PART 2

The Patterns

—®

%I% é eaa.book Page 108 Monday, October 7, 2002 8:16 AM

+/@

Chapter 9

Domain Logic Patterns

%% é eaa.book Page 110 Monday, October 7, 2002 8:16 AM

Transaction
Script

DomaIN LoGic PATTERNS

Transaction Script

Organizes business logic by procedures where each procedure han-
dles a single request from the presentation.

Recognition Service

recognizedRevenue (contractNumber: long, asOf: Date) : Money
calculateRevenueRecognitions (contractNumber long) : void

Most business applications can be thought of as a series of transactions. A
transaction may view some information as organized in a particular way,
another will make changes to it. Each interaction between a client system and a
server system contains a certain amount of logic. In some cases this can be as
simple as displaying information in the database. In others it may involve many
steps of validations and calculations.

A Transaction Script organizes all this logic primarily as a single procedure,
making calls directly to the database or through a thin database wrapper. Each
transaction will have its own Transaction Script, although common subtasks
can be broken into subprocedures.

How It Works

With Transaction Script the domain logic is primarily organized by the transac-
tions that you carry out with the system. If your need is to book a hotel room,
the logic to check room availability, calculate rates, and update the database is
found inside the Book Hotel Room procedure.

For simple cases there isn’t much to say about how you organize this. Of
course, as with any other program you should structure the code into modules in
a way that makes sense. Unless the transaction is particularly complicated, that
won’t be much of a challenge. One of the benefits of this approach is that you
don’t need to worry about what other transactions are doing. Your task is to get
the input, interrogate the database, munge, and save your results to the database.

Where you put the Transaction Script will depend on how you organize your
layers. It may be in a server page, a CGI script, or a distributed session object.
My preference is to separate Transaction Scripts as much as you can. At the
very least put them in distinct subroutines; better still, put them in classes sepa-
rate from those that handle presentation and data source. In addition, don’t

%

+/@

%% é eaa.book Page 111 Monday, October 7, 2002 8:16 AM

TRANSACTION SCRIPT

have any calls from the Transaction Scripts to any presentation logic; that will
make it easier to modify the code and test the Transaction Scripts.

You can organize your Transaction Scripts into classes in two ways. The most
common is to have several Transaction Scripts in a single class, where each class
defines a subject area of related Transaction Scripts. This is straightforward and
the best bet for most cases. The other way is to have each Transaction Script in its
own class (Figure 9.1), using the Command pattern [Gang of Four]. In this case
you define a supertype for your commands that specifies some execute method in
which Transaction Script logic fits. The advantage of this is that it allows you to
manipulate instances of scripts as objects at runtime, although I’ve rarely seen a
need to do this with the kinds of systems that use Transaction Scripts to organize
domain logic. Of course, you can ignore classes completely in many languages
and just use global functions. However, you’ll often find that instantiating a new
object helps with threading issues as it makes it easier to isolate data.

I use the term Transaction Script because most of the time you’ll have one
Transaction Script for each database transaction. This isn’t a 100 percent rule,
but it’s true to the first approximation.

When to Use It

The glory of Transaction Script is its simplicity. Organizing logic this way is
natural for applications with only a small amount of logic, and it involves very
little overhead either in performance or in understanding.

As the business logic gets more complicated, however, it gets progressively
harder to keep it in a well-designed state. One particular problem to watch for

Transaction Script

run ()
Recognized Revenue TS Calculate Revenue Recognitions TS
new (contract number: long, asOf: date) new (contract number: long)
run () run ()

Figure 9.1 Using commands for Transaction Script.

%

Transaction

Script

+/@

%I% é eaa.book Page 112 Monday, October 7, 2002 8:16 AM

Transaction
Script

DomaIN LoGic PATTERNS

is its duplication between transactions. Since the whole point is to handle one
transaction, any common code tends to be duplicated.

Careful factoring can alleviate many of these problems, but more complex
business domains need to build a Domain Model (116). A Domain Model (116)
will give you many more options in structuring the code, increasing readability
and decreasing duplication.

It’s hard to quantify the cutover level, especially when you’re more familiar
with one pattern than the other. You can refactor a Transaction Script design to
a Domain Model (116) design, but it’s a harder change than it otherwise needs
to be. Therefore, an early shot is often the best way to move forward.

However much of an object bigot you become, don’t rule out Transaction
Script. There are a lot of simple problems out there, and a simple solution will
get you up and running much faster.

The Revenue Recognition Problem

For this pattern, and others that talk about domain logic, 'm going to use the
same problem as an illustration. To avoid typing the problem statement several
times, I’'m just putting it in here.

Revenue recognition is a common problem in business systems. It’s all about
when you can actually count the money you receive on your books. If I sell you
a cup of coffee, it’s a simple matter: I give you the coffee, I take your money,
and I count the money to the books that nanosecond. For many things it gets
complicated, however. Say you pay me a retainer to be available that year. Even
if you pay me some ridiculous fee today, I may not be able to put it on my
books right away because the service is to be performed over the course of a
year. One approach might be to count only one-twelfth of that fee for each
month in the year, since you might pull out of the contract after a month when
you realize that writing has atrophied my programming skills.

The rules for revenue recognition are many, various, and volatile. Some are
set by regulation, some by professional standards, and some by company pol-
icy. Revenue tracking ends up being quite a complex problem.

I don’t fancy delving into the complexity right now, so instead we’ll imagine
a company that sells three kinds of products: word processors, databases, and
spreadsheets. According to the rules, when you sign a contract for a word pro-
cessor you can book all the revenue right away. If it’s a spreadsheet, you can
book one-third today, one-third in sixty days, and one-third in ninety days. If
it’s a database, you can book one-third today, one-third in thirty days, and one-
third in sixty days. There’s no basis for these rules other than my own fevered
imagination. I’'m told that the real rules are equally rational.

%

+/@

%% é eaa.book Page 113 Monday, October 7, 2002 8:16 AM

TRANSACTION SCRIPT

Transaction
Contract Revenue Script
Product Recognition
type date signed
vp 1 * | revenue 1 * | amount
date

if a contract has any revenue
recognitions, the contract's revenue
should be equal to the sum of the
amounts of its revenue recognitions

Figure 9.2 A conceptual model for simplified revenue recognition. Each contract has
multiple revenue recognitions that indicate when the various parts of the revenue should
be recognized.

Example: Revenue Recognition (Java)

This example uses two transaction scripts: one to calculate the revenue recogni-
tions for a contract and one to tell how much revenue on a contract has been
recognized by a certain date. The database structure has three tables: one for
the products, one for the contracts, and one for the revenue recognitions.

CREATE TABLE products (ID int primary key, name varchar, type varchar)

CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date)

CREATE TABLE revenueRecognitions (contract int, amount decimal, recognizedOn date,
PRIMARY KEY (contract, recognizedOn))

The first script calculates the amount of recognition due by a particular day. I
can do this in two stages: In the first I select the appropriate rows in the revenue
recognitions table; in the second I sum up the amounts.

