how a rich collaboration of design patterns enables us to build an application frame-
work that readily accepts the addition of new functionality and encourages refactoring by encapsu-
lating behavior at appropriate levels of abstraction. One of the key benefits that we haven’t
emphasized so far is how such an architecture enables the collaborative development of enterprise
RIAs on large multidisciplinary teams by providing a clear and common vocabulary for solving
business problems, and a clear and common understanding of where in the software architecture a
particular new requirement should be accommodated.

We introduced the Service Locator pattern and recommended its implementation in MXML. This
is a departure from the recommendation we would have made before the arrival of Flex, but the ele-
gance of the <mx:WebService>, <mx:HTTPService>, and <mx:RemoteObject> tags, in addition to the
concept of named services, supports the rapid development and ongoing maintenance of service-
based architectures. In collaboration with the Service Locator, we presented the Business Delegate
as a class to which all server-side business processing should be delegated, and have seen how the
command class interacts with the Business Delegate class. We explored how to architect an interac-
tion between the numerous command classes in our architecture and the lesser number of Business
Delegate classes by using Event Delegates and Responder objects to ensure that asynchronous
results are routed back to the command class that requested the invocation of a particular business
service. Finally, we introduced a Controller and Event Dispatcher pairing that allows control of the
application to pass to a command class as the result of form submissions, the selection of items from
DataGrids or Menus, double-clicks, or drag-and-drop operations.

5666 CH20 4/14/04 10:30 PM Page 44

45Summary

In our sample online banking application, we pulled together these design techniques and started to
think about how an application comprising several MXML files, custom components, and collabo-
rating ActionScript 2.0 framework can interact with custom middleware deployed on a J2EE appli-
cation server. Although our banking application is in no way intended to be complete, it does serve
to demonstrate how quickly new features can be added to an RIA, even when compared with Web
application development using languages such as JSP.

Finally, we considered the means by which we can maintain state between a Flex RIA and a J2EE
server, although we left this discussion until last in the hope that the developer reading this section
recognizes how so much of an application state can gravitate naturally toward the client in an RIA
environment.

In the chapter that follows, we’ll tie together our understanding of web services, HTTP services,
and remote Java services by exploring the important topic of security. By understanding how you
can lock down what’s exposed to a client on the server, as well as understanding how you can con-
tinue to secure communications over secure HTTP if required, you understand the most important
final piece of the RIA development puzzle.

You have now gained a strong understanding of how to develop rich-client experiences with the
alternate presentation tier offered by Flex and learned how ActionScript 2.0 and MXML can work
together to enable the development of a client-side business tier. These last few chapters have
strengthened your arsenal of RIA development techniques with the important aspects of integration
with existing and custom infrastructure—we’re now a chapter away from walking through a com-
plete Flex application—from concept to delivery!

5666 CH20 4/14/04 10:30 PM Page 45

5666 CH20 4/14/04 10:30 PM Page 46

