
Beyond JUnit:
Introducing TestNG,

the Next Generation in Testing.

Cedric Beust

Google

October 2005

Testing (unit, functional, regression,

integration, etc…)

JUnit, strengths and weaknesses

TestNG

Outline

Testing

Renewed enthusiasm for testing lately

No more “real developers” vs. “QA developers”

Partially due to Extreme Programming

… and Test-Driven Development (TDD)

Testing is cool again!

JUnit

Does it need any introduction?

Simple Java testing framework based on

introspection, test methods, test classes and

test suites

First Java testing framework created and now

de facto standard in the Java world

JUnit strengths

Simple to understand: test methods, classes suites

Easy to implement: extend TestCase, write test

methods that start with “test”

Use setUp() and tearDown() methods for initialization

and clean up

Use the TestRunner to get either a text or a graphic

result

Then combine tests in hierarchical suites as you

increase test coverage of your code

Lots of add-ons (ant tasks, report generators, database

testing, GUI testing, etc…)

JUnit problems

Does this test pass or fail?

public class Test1 extends TestCase {

private int m_count = 0;

public void test1() {

m_count++;

assertEquals(m_count, 1);

}

public void test2() {

m_count++;

assertEquals(m_count, 1);

}

}

JUnit problems

It passes!!!

JUnit reinstantiates your class before invoking each test
method

By design?

How do you keep state across test invocations?

Use static fields

Downsides?
• Goes against intuition about classes and constructors

• Not “same-JVM friendly”

• Redundant with setUp()

One flaw (reinstantiation) fixed by another flaw (static fields)

Questionable design

JUnit problems

How do you run an individual test method?

Comment out all the other methods

How do you disable/enable certain test

methods?

Modify your suite() method, recompile,

and rerun the tests

Note: existing IDE’s and JUnit add-ons address

these problems

JUnit problems

Victim of its own success. Initially designed to enable
unit testing only, now used for all kinds of testing

… but very limited for anything but unit testing e.g. no
dependent test methods

Poor configuration control (setUp/tearDown)

Hasn’t been updated in years (JUnit 4 in the works)

Intrusive (forces you to extend classes and name your
methods a certain way)

Static programming model (forces you to recompile
unnecessarily)

Doesn’t use the latest Java features (annotations,
asserts)

Needs a lot of add-ons to be usable

Introducing TestNG

Based on annotations (either Javadoc or JDK5)

Flexible runtime configuration (XML, not Java)

Introduces the notion of “test groups” to

clearly separate static testing (implementing

the methods) from dynamic (which tests are

run)

Dependent test methods, parallel testing, load

testing, partial failure

Flexible plug-in API (report creation, even

changing the core behavior)

TestNG example (JDK 1.4)

public class SimpleTest {

/**

* @testng.configuration beforeTestClass = true

*/

public void init() {

// code that will be invoked when this

// test is instantiated

}

/**

* @testng.test groups = “functest”

*/

public void serverIsRunning() {

// your test code

}

}

TestNG example (JDK 5)

import org.testng.annotations.*;

public class SimpleTest {

@Configuration(beforeTestClass = true)

public void init() {

// code that will be invoked when this

// test is instantiated

}

@Test(groups = { "functest" })

public void serverIsRunning() {

// your test code

}

}

TestNG example

No need to extend a base class

No need to start your test methods with “test”

Configuration methods can be called anything

you want, not just setUp() and tearDown().

You can have as many as you want and they

can be invoked either around methods or

classes

Test methods can receive parameters (not

illustrated in the previous example but

discussed later)

Running the test

Runtime specified in testng.xml. Mostly: list of classes and list of groups to
include/exclude:

<test name=“Simple">

<groups>

<run>

<include name=“functest"/>

</run>

</groups>

<classes>

<class name=“SimpleTest" />

</classes>

</test>

Note: testng.xml is optional (can also use ant, command line)

TestNG annotations

@Configuration

• beforeTestMethod/afterTestMethod (setUp/tearDown)

• beforeTestClass/afterTestClass (no JUnit equivalent)

• beforeSuite/afterSuite (no JUnit equivalent)

You can have as many @Configuration methods

as you want

@Configuration methods can belong to groups

and depend on other groups

TestNG annotations

@Test

groups

The groups this method belongs to

parameters

The parameters that will be passed to your test method, as they are found
in testng.xml

dependsOnGroups

The list of groups this test method depends on. TestNG guarantees that all
the methods belong to these groups will be run before your method

timeOut

How long TestNG should wait before declaring your test method has failed.

@Test(groups = { “functional” },

timeOut = 10000,

dependsOnGroups = { “serverIsUp” })

public sendHttpRequest() {

// …

}

Dependent methods

Problem: certain test methods depend on the successful

prior run of other test methods.