Many Transaction Script designs have scripts that operate directly on the
database, putting SQL code in the procedure. Here I'm using a simple Table
Data Gateway (144) to wrap the SQL queries. Since this example is so simple,
I’m using a single gateway rather than one for each table. I can define an appro-
priate find method on the gateway.

class Gateway...

public ResultSet findRecognitionsFor(long contractID, MfDate asof) throws SQLException{
PreparedStatement stmt = db.prepareStatement(findRecognitionsStatement);
stmt = db.prepareStatement(findRecognitionsStatement);
stmt.setlong(1l, contractID);
stmt.setDate(2, asof.toSqlDate());
ResultSet result = stmt.executeQuery();
return result;

- @

%I% é eaa.book Page 114 Monday, October 7, 2002 8:16 AM

DomaIN LoGic PATTERNS

private static final String findRecognitionsStatement =

Transaclifm "SELECT amount " +
Script "

FROM revenueRecognitions " +
WHERE contract = ? AND recognizedOn <= ?";
private Connection db;

I then use the script to sum up based on the result set passed back from the
gateway.

class RecognitionService...

public Money recognizedRevenue(Tong contractNumber, MfDate asOf) {
Money result = Money.dollars(0);
try {
ResultSet rs = db.findRecognitionsFor(contractNumber, asof);
while (rs.next()) {
result = result.add(Money.dollars(rs.getBigDecimal("amount™")));
}
return result;
} catch (SQLException e) {throw new ApplicationException (e);
}
}

When the calculation is as simple as this, you can replace the in-memory script
with a call to a SQL statement that uses an aggregate function to sum the
amounts.

For calculating the revenue recognitions on an existing contract, I use a simi-
lar split. The script on the service carries out the business logic.

class RecognitionService...

public void calculateRevenueRecognitions(long contractNumber) {
try {
ResultSet contracts = db.findContract(contractNumber);
contracts.next();
Money totalRevenue = Money.dollars(contracts.getBigDecimal("revenue"));
MfDate recognitionDate = new MfDate(contracts.getDate("dateSigned"));
String type = contracts.getString("type");
if (type.equals("S")){
Money[] allocation = totalRevenue.allocate(3);
db.insertRecognition
(contractNumber, allocation[0], recognitionDate);
db.insertRecognition
(contractNumber, allocation[1], recognitionDate.addDays(60));
db.insertRecognition
(contractNumber, allocation[2], recognitionDate.addDays(90));
} else if (type.equals("W")){
db.insertRecognition(contractNumber, totalRevenue, recognitionDate);
} else if (type.equals("D")) {
Money[] allocation = totalRevenue.allocate(3);
db.insertRecognition
(contractNumber, allocation[0], recognitionDate);

- @

%I% é eaa.book Page 115 Monday, October 7, 2002 8:16 AM é
TRANSACTION SCRIPT v
db.insertRecognition

(contractNumber, allocation[1], recognitionDate.addDays(30)); Trapsaction
db.insertRecognition Script
(contractNumber, allocation[2], recognitionDate.addDays(60));

}
} catch (SQLException e) {throw new ApplicationException (e);

}
}

Notice that 'm using Money (488) to carry out the allocation. When splitting
an amount three ways it’s very easy to lose a penny.

The Table Data Gateway (144) provides support on the SQL. First there’s a
finder for a contract.

class Cateway...

public ResultSet findContract (Tong contractID) throws SQLException{
PreparedStatement stmt = db.prepareStatement(findContractStatement);
stmt.setlong(1l, contractID);
ResultSet result = stmt.executeQuery();
return result;

}

private static final String findContractStatement =
"SELECT * " +
" FROM contracts c, products p " +
" WHERE ID = ? AND c.product = p.ID";

And secondly there’s a wrapper for the insert.

class Gateway...

pubTic void insertRecognition (Tong contractID, Money amount, MfDate asof) throws SQLException {
PreparedStatement stmt = db.prepareStatement(insertRecognitionStatement);
stmt.setlong(1, contractID);
stmt.setBigDecimal(2, amount.amount());
stmt.setDate(3, asof.toSq1Date());
stmt.executeUpdate();
}

private static final String insertRecognitionStatement =
"INSERT INTO revenueRecognitions VALUES (?, ?,)";

In a Java system the recognition service might be a regular class or a session bean.

As you compare this to the example in Domain Model (116), unless your mind
is as twisted as mine, you’ll probably be thinking that this is much simpler. The
harder thing to imagine is what happens as the rules get more complicated. Typi-
cal revenue recognition rules get very involved, varying not just by product but
also by date (if the contract was signed before April 15 this rule applies . . .). It’s
difficult to keep a coherent design with Transaction Script once things get that
complicated, which is why object bigots like me prefer using a Domain Model
(116) in these circumstances.

- @

%I% é eaa.book Page 116 Monday, October 7, 2002 8:16 AM

DomaIN LoGic PATTERNS

Domain Model

An object model of the domain that incorporates
both behavior and data.

Contract

recognizedRevenue (date) =
calculateRecognitions —=2

* -

1 e
e
e

Product -

calculateRecognitions (contract)

.1
B Complete
Recognition P — Recog':ﬁtion
Strategy Strategy

At its worst business logic can be very complex. Rules and logic describe many
different cases and slants of behavior, and it’s this complexity that objects were
designed to work with. A Domain Model creates a web of interconnected
objects, where each object represents some meaningful individual, whether as
large as a corporation or as small as a single line on an order form.

How It Works

Putting a Domain Model in an application involves inserting a whole layer of
objects that model the business area you’re working in. You’ll find objects that
mimic the data in the business and objects that capture the rules the business
uses. Mostly the data and process are combined to cluster the processes close to
the data they work with.

An OO domain model will often look similar to a database model, yet it will
still have a lot of differences. A Domain Model mingles data and process, has
multivalued attributes and a complex web of associations, and uses inheritance.

- @

%I% é eaa.book Page 117 Monday, October 7, 2002 8:16 AM

Al

DoMAIN MODEL V

As a result I see two styles of Domain Model in the field. A simple Domain
Model looks very much like the database design with mostly one domain object
for each database table. A rich Domain Model can look different from the data-
base design, with inheritance, strategies, and other [Gang of Four] patterns, and
complex webs of small interconnected objects. A rich Domain Model is better
for more complex logic, but is harder to map to the database. A simple Domain
Model can use Active Record (160), whereas a rich Domain Model requires
Data Mapper (165).

Since the behavior of the business is subject to a lot of change, it’s impor-
tant to be able to modify, build, and test this layer easily. As a result you’ll
want the minimum of coupling from the Domain Model to other layers in the
system. You’ll notice that a guiding force of many layering patterns is to keep
as few dependencies as possible between the domain model and other parts of
the system.

With a Domain Model there are a number of different scopes you might use.
The simplest case is a single-user application where the whole object graph is
read from a file and put into memory. A desktop application may work this
way, but it’s less common for a multitiered IS application simply because there
are too many objects. Putting every object into memory consumes too much
memory and takes too long. The beauty of object-oriented databases is that
they give the impression of doing this while moving objects between memory
and disk.

Without an OO database you have to do this yourself. Usually a session will
involve pulling in an object graph of all the objects involved in it. This will cer-
tainly not be all objects and usually not all the classes. Thus, if you’re looking at
a set of contracts you might pull in only the products referenced by contracts
within your working set. If you’re just performing calculations on contracts and
revenue recognition objects, you may not pull in any product objects at all.
Exactly what you pull into memory is governed by your database mapping
objects.

If you need the same object graph between calls to the server, you have to
save the server state somewhere, which is the subject of the section on saving
server state (page 81).

A common concern with domain logic is bloated domain objects. As you
build a screen to manipulate orders you’ll notice that some of the order behav-
ior is only needed only for it. If you put these responsibilities on the order, the
risk is that the Order class will become too big because it’s full of responsibili-
ties that are only used in a single use case. This concern leads people to consider
whether some responsibility is general, in which case it should sit in the order
class, or specific, in which case it should sit in some usage-specific class, which
might be a Transaction Script (110) or perhaps the presentation itself.

%

—

*

%I% é eaa.book Page 118 Monday, October 7, 2002 8:16 AM

DomaIN LoGic PATTERNS

The problem with separating usage-specific behavior is that it can lead to
duplication. Behavior that’s separated from the order is harder to find, so people
tend to not see it and duplicate it instead. Duplication can quickly lead to more
complexity and inconsistency, but I’ve found that bloating occurs much less fre-
quently than predicted. If it does occur, it’s relatively easy to see and not difficult
to fix. My advice is not to separate usage-specific behavior. Put it all in the object
that’s the natural fit. Fix the bloating when, and if, it becomes a problem.

Java Implementation

There’s always a lot of heat generated when people talk about developing a
Domain Model in J2EE. Many of the teaching materials and introductory
J2EE books suggest that you use entity beans to develop a domain model,
but there are some serious problems with this approach, at least with the
current (2.0) specification.

Entity beans are most useful when you use Container Managed Persistence
(CMP). Indeed, I would say there’s little point in using entity beans without
CMP. However, CMP is a limited form of object-relational mapping, and it
can’t support many of the patterns that you need in a rich Domain Model.

Entity beans can’t be re-entrant. That is, if you call out from one entity
bean into another object, that other object (or any object it calls) can’t call
back into the first entity bean. A rich Domain Model often uses re-entrancy,
so this is a handicap. It’s made worse by the fact that it’s hard to spot re-
entrant behavior. As a result, some people say that one entity bean should
never call another. While this avoids re-entrancy, it very much cripples the
advantages using a Domain Model.

A Domain Model should use fine-grained objects with fine-grained inter-
faces. Entity beans may be remotable (prior to version 2.0 they had to be). If
you have remote objects with fine-grained interfaces you get terrible perfor-
mance. You can avoid this problem quite easily by only using local inter-
faces for your entity beans in a Domain Model.

To run with entity beans you need a container and a database connected.
This will increase build times and also increase the time to do test runs since
the tests have to execute against a database. Entity beans are also tricky to
debug.

The alternative is to use normal Java objects, although this often causes a
surprised reaction—it’s amazing how many people think that you can’t run
regular Java objects in an EJB container. Pve come to the conclusion that
people forget about regular Java objects because they haven’t got a fancy
name. That’s why, while preparing for a talk in 2000, Rebecca Parsons, Josh
Mackenzie, and I gave them one: POJOs (plain old Java objects). A POJO
domain model is easy to put together, is quick to build, can run and test out-
side an E]JB container, and is independent of EJB (maybe that’s why EJB ven-
dors don’t encourage you to use them).

%

+/@

%I% é eaa.book Page 119 Monday, October 7, 2002 8:16 AM

DoMAIN MODEL v

My view on the whole is that using entity beans as a Domain Model
works if you have pretty modest domain logic. If so, you can build a
Domain Model that has a simple relationship with the database: where
there’s mostly one entity bean class per database table. If you have a richer
domain logic with inheritance, strategies, and other more sophisticated pat-
terns, you’re better off with a POJO domain model and Data Mapper (165),
using a commercial tool or with a homegrown layer.

The biggest frustration for me with the use of EJB is that I find a rich
Domain Model complicated enough to deal with, and I want to keep as inde-
pendent as possible from the details of the implementation environment. EJB
forces itself into your thinking about the Domain Model, which means that I
have to worry about both the domain and the EJB environment.

When to Use It

If the how for a Domain Model is difficult because it’s such a big subject, the
when is hard because of both the vagueness and the simplicity of the advice. It
all comes down to the complexity of the behavior in your system. If you have
complicated and everchanging business rules involving validation, calculations,
and derivations, chances are that you’ll want an object model to handle them.
On the other hand, if you have simple not-null checks and a couple of sums to
calculate, a Transaction Script (110) is a better bet.

One factor that comes into this is comfortable used the development team is
with domain objects. Learning how to design and use a Domain Model is a sig-
nificant exercise—one that has led to many articles on the “paradigm shift” of
objects use. It certainly takes practice and coaching to get used to a Domain
Model, but once used to it I've found that few people want to go back to a
Transaction Script (110) for any but the simplest problems.

If you’re using Domain Model, my first choice for database interaction is
Data Mapper (165). This will help keep your Domain Model independent from
the database and is the best approach to handle cases where the Domain Model
and database schema diverge.

When you use Domain Model you may want to consider Service Layer (133)
to give your Domain Model a more distinct API.

Further Reading

Almost any book on OO design will talk about Domain Models, since most of
what people refer to as OO development is centered around their use.

If you’re looking for an introductory book on OO design, my current favor-
ite is [Larman]. For examples of Domain Model take a look at [Fowler AP].

%

—

%I% é eaa.book Page 120 Monday, October 7, 2002 8:16 AM

DomaIN LoGic PATTERNS

[Hay] also gives good examples in a relational context. To build a good
Domain Model you should have an understanding of conceptual thinking
about objects. For this I’ve always liked [Martin and Odell]. For an understand-
ing of the patterns you’ll see in a rich Domain Model, or any other OO system,
you must read [Gang of Four].

Eric Evans is currently writing a book [Evans] on building Domain Models.
As I write this I've seen only an early manuscript, but it looks very promising.

Example: Revenue Recognition (Java)

One of the biggest frustrations of describing a Domain Model is the fact that
any example I show is necessarily simple so you can understand it; yet that sim-
plicity hides the Domain Model’s strength. You only appreciate these strengths
when you have a really complicated domain.

But even if the example can’t do justice to why you would want a Domain
Model, at least it will give you a sense of what one can look like. Therefore, P'm
using the same example (page 112) that I used for Transaction Script (110), a
little matter of revenue recognition.

An immediate thing to notice is that every class, in this small example (Fig-
ure 9.3) contains both behavior and data. Even the humble Revenue Recogni-
tion class contains a simple method to find out if that object’s value is
recognizable on a certain date.

class RevenueRecognition...

private Money amount;
private MfDate date;
public RevenueRecognition(Money amount, MfDate date) {
this.amount = amount;
this.date = date;
}
public Money getAmount() {
return amount;
}
boolean isRecognizahleBy(MfDate asOf) {
return asOf.after(date) || asOf.equals(date);
}

Calculating how much revenue is recognized on a particular date involves
both the contract and revenue recognition classes.

class Contract...

private List revenueRecognitions = new ArraylList();
public Money recognizedRevenue(MfDate asOf) {
Money result = Money.dollars(0);
Tterator it = revenueRecognitions.iterator();

%

+/@

%% é eaa.book Page 121 Monday, October 7, 2002 8:16 AM

DoMAIN MODEL

Contract

revenue * 1 Product

whenSigned

calculateRecognitions (Contract)

recognizedRevenue (date) : Money

calculateRecognitions %k
1 1
Recognition Strategy
*k »
calculateRevenueRecognitions (Contract)

Revenue Recognition

amount: Money |
date |

Complete Recognition Strategy

isRecognizableBy (date)

calculateRevenueRecognitions (Contract)

Three-Way Recognition Strategy

firstRecognitionOffset
secondRecognitionOffset

calculateRevenueRecognitions (Contract)

Figure 9.3 Class diagram of the example classes for a Domain Model.

while (it.hasNext()) {
RevenueRecognition r = (RevenueRecognition) it.next();
if (r.isRecognizableBy(as0f))
result = result.add(r.getAmount());
}

return result;

}

A common thing you find in domain models is how multiple classes interact
to do even the simplest tasks. This is what often leads to the complaint that
with OO programs you spend a lot of time hunting around from class to class
trying to find them. There’s a lot of merit to this complaint. The value comes as
the decision on whether something is recognizable by a certain date gets more
complex and as other objects need to know. Containing the behavior on the
object that needs to know avoids duplication and reduces coupling between the
different objects.