Example: testing a web server:

• One test method that launches the server (launch())

• One test method that pings the server (ping())

• Twenty methods that test various functionalities of the server

(test1() … test20())

Problem: server is launched but ping() fails

Scenario tricky to achieve with JUnit

Result: 1 PASSED and 21 FAILURES

QA freaks out and calls you on a Sunday during your golf game

Dependent methods

Need a way to order methods. And not just

individual test methods, but methods grouped

logically

Need a mechanism to accurately report failures

due to a dependency not satisfied (avoid the

FAILURE cascade trauma)

Dependent methods with
TestNG

Test methods can “depend on” groups of

methods

Methods contained in the depended-upon

groups are guaranteed to run first

If any of the methods in a depended-upon

group fails, subsequent tests that depend on it

will be marked as a SKIP, not a FAILURE

Dependent methods with
TestNG

Back to the Web server testing example:

@Test(groups = “launch”)

public void launchServer() {…}

@Test(groups = “init”,

dependsOnGroups = { “launch” })

public void ping() { …}

@Test(dependsOnGroups = { “init” })

public void test1() { … }

Outcome: 1 SUCCESS, 1 FAIL, 20 SKIPS

Rerunning failed tests

Most of our work is fixing tests that fail

TestNG knows what tests failed in a particular

run and makes it to rerun just these tests

testng-failed.xml

Typical session:
$ java org.testng.TestNG testng.xml

$ java org.testng.TestNG testng-failed.xml

testng.xml

Where all the runtime information goes:

The test methods, classes, packages

Which groups should be run (include-groups)

Which groups should not be run (exclude-

groups)

Define additional groups (“groups of groups”)

Whether the tests should be run in parallel

Parameters

JUnit mode

Eclipse and IDEA

TestNG plug-ins exist for both Eclipse and IDEA:

Run a test method, test class, group testng.xml

Easy selection of groups and suite files

Show the familiar red/green bar

Directly jump to test failures

Automatically convert from JUnit to TestNG

Integration with other
frameworks

Maven plug-in

Spring

DBUnit

Integration is straightforward in most cases

(setUp/tearDown)

Converting from JUnit

JUnitConverter can convert entire code bases to

TestNG in a few seconds

Possible from Eclipse or IDEA as well

Advanced TestNG: parameters

You can define parameters in testng.xml that
will be passed to your method as regular Java
parameters

<suite name="TestNG" >

<parameter

name=“configuration“ value=“conf.xml" />

@Test(parameters = { “configuration” })

public void parseXml(String xmlPath) {

}

Advanced TestNG: excluding
groups

Sometimes, tests break and you can’t fix them just now

With JUnit: comment out the broken tests and hope you won’t
forget to turn them back on before you ship

With TestNG: define a “broken” group and have it excluded of all
your runs. Move any test method that fails into this group

Later: just look for all the tests in the “broken” group, fix them
and remove the method from the “broken” group

<test name=“DBTest">

<groups>

<run>

<exclude name=“broken.*" />

<include name=“functional.*” />

</run>

</groups>

Advanced TestNG: partial failure

“invocationCount” allows to specify that a test

method should be invoked more than once

Used in conjunction with “successPercentage”

allows you to define partial failure tests:

@Test(invocationCount = 1000,

successPercentage = 98)

public void sendSmsMessage(String msg)

{ … }

Advanced TestNG: variables

Some variables should not be in the code

Can define variables in testng.xml and use
them in the annotations:

<parameter name=“count” value=“1000” />

<parameter name=“pct” value=“98” />

@Test(invocationCount = “${count}”,

successPercentage = “${pct}”)

public void sendSmsMessage(String msg)

{ … }

Advanced TestNG: plug-in API

TestNG exposes a plug-in API that makes it easy for clients to follow a test
run:

When a test starts

When it ends

Whether it succeeded, failed or skipped

etc…

It is even possible to modify the way TestNG works.

Four proofs of concept:

JUnit mode

Default HTML reports

JUnitReport HTML plug-in

TestNG’s own testing

Advanced TestNG: inheritance

TestNG supports inheritance of annotations

Back to the Web server test:

All new test methods should depend on the

group “init” (which depends on “launch”)

Error-prone: a new developer might forget to

add this annotation

To enforce this, use a base class:

Advanced TestNG: inheritance

public class BaseWebServerTest {

@Test(groups = “launch”)

public void launchServer() {…}

@Test(groups = “init”,

dependsOnGroups = { “launch” })

public void ping() { …}

}

public class Test2 extends BaseWebServerTest {

@Test(dependsOnGroups = { “init” })

public void test21() {…}

@Test(dependsOnGroups = { “init” })

public void test22() { … }

Still not satisfying: the test implementer needs to remember to
depend on “ping” for each method

Advanced TestNG: class scope

Annotations can be scoped: an annotation

defined at the class level applies to all public

methods of the class.

Solution to the problem: move the annotation at

the class level:

@Test(dependsOnGroups = { “ping” })

public class Test2 extends BaseWebServerTest {

public void test21() { …}

public void test22() { … }

Advanced TestNG: annotation
inheritance

Annotations defined on a parent class will apply to subclasses as
well.

Example: “making all the test methods of a class belong to the
group win32 automatically”

@Test(groups = { “win32” })

public BaseWin32Test {

}

public Win32Test extends BaseWin32Test {

public void test1() { … }

}

Note how the test class becomes a simple POJO! All the TestNG
complexities are hidden.