- @

%I% é eaa.book Page 122 Monday, October 7, 2002 8:16 AM

DomaIN LoGic PATTERNS

Looking at calculating and creating these revenue recognition objects further
demonstrates the notion of lots of little objects. In this case the calculation and
creation begin with the customer and are handed off via the product to a strat-
egy hierarchy. The strategy pattern [Gang of Four] is a well-known OO pattern
that allows you combine a group of operations in a small class hierarchy. Each
instance of product is connected to a single instance of recognition strategy,
which determines which algorithm is used to calculate revenue recognition. In
this case we have two subclasses of recognition strategy for the two different
cases. The structure of the code looks like this:

class Contract...

private Product product;

private Money revenue;

private MfDate whenSigned;

private Long id;

public Contract(Product product, Money revenue, MfDate whenSigned) {
this.product = product;
this.revenue = revenue;
this.whenSigned = whenSigned;

}

class Product...

private String name;
private RecognitionStrategy recognitionStrategy;
pubTlic Product(String name, RecognitionStrategy recognitionStrategy) {
this.name = name;
this.recognitionStrategy = recognitionStrategy;
}
public static Product newWordProcessor(String name) {
return new Product(name, new CompleteRecognitionStrategy());
}
public static Product newSpreadsheet(String name) {
return new Product(name, new ThreeWayRecognitionStrategy(60, 90));
}
public static Product newDatabase(String name) {
return new Product(name, new ThreeWayRecognitionStrategy(30, 60));

}
class RecognitionStrategy. ..
abstract void calculateRevenueRecognitions(Contract contract);

class CompleteRecognitionStrategy. ..
void calculateRevenueRecognitions(Contract contract) {
contract.addRevenueRecognition(new RevenueRecognition(contract.getRevenue(),
contract.getWhenSigned()));

+/@

%I% é eaa.book Page 123 Monday, October 7, 2002 8:16 AM

DoMAIN MODEL

class ThreeWayRecognitionStrategy...

private int firstRecognitionOffset;

private int secondRecognition0ffset;

public ThreeWayRecognitionStrategy(int firstRecognitionOffset,
int secondRecognition0ffset)

{
this.firstRecognition0ffset = firstRecognitionOffset;
this.secondRecognition0ffset = secondRecognitionOffset;
}
void calculateRevenueRecognitions(Contract contract) {
Money[] allocation = contract.getRevenue().allocate(3);
contract.addRevenueRecognition(new RevenueRecognition
(allocation[@], contract.getWhenSigned()));
contract.addRevenueRecognition(new RevenueRecognition
(allocation[1], contract.getWhenSigned().addDays(firstRecognitionOffset)));
contract.addRevenueRecognition(new RevenueRecognition
(allocation[2], contract.getWhenSigned().addDays(secondRecognitionOffset)));
}

The great value of the strategies is that they provide well-contained plug points
to extend the application. Adding a new revenue recognition algorithm involves
creating a new subclass and overriding the calculateRevenueRecognitions method.
This makes it easy to extend the algorithmic behavior of the application.

When you create products, you hook them up with the appropriate strategy
objects. I’'m doing this in my test code.

class Tester...

private Product word = Product.newWordProcessor("Thinking Word");
private Product calc = Product.newSpreadsheet("Thinking Calc");
private Product db = Product.newDatabase("Thinking DB");

Once everything is set up, calculating the recognitions requires no knowledge of
the strategy subclasses.

class Contract...

pubTlic void calculateRecognitions() {
product.calculateRevenueRecognitions(this);

}

class Product...

void calculateRevenueRecognitions(Contract contract) {
recognitionStrategy.calculateRevenueRecognitions(contract);

}

The OO habit of successive forwarding from object to object moves the
behavior to the object most qualified to handle it, but it also resolves much of

- @

%I% é eaa.book Page 124 Monday, October 7, 2002 8:16 AM

DomaIN LoGic PATTERNS

the conditional behavior. You’ll notice that there are no conditionals in this cal-
culation. You set up the decision path when you create the products with the
appropriate strategy. Once everything is wired together like this, the algorithms
just follow the path. Domain models work very well when you have similar
conditionals because the similar conditionals can be factored out into the object
structure itself. This moves complexity out of the algorithms and into the rela-
tionships between objects. The more similar the logic, the more you find the
same network of relationships used by different parts of the system. Any algo-
rithm that’s dependent on the type of recognition calculation can follow this
particular network of objects.

Notice in this example that I’ve shown nothing about how the objects are
retrieved from, and written to, the database. This is for a couple of reasons.
First, mapping a Domain Model to a database is always somewhat hard, so I'm
chickening out and not providing an example. Second, in many ways the whole
point of a Domain Model is to hide the database, both from upper layers and
from people working the Domain Model itself. Thus, hiding it here reflects
what it’s like to actually program in this environment.

+/@

%% é eaa.book Page 125 Monday, October 7, 2002 8:16 AM é

TABLE MODULE

Table Module Table Module

A single instance that handles the business logic for
all rows in a database table or view.

Contract

CalculateRecognitions (ID) ——_

Product - e

GetProductType (ID) 7

Revenue Recognition e

Insert (ID, amount, date)
RecognizedRevenue (contractID, date)

One of the key messages of object orientation is bundling the data with the
behavior that uses it. The traditional object-oriented approach is based on
objects with identity, along the lines of Domain Model (116). Thus, if we have
an Employee class, any instance of it corresponds to a particular employee. This
scheme works well because once we have a reference to an employee, we can
execute operations, follow relationships, and gather data on him.

One of the problems with Domain Model (116) is the interface with relational
databases. In many ways this approach treats the relational database like a crazy
aunt who’s shut up in an attic and whom nobody wants to talk about. As a result
you often need considerable programmatic gymnastics to pull data in and out of
the database, transforming between two different representations of the data.

A Table Module organizes domain logic with one class per table in the data-
base, and a single instance of a class contains the various procedures that will
act on the data. The primary distinction with Domain Model (116) is that, if
you have many orders, a Domain Model (116) will have one order object per
order while a Table Module will have one object to handle all orders.

- @

%% é eaa.book Page 126 Monday, October 7, 2002 8:16 AM

Al

Table Module

DomaIN LoGic PATTERNS

How It Works

The strength of Table Module is that it allows you to package the data and
behavior together and at the same time play to the strengths of a relational
database. On the surface Table Module looks much like a regular object. The
key difference is that it has no notion of an identity for the objects it’s working
with. Thus, if you want to obtain the address of an employee, you use a method
like anEmployeeModule.getAddress(Tong employeeID). Every time you want to do some-
thing to a particular employee you have to pass in some kind of identity refer-
ence. Often this will be the primary key used in the database.

Usually you use Table Module with a backing data structure that’s table ori-
ented. The tabular data is normally the result of a SQL call and is held in a
Record Set (508) that mimics a SQL table. The Table Module gives you an
explicit method-based interface that acts on that data. Grouping the behavior
with the table gives you many of the benefits of encapsulation in that the behav-
ior is close to the data it will work on.

Often you’ll need behavior from multiple Table Modules in order to do some
useful work. Many times you see multiple Table Modules operating on the same
Record Set (508) (Figure 9.4).

The most obvious example of Table Module is the use of one for each table
in the database. However, if you have interesting queries and views in the data-
base you can have Table Modules for them as well.

new (theDataSet)

a Contract

I
calculateRecognitions (contractlD) |

new (theDataSet)

a Product

new (theDataSet)

a Revenue
Recognition

getProductType (productID)

I

I

|

I

B |

insert |
I

I u

|

| |

| |

| I

| |

| |

Figure 9.4 Several Table Modules can collaborate with a single Record Set (508).

%

—®

%% é eaa.book Page 127 Monday, October 7, 2002 8:16 AM

Al

TABLE MODULE

The Table Module may be an instance or it may be a collection of static
methods. The advantage of an instance is that it allows you to initialize the
Table Module with an existing record set, perhaps the result of a query. You can
then use the instance to manipulate the rows in the record set. Instances also
make it possible to use inheritance, so we can write a rush contract module that
contains additional behavior to the regular contract.

The Table Module may include queries as factory methods. The alternative is
a Table Data Gateway (144), but the disadvantage of this is having an extra
Table Data Gateway (144) class and mechanism in the design. The advantage is
that you can use a single Table Module on data from different data sources,
since you use a different Table Data Gateway (144) for each data source.

When you use a Table Data Gateway (144) the application first uses the
Table Data Gateway (144) to assemble data in a Record Set (508). You then
create a Table Module with the Record Set (508) as an argument. If you need
behavior from multiple Table Modules, you can create them with the same
Record Set (508). The Table Module can then do business logic on the Record
Set (508) and pass the modified Record Set (508) to the presentation for display
and editing using the table-aware widgets. The widgets can’t tell if the record

|
a presentation atable data a database a table module
gateway —_—
request data T T
find |
select

I

|

|
a record set u

|

<_ __________
apply domain logic (a record set)

f f
a record set | |

<-——————————- T
update |
(modified record set)

|
|
|
! validate (
f

modified record set)

update (modified record set)
1

update

L I

Figure 9.5 Typical interactions for the layers around a Table Module.

!

%

Q
@

—
\4

*

Table Module

%I% é eaa.book Page 128 Monday, October 7, 2002 8:16 AM

Al

Table Module

DomaIN LoGic PATTERNS

sets came directly from the relational database or if a Table Module manipu-
lated the data on the way out. After modification in the GUI, the data set goes
back to the Table Module for validation before it’s saved to the database. One
of the benefits of this style is that you can test the Table Module by creating a
Record Set (508) in memory without going to the database.

The word “table” in the pattern name suggests that you have one Table
Module per table in the database. While this is true to the first approximation,
it isn’t completely true. It’s also useful to have a Table Module for commonly
used views or other queries. Indeed, the structure of the Table Module doesn’t
really depend on the structure of tables in the database but more on the virtual
tables perceived by the application, including views and queries.

When to Use It

Table Module is very much based on table-oriented data, so obviously using it
makes sense when you’re accessing tabular data using Record Set (508). It also
puts that data structure very much in the center of the code, so you also want
the way you access the data structure to be fairly straightforward.

However, Table Module doesn’t give you the full power of objects in organiz-
ing complex logic. You can’t have direct instance-to-instance relationships, and
polymorphism doesn’t work well. So, for handling complicated domain logic, a
Domain Model (116) is a better choice. Essentially you have to trade off
Domain Model (116)’s ability to handle complex logic against Table Module’s
easier integration with the underlying table-oriented data structures.

If the objects in a Domain Model (116) and the database tables are relatively
similar, it may be better to use a Domain Model (116) that uses Active Record
(160). Table Module works better than a combination of Domain Model (116)
and Active Record (160) when other parts of the application are based on a
common table-oriented data structure. That’s why you don’t see Table Module
very much in the Java environment, although that may change as row sets
become more widely used.

The most well-known situation in which I’ve come across this pattern is in
Microsoft COM designs. In COM (and .NET) the Record Set (508) is the pri-
mary repository of data in an application. Record sets can be passed to the Ul,
where data-aware widgets display information. Microsoft’s ADO libraries give
you a good mechanism to access the relational data as record sets. In this situa-
tion Table Module allows you to fit business logic into the application in a well-
organized manner, without losing the way the various elements work on the
tabular data.

%

—®

%I% é eaa.book Page 129 Monday, October 7, 2002 8:16 AM é
TABLE MODULE v

Example: Revenue Recognition with a Table Module (C#)

Table Module

Time to revisit the revenue recognition example (page 112) I used in the other
domain modeling patterns, this time with a Table Module. To recap, our mis-
sion is to recognize revenue on orders when the rules vary depending on the
product type. In this example we have different rules for word processors,
spreadsheets, and databases.

Table Module is based on a data schema of some kind, usually a relational
data model (although in the future we may well see an XML model used in a
similar way). In this case I’ll use the relational schema from Figure 9.6.

The classes that manipulate this data are in pretty much the same form;
there’s one Table Module class for each table. In the .NET architecture a data
set object provides an in-memory representation of a database structure. It thus
makes sense to create classes that operate on this data set. Each Table Module
class has a data member of a data table, which is the .NET system class corre-
sponding to a table within the data set. This ability to read a table is common
to all Table Modules and so can appear in a Layer Supertype (475).

class TableModule...

protected DataTable table;

protected TableModule(DataSet ds, String tableName) {
table = ds.Tables[tableName];

}

The subclass constructor calls the superclass constructor with the correct
table name.

class Contract...

public Contract (DataSet ds) : base (ds, "Contracts") {}

«table» «table»
«table» Contracts Revenue
Products 1 1 Recognitions
ID: Number
ID: Number e whenSigned: Date * ID: Number
Name: St.rlng Amount: Number amount: Number
Type: String date: Date

Figure 9.6 Database schema for revenue recognition.

%I% é eaa.book Page 130 Monday, October 7, 2002 8:16 AM

Table Module

DomaIN LoGic PATTERNS

This allows you to create a new Table Module just by passing in a data set to
Table Module’s constructor

contract = new Contract(dataset);

which keeps the code that creates the data set away from the Table Modules,
following the guidelines of ADO.NET.

A useful feature is the C# indexer, which gets to a particular row in the data
table given the primary key.

class Contract...

public DataRow this [Tong key] {

get {
String filter = String.Format("ID = {0}", key);
return table.Select(filter)[0];
}

}

The first piece of functionality calculates the revenue recognition for a con-
tract, updating the revenue recognition tables accordingly. The amount recog-
nized depends on the kind of product we have. Since this behavior mainly uses
data from the contract table, I decided to add the method to the contract class.

class Contract...