Reporting

TestNG issues an HTML report by default

Plug-in API makes it easy to write your own

reporter (example: JUnitReport plug-in)

Future directions

Core of TestNG fairly stable from a feature standpoint

Scripting language (Groovy, Jython)

Multi-thread testing

More work on productivity tools (Eclipse, IDEA, Maven)

More integration with popular frameworks (HTTPUnit,

WebWorks, etc…)

Download information

Hosted on java.net, available through CVS

Distribution and documentation also available

at

http://testng.org

Contact:

cbeust@google.com (Cedric Beust)

the_mindstorm@evolva.ro (Alexandru Popescu)

Summary

JUnit has the right idea but suffers from severe

limitations for real testing

TestNG offers the following benefits:
• Non-intrusive (annotations)

• Cleanly separates the programming model from the
runtime

• Covers more than unit testing with advanced
functionalities such as dependent methods, groups,

parameters or partial failures

• Powerful plug-in API allowing to generate your own
reports or even modify how TestNG works internally

Whether you choose TestNG or JUnit, think

differently about testing

The end

Questions?

Summary

Summary point one

Summary point two

Summary point three

Summary point…

Instructions: (Delete this element)

This is where the END
portion of the
presentation starts.
Summarize all of the key
content points covered in
your presentation.

If You Only Remember One Thing…

Insert concluding statement or quote
here. Remember, this is the final take-
away that will challenge your audience
with a call to action.

Instructions: (Delete this element)

This is the time to challenge your audience with a call to
action. What would you like them to think, do, or feel as a
result of attending your presentation?

DEMO

Instructions:
(Delete this element)

Place this Demo
slide at any point
in the
presentation
where a demo is
presented.

Q&A

Instructions:
(Delete this element)

This slide begins
the Question &
Answer section
of your
presentation.

What is the best environment to

implement such-n-such

technology?

Question

Instructions: (Delete this element)

To use this format, just copy this slide and highlight the
black text and insert appropriate “Question” text.

The Magic 8 says:

“Better Not Tell You Now”

Answer

Instructions: (Delete this element)

To use this format, just copy this slide and highlight the
black text and insert appropriate “Answer” text.

JavaPolis 2004

Instructions:
(Delete this element)

Use this for the
ending splash
screen

Creating a New or Converting
an Existing Presentation

Creating a new presentation
● Save a copy of this file: File > Save As

and name new presentation

● Replace content of existing slides, create
new slides as needed and delete unwanted

slides/elements

Converting an existing presentation
● Use this template file as a base to assure

correct file dimensions and default settings

● In Slide Sorter view, Copy slides from existing

presentation and Paste into this one

● Save with new file name

Presentation
Fundamentals

Use this template and event artwork to create

your presentation

Ensure graphics and text do not exceed the ¼-

inch border of the slide

Use the provided color palette, box and arrow

graphics, and chart styles

Name your file with “Session number-speaker

last name.ppt”
• (i.e., 1050-kaufman.ppt for PowerPoint™ software format)

Develop Readable Slides

Your slide should contain no more than

one graph, chart or table or five short bullet

lines of copy

Use no more than 6 or 7 words per line;

no more than 40 characters per line

Use no less than 20-point font size for optimum

readability

The fewer words the better

Graphically represent as much data

as you can

Focus the Audience’s
Attention

Consider using color to highlight or emphasize

words, but use it sparingly

Use a “build sequence” to reveal elements

of a visual in stages Direct the audience to an

important area of the visual with a headline,

arrow, color, etc.

Limit the information you cover
• Don’t read the slides verbatim

All URLs should be this color: (R:67 G: 133 B:171)

• www.colorurlsjavablue.com

Subtitle Placement
Instructions

Select the subtitle text box above, copy, and
paste it on to a slide that requires a subtitle
• This way the subtitles will be in the exact position

throughout the presentation

Then with “Snap to Grid” on, select the bullet

text box, and using the down arrow key,

nudge the box down 3 times

Subtitle Text

Code
Recommended font size for short blocks of
code.
Font used here is Courier New at 20 points
{

use the red color to highlight certain
parts of your code

}
If you have room, feel free to enlarge
the type for additional readability

}

Code Sample - Short
Block

Here’s a sample for a block of code

Bar Chart

0

10

20

30

40

50

60

70

80

90

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East
West
North
South

* Source: Copy and paste this text
block for exact positioning

Use this chart to input your data
Main title

Pie Chart

1st Qtr
2nd Qtr
3rd Qtr
4th Qtr

* Source: Copy and paste this text block for exact positioning

Use this chart to input your data
Main title

Data Matrix

Q2 03 % to Q2 02

Units 1K +1%

Revenue $1,000 +1%

Gross margin 1% +1.0 pts

OPEX $1 +1%

Net income $1 +1%

EPS $.01 +1%

JavaPolis 2004

Instructions:
(Delete this element)

Use this for the
ending splash
screen