pubTlic void CalculateRecognitions (long contractID) {
DataRow contractRow = this[contractID];
Decimal amount = (Decimal)contractRow["amount"];
RevenueRecognition rr = new RevenueRecognition (table.DataSet);
Product prod = new Product(table.DataSet);
long prodID = GetProductId(contractID);
if (prod.GetProductType(prodID) == ProductType.WP) {
rr.Insert(contractID, amount, (DateTime) GetWhenSigned(contractID));
} else if (prod.GetProductType(prodID) == ProductType.SS) {
Decimal[] allocation = allocate(amount,3);
rr.Insert(contractID, allocation[0], (DateTime) GetWhenSigned(contractID));
rr.Insert(contractID, allocation[1], (DateTime)
GetWhenSigned(contractID).AddDays(60));
rr.Insert(contractID, allocation[2], (DateTime)
GetWhenSigned(contractID).AddDays(90));
} else if (prod.GetProductType(prodID) == ProductType.DB) {
Decimal[] allocation = allocate(amount,3);
rr.Insert(contractID, allocation[0], (DateTime) GetWhenSigned(contractID));
rr.Insert(contractID, allocation[1], (DateTime)
GetWhenSigned(contractID).AddDays(30));
rr.Insert(contractID, allocation[2], (DateTime)
GetWhenSigned(contractID).AddDays(60));
} else throw new Exception("invalid product id");
}
private Decimal[] allocate(Decimal amount, int by) {
Decimal TowResult = amount / by;

%

+/@

%I% é eaa.book Page 131 Monday, October 7, 2002 8:16 AM é
TABLE MODULE v
TowResuTt = Decimal.Round(TowResult,2);

Decimal highResult = TowResult + 0.01m; Table Module
Decimal[] results = new Decimal[by];

int remainder = (int) amount % by;

for (int i = 0; i < remainder; i++) results[i] = highResult;
for (int i = remainder; i < by; i++) results[i] = TowResult;
return results;

}

Usually I would use Money (488) here, but for variety’s sake I’ll show this using
a decimal. I use an allocation method similar to the one I use for Money (488).

To carry this out, we need some behavior that’s defined on the other classes.
The product needs to be able to tell us which type it is. We can do this with an
enum for the product type and a lookup method.

public enum ProductType {WP, SS, DB};
class Product...

public ProductType GetProductType (Tong id) {

String typeCode = (String) this[id]["type"];

return (ProductType) Enum.Parse(typeof(ProductType), typeCode);
}

GetProductType encapsulates the data in the data table. There’s an argument for
doing this for all columns of data, as opposed to accessing them directly as I did
with the amount on the contract. While encapsulation is generally a Good
Thing, I don’t use it here because it doesn’t fit with the assumption of the envi-
ronment that different parts of the system access the data set directly. There’s no
encapsulation when the data set moves over to the Ul, so column access func-
tions only make sense when there’s some additional functionality to be done,
such as converting a string to a product type.

This is also a good time to mention that, although I’'m using an untyped data
set here because these are more common on different platforms, there’s a strong
argument (page 509) for using .NET’s strongly typed data set.

The other additional behavior is inserting a new revenue recognition record.

class RevenueRecognition. ..

public Tong Insert (Tong contractID, Decimal amount, DateTime date) {
DataRow newRow = table.NewRow();
Tong id = GetNextID();
newRow["ID"] = id;
newRow["contractID"] = contractID;
newRow["amount"] = amount;
newRow["date"]= String.Format("{0:s}", date);
table.Rows.Add(newRow) ;
return id;

%I% é eaa.book Page 132 Monday, October 7, 2002 8:16 AM

Table Module

DomaIN LoGic PATTERNS

Again, the point of this method is less to encapsulate the data row and more to
have a method instead of several lines of code that are repeated.

The second piece of functionality is to sum up all the revenue recognized on
a contract by a given date. Since this uses the revenue recognition table it makes
sense to define the method there.

class RevenueRecognition...

public Decimal RecognizedRevenue (long contractID, DateTime asOf) {
String filter = String.Format("ContractID = {0} AND date <= #{1:d}#", contractID,as0f);
DataRow[] rows = table.Select(filter);
Decimal result = Om;
foreach (DataRow row in rows) {
result += (Decimal)row["amount"];
}
return result;

}

This fragment takes advantage of the really nice feature of ADO.NET that
allows you to define a where clause and then select a subset of the data table to
manipulate. Indeed, you can go further and use an aggregate function.

class RevenueRecognition...

public Decimal RecognizedRevenue2 (long contractID, DateTime asOf) {
String filter = String.Format("ContractID = {0} AND date <= #{1:d}#", contractID,as0f);
String computeExpression = "sum(amount)";
Object sum = table.Compute(computeExpression, filter);
return (sum is System.DBNul1) ? @ : (Decimal) sum;

+/@

%I% é eaa.book Page 133 Monday, October 7, 2002 8:16 AM é

SERVICE LAYER

. Service
Service Layer TP

by Randy Stafford

Defines an application’s boundary with a layer of services that
establishes a set of available operations and coordinates the
application’s response in each operation.

User
Interfaces

Service Layer

Domain Model

Data Source
Layer

RecognitionService

Enterprise applications typically require different kinds of interfaces to the data
they store and the logic they implement: data loaders, user interfaces, integra-
tion gateways, and others. Despite their different purposes, these interfaces
often need common interactions with the application to access and manipulate
its data and invoke its business logic. The interactions may be complex, involv-
ing transactions across multiple resources and the coordination of several
responses to an action. Encoding the logic of the interactions separately in each
interface causes a lot of duplication.

A Service Layer defines an application’s boundary [Cockburn PloP] and its
set of available operations from the perspective of interfacing client layers. It

- @

%I% é eaa.book Page 134 Monday, October 7, 2002 8:16 AM

Al

Service
Layer

DomaIN LoGic PATTERNS

encapsulates the application’s business logic, controlling transactions and coor-
dinating responses in the implementation of its operations.

How It Works

A Service Layer can be implemented in a couple of different ways, without vio-
lating the defining characteristics stated above. The differences appear in the
allocation of responsibility behind the Service Layer interface. Before 1 delve
into the various implementation possibilities, let me lay a bit of groundwork.

Kinds of “Business Logic” Like Transaction Script (110) and Domain Model
(116), Service Layer is a pattern for organizing business logic. Many designers,
including me, like to divide “business logic” into two kinds: “domain logic,”
having to do purely with the problem domain (such as strategies for calculating
revenue recognition on a contract), and “application logic,” having to do with
application responsibilities [Cockburn UC] (such as notifying contract adminis-
trators, and integrated applications, of revenue recognition calculations). Appli-
cation logic is sometimes referred to as “workflow logic,” although different
people have different interpretations of “workflow.”

Domain Models (116) are preferable to Transaction Scripts (110) for avoid-
ing domain logic duplication and for managing complexity using classical
design patterns. But putting application logic into pure domain object classes
has a couple of undesirable consequences. First, domain object classes are less
reusable across applications if they implement application-specific logic and
depend on application-specific packages. Second, commingling both kinds of
logic in the same classes makes it harder to reimplement the application logic
in, say, a workflow tool if that should ever become desirable. For these reasons
Service Layer factors each kind of business logic into a separate layer, yielding
the usual benefits of layering and rendering the pure domain object classes more
reusable from application to application.

Implementation Variations The two basic implementation variations are the
domain facade approach and the operation script approach. In the domain
facade approach a Service Layer is implemented as a set of thin facades over a
Domain Model (116). The classes implementing the facades don’t implement
any business logic. Rather, the Domain Model (116) implements all of the busi-
ness logic. The thin facades establish a boundary and set of operations through
which client layers interact with the application, exhibiting the defining charac-
teristics of Service Layer.

%

—®

%I% é eaa.book Page 135 Monday, October 7, 2002 8:16 AM é

SERVICE LAYER

In the operation script approach a Service Layer is implemented as a set of

. Service
thicker classes that directly implement application logic but delegate to encapsu- Layer

lated domain object classes for domain logic. The operations available to clients

of a Service Layer are implemented as scripts, organized several to a class defin-
ing a subject area of related logic. Each such class forms an application “ser-
vice,” and it’s common for service type names to end with “Service.” A Service
Layer is comprised of these application service classes, which should extend a
Layer Supertype (475), abstracting their responsibilities and common behaviors.

To Remote or Not to Remote The interface of a Service Layer class is coarse
grained almost by definition, since it declares a set of application operations
available to interfacing client layers. Therefore, Service Layer classes are well
suited to remote invocation from an interface granularity perspective.

However, remote invocation comes at the cost of dealing with object distri-
bution. It likely entails a lot of extra work to make your Service Layer method
signatures deal in Data Transfer Objects (401). Don’t underestimate the cost of
this work, especially if you have a complex Domain Model (116) and rich edit-
ing Uls for complex update use cases! It’s significant, and it’s painful—perhaps
second only to the cost and pain of object-relational mapping. Remember the
First Law of Distributed Object Design (page 89).

My advice is to start with a locally invocable Service Layer whose method
signatures deal in domain objects. Add remotability when you need it (if ever)
by putting Remote Facades (388) on your Service Layer or having your Service
Layer objects implement remote interfaces. If your application has a Web-based
Ul or a Web-services-based integration gateway, there’s no law that says your
business logic has to run in a separate process from your server pages and Web
services. In fact, you can save yourself some development effort and runtime
response time, without sacrificing scalability, by starting out with a colocated
approach.

Identifying Services and Operations Identifying the operations needed on a Ser-
vice Layer boundary is pretty straightforward. They’re determined by the needs
of Service Layer clients, the most significant (and first) of which is typically a
user interface. Since a user interface is designed to support the use cases that
actors want to perform with an application, the starting point for identifying
Service Layer operations is the use case model and the user interface design for
the application.

Disappointing as it is, many of the use cases in an enterprise application
are fairly boring “CRUD” (create, read, update, delete) use cases on domain
objects—create one of these, read a collection of those, update this other

- @

%I% é eaa.book Page 136 Monday, October 7, 2002 8:16 AM

Service
Layer

DomaIN LoGic PATTERNS

thing. My experience is that there’s almost always a one-to-one correspon-
dence between CRUD use cases and Service Layer operations.

The application’s responsibilities in carrying out these use cases, however,
may be anything but boring. Validation aside, the creation, update, or deletion
of a domain object in an application increasingly requires notification of other
people and other integrated applications. These responses must be coordinated,
and transacted atomically, by Service Layer operations.

If only it were as straightforward to identify Service Layer abstractions to
group related operations. There are no hard-and-fast prescriptions in this area;
only vague heuristics. For a sufficiently small application, it may suffice to have
but one abstraction, named after the application itself. In my experience larger
applications are partitioned into several “subsystems,” each of which includes a
complete vertical slice through the stack of architecture layers. In this case I prefer
one abstraction per subsystem, named after the subsystem. Other possibilities
include abstractions reflecting major partitions in a domain model, if these are
different from the subsystem partitions (e.g., ContractsService, ProductsService), and
abstractions named after thematic application behaviors (e.g., RecognitionService).

Java Implementation

In both the domain facade approach and the operation script approach, a
Service Layer class can be implemented as either a POJO (plain old Java
object) or a stateless session bean. The trade-off pits ease of testing against
ease of transaction control. POJOs might be easier to test, since they don’t
have to be deployed in an EJB container to run, but it’s harder for a POJO
Service Layer to hook into distributed container-managed transaction ser-
vices, especially in interservice invocations. EJBs, on the other hand, come
with the potential for container-managed distributed transactions but have
to be deployed in a container before they can be tested and run. Choose
your poison.

My preferred way of applying a Service Layer in J2EE is with EJB 2.0
stateless session beans, using local interfaces, and the operation script
approach, delegating to POJO domain object classes. It’s just so darned con-
venient to implement a Service Layer using stateless session bean, because of
the distributed container-managed transactions provided by EJB. Also, with
the local interfaces introduced in EJB 2.0, a Service Layer can exploit the
valuable transaction services while avoiding the thorny object distribution
issues.

On a related Java-specific note, let me differentiate Service Layer from
the Session Facade pattern documented in the J2EE patterns literature
[Alur et al.] and [Marinescu]. Session Facade was motivated by the desire

%

+/@

%I% é eaa.book Page 137 Monday, October 7, 2002 8:16 AM é

SERVICE LAYER

to avoid the performance penalty of too many remote invocations on entity
beans; it therefore prescribes facading entity beans with session beans. Ser-
vice Layer is motivated instead by factoring responsibility to avoid duplica-
tion and promote reusability; it’s an architecture pattern that transcends
technology. In fact, the application boundary pattern [Cockburn PloP] that
inspired Service Layer predates EJB by three years. Session Facade may be
in the spirit of Service Layer but, as currently named, scoped, and presented,
is not the same.

Service
Layer

When to Use It

The benefit of Service Layer is that it defines a common set of application oper-
ations available to many kinds of clients and it coordinates an application’s
response in each operation. The response may involve application logic that
needs to be transacted atomically across multiple transactional resources. Thus,
in an application with more than one kind of client of its business logic, and
complex responses in its use cases involving multiple transactional resources, it
makes a lot of sense to include a Service Layer with container-managed transac-
tions, even in an undistributed architecture.

The easier question to answer is probably when not to use it. You probably
don’t need a Service Layer if your application’s business logic will only have one
kind of client—say, a user interface—and its use case responses don’t involve
multiple transactional resources. In this case your Page Controllers can manu-
ally control transactions and coordinate whatever response is required, perhaps
delegating directly to the Data Source layer.

But as soon as you envision a second kind of client, or a second transactional
resource in use case responses, it pays to design in a Service Layer from the
beginning.

Further Reading

There’s not a great deal of prior art on Service Layer, whose inspiration is
Alistair Cockburn’s application boundary pattern [Cockburn PloP]. In the
remotable services vein [Alpert, et al.] discuss the role of facades in distributed
systems. Compare and contrast this with the various presentations of Session
Facade [Alur et al.] and [Marinescu]. On the topic of application responsibili-
ties that must be coordinated within Service Layer operations, Cockburn’s
description of use cases as a contract for behavior [Cockburn UC] is very help-
ful. An earlier background reference is the Fusion methodology’s recognition of
“system operations” [Coleman et al.].

- @

%I% é eaa.book Page 138 Monday, October 7, 2002 8:16 AM

Service
Layer

DomaIN LoGic PATTERNS

Example: Revenue Recognition (Java)

This example continues the revenue recognition example of the Transaction
Script (110) and Domain Model (116) patterns, demonstrating how Service
Layer is used to script application logic and delegate for domain logic in a Ser-
vice Layer operation. It uses the operation script approach to implement a Ser-
vice Layer, first with POJOs and then with E]Bs.

To make the demonstration we expand the scenario to include some applica-
tion logic. Suppose the use cases for the application require that, when the reve-
nue recognitions for a contract are calculated, the application must respond by
sending an e-mail notification of that event to a designated contract administra-
tor and by publishing a message using message-oriented middleware to notify
other integrated applications.

We start by changing the RecognitionService class from the Tramsaction
Script (110) example to extend a Layer Supertype (475) and to use a couple of
Gateways (466) in carrying out application logic. This yields the class diagram
of Figure 9.7. RecognitionService becomes a POJO implementation of a Service
Layer application service, and its methods represent two of the operations
available at the application’s boundary.

The methods of the RecognitionService class script the application logic of
the operations, delegating to domain object classes (of the example from
Domain Model (116)) for domain logic.

pubTlic class ApplicationService {
protected EmailGateway getEmailGateway() {
//return an instance of EmailGateway
}
protected IntegrationGateway getIntegrationGateway() {
//return an instance of IntegrationGateway
}
}
public interface EmailGateway {
void sendEmailMessage(String toAddress, String subject, String body);
}
public interface IntegrationGateway {
void publishRevenueRecognitionCalculation(Contract contract);

pubTic class RecognitionService
extends ApplicationService {
pubTlic void calculateRevenueRecognitions(Tong contractNumber) {
Contract contract = Contract.readForUpdate(contractNumber);
contract.calculateRecognitions();
getEmailGateway () .sendEmailMessage(
contract.getAdministratormailAddress(),
"RE: Contract #" + contractNumber,
contract + " has had revenue recognitions calculated.");
getIntegrationGateway().publishRevenueRecognitionCalculation(contract);

%

+/@

<
el
2
o0
o
(=3
(=3
(3]
~
r
(53
i)
[=]
2
|53
o
W/
=]
=]
M
(=)
o
st
(5]
o0
<]
(-9
-
[=3
(=]
<
<
<
o

&
<

o
=
—
<

—
[sa)
9
>
o
[Sa}

)

wpASvIp ssv)2 O[O d 2214aSuonusoray /6 sy

Asuop : (818 : JOSE Ul ‘BUuO] : J8qWINNIOBIIUOD Ul)anuaraypaziuboosi+
pioA : (Buoj : JaquinN1oBIUOD Ul)suoiubodsyanuaraysie|noeo+

«Sasn» aoInIaguoInubooay

PIOA : (1oBJJUOD : JoBIJUOD Ul)uoiBIN[BOUOKIUbOI8H8NUBA8HYSI|gnd+

Aemarenuoneibaluj
«90BJIOIUI»

|
|
| «S9sn»
|
|

Remarenuoneibaiy| : ()Aemarenuonebaiujieb+

A T (A 6
pioA : (Bulys : Apoq ur ‘bulys : jos8lqns ur ‘bul)s : SS8ippyo} ui)abessepyiew3puss+ emoleolew : (Jlemsienirewziob+

Aemareniewy

«g0BBIUI» ao1ntasuoneosljddy

RPN

%I% é eaa.book Page 140 Monday, October 7, 2002 8:16 AM

Service
Layer

DomaIN LoGic PATTERNS

public Money recognizedRevenue(Tong contractNumber, Date asOf) {
return Contract.read(contractNumber).recognizedRevenue(as0f);
}
}

Persistence details are again left out of the example. Suffice it to say that the
Contract class implements static methods to read contracts from the Data Source
layer by their numbers. One of these methods has a name revealing an intention
to update the contract that’s read, which allows an underlying Data Mapper
(165) to register the read object(s) with for example, a Unit of Work (184).

Transaction control details are also left out of the example. The calculateReve-
nueRecognitions() method is inherently transactional because, during its execution,
persistent contract objects are modified via addition of revenue recognitions;
messages are enqueued in message-oriented middleware; and e-mail messages
are sent. All of these responses must be transacted atomically because we don’t
want to send e-mail and publish messages to other applications if the contract
changes fail to persist.

In the J2EE platform we can let the EJB container manage distributed trans-
actions by implementing application services (and Gateways (466)) as stateless
session beans that use transactional resources. Figure 9.8 shows the class dia-
gram of a RecognitionService implementation that uses EJB 2.0 local interfaces
and the “business interface” idiom. In this implementation a Layer Supertype
(475) is still used, providing default implementations of the bean implementa-
tion class methods required by EJB, in addition to the application-specific meth-
ods. If we assume that the EmailGateway and IntegrationGateway interfaces are also
“business interfaces” for their respective stateless session beans, then control of
the distributed transaction is achieved by declaring the calculateRevenueRecogni-
tions, sendEmailMessage, and publishRevenueRecognitionCalculation methods to be
transactional. The RecognitionService methods from the POJO example move
unchanged to RecognitionServiceBeanImpl.

The important point about the example is that the Service Layer uses both
operation scripting and domain object classes in coordinating the transactional
response of the operation. The calculateRevenueRecognitions method scripts the
application logic of the response required by the application’s use cases, but it
delegates to the domain object classes for domain logic. It also presents a couple
of techniques for combating duplicated logic within operation scripts of a Ser-
vice Layer. Responsibilities are factored into different objects (e.g., Gateways
(466)) that can be reused via delegation. A Layer Supertype (475) provides con-
venient access to these other objects.

Some might argue that a more elegant implementation of the operation
script would use the Observer pattern [Gang of Four], but Observer is difficult

%

+/@

<
el
—
eel
[
=3
S
Q
~
=
53
£
2
2
153
s}
2
=]
=
M
—
b
=
[
)
<
Ay
~
o
o)
]
<
<
]

&
<

o
=
—
<

—
[sa)
9
>
o
[Sa}

)

wwA3p1p ssvpo g7 92114a§u011u3022y §°6 IS

Asuo : (81eQ : JOSE Ul ‘BuO| : JoqUINNIOBIIUO0D Ul)anusrsypaziuboos.l+
ploA : (Buoj : JaquinN1oBIUOD Ul)suoiiubodayanuarsayaie|noeo+

|dwjueagasiniaguoiiubooay

aoInlaguoneIbal| : ()eoiniaguolebaiulleb+
9oIAlag|iew T : ()edinlag|iewg1eb+

ueagadiniasuoiuboosay
«0ByIBIUI»

|dwjueagaainiaguoiieslddy

N
Asuoyy : (81 : JOSE UI ‘BUO| : 18qQLUNNIOBIUOD Ul)anusrsypaziuboosi+
pioA : (Buoj : 18quUINNIOBIIUOD Ul)SUOIIUBOo8onusA8y8]e|nojeod+

ueaguoissas qla-xenel
«d0BJBIUI»

109lqoleoogra-qle-xenel
«9oB8UI»

adInlasuoInubooay
«d0BpBIUI»

RPN

%I% é eaa.book Page 142 Monday, October 7, 2002 8:16 AM

Service
Layer

DomaIN LoGic PATTERNS

to implement in a stateless, multithreaded Service Layer. In my opinion the
open code of the operation script is clearer and simpler.

Some might also argue that the application logic responsibilities could be
implemented in domain object methods, such as Contract.calculateRevenueRecogni-
tions(), or even in the data source layer, thereby eliminating the need for a sepa-
rate Service Layer. However, I find those allocations of responsibility
undesirable for a number of reasons. First, domain object classes are less reus-
able across applications if they implement application-specific logic (and
depend on application-specific Gateways (466), and the like). They should
model the parts of the problem domain that are of interest to the application,
which doesn’t mean all of the application’s use case responsibilities. Second,
encapsulating application logic in a “higher” layer dedicated to that purpose
(which the data source layer isn’t) facilitates changing the implementation of
that layer—perhaps to use a workflow engine.

As an organization pattern for the logic layer of an enterprise application,
Service Layer combines scripting and domain object classes, leveraging the best
aspects of both. Several variations are possible in a Service Layer implementa-
tion—for example, domain facades or operation scripts, POJOs or session
beans, or a combination of both. Service Layer can be designed for local invo-
cation, remote invocation, or both. Most important, regardless of these varia-
tions, this pattern lays the foundation for encapsulated implementation of an
application’s business logic and consistent invocation of that logic by its various
clients.

+/@

