
Trends and the Future
of Enterprise Java

Floyd Marinescu
Founder, TheServerSide.com

Goals for this presentation

Bring you up to date on important
news and trends, both technical
and cultural, that are affecting the
future of Java, that developers

should know about.

About Floyd Marinescu
zwrote the book EJB Design

Patterns (2002, Wiley)

z designed, implemented,
and have been managing a
team running
TheServerSide.com J2EE
Community since 2000

z I regularly report on new
J2EE business and
technical developments on
TheServerSide

z I am

Presentation Overview
z Technology Trends

• Foundations of tomorrow’s application design
� AOP, Dependency Injection, Annotations

• Java as a platform for scripting languages

• AJAX & Rich Clients

• Web Services and SOA

• JSR 170 – Content Repositories

• The falling value proposition for EJB – can it come back?

z Business / Political Trends
• Continued Dominance of Eclipse

• Emerging Economies and Open Source

• Apache Harmony

• Open Source Business Models

• Areas for commercial models?

• J2EE to become the plumbing of the future?

AOP – Just beginning!

zRefactor repeating (cross cutting) code into
one place

z "apply some code that follows this generalized
pattern to all of these places." - Bob Lee

z Two main functions:
� Intercepting method calls, field calls, constructor calls

� Adding interfaces & implementation to existing Java
classes

AOP vs. OOP

zOO = nouns and verbs

zAO is the adverbs and adjectives

z Identifying Aspects: look for adverbs and

adjectives in your requirements

• a SecureBankAccount

• or a Secure BankAccount

…AOP

z Practical applications of AOP in use today:
• Transactions

• Security

• Event handling

• Caching

• Exception Handling

• Forcing a Singleton

• Instrumentation / Metrics recording / Diagnostics

• Testing your applications

• Architecture Enforcement

• Logging

AOP – Where are we today?
z Survey of 184 most senior developers in the US:

z Have you used AOP in a production app or do you have
definite plans to do so?

z Adoption: Slow, but so

it always is!

z Getting started: Try Spring Framework, AspectWerkz, or
AspectJ

Yes - 33.2%
No - 66.8%

Dependency Injection
zRefactor configuration and dependency code

out of business logic

z Inject dependencies into objects using plain
java setter or constructors
• As opposed to explicit look up, or explicit call backs

zA simple POJO with a setter for injection:
public class MovieListener {

private MovieFinder _finder;

public void setMovieFinder(MovieFinder finder) { _finder

= finder; }

...

}

…Dependency Injection

zBenefits
• No need to lookup dependencies in business logic

• Easier to test

• Don’t need to worry about class casts

• No dependency on container API’s (reaction to EJB)

• Simpler, cleaner code

zAdoption
• Still in early phases

• Spring Framework, PicoContainer,…

zA must learn skill – will be mainstream soon

JDK 5 Annotations – extend the language

zUsed for expressing information about code
(metadata), in the code

z Concept of code metadata not new, the
transient Java modifier has always been in
Java

zHowever, annotations allows incorporating
new features in the language without having

to wait for them to make it into the standard

@Deprecated public void obsoleteMethod()

{ ... }

AspectJ and Annotations Example
Before Annotations:

public aspect Authorization {

pointcut restrictedOperation() : execution(* IRestrictedAccess+.*(..));

before() : restrictedOperation() {

// verify caller is authorized to access this

// operation ...

}

}

With Annotations:
@Aspect public class Authorization {

@Pointcut("execution(* IRestrictedAccess+.*(..))")

void restrictedOperation() {}

@Before("restrictedOperation()") public void verifyAccess()

{

// verify caller is authorized to access this

// operation ...

}

}

Both Approaches are semantically THE SAME!

…JDK 5 Annotations – removes boiler plate

zRemoves boiler plate code
• EJB 2.0 requires remote interfaces

• JAX-RPC web services requires an interface and
implementation

z Instead, simply “decorate” code with @remote
or @webservice annotations

zBoiler plate code gets generated FOR YOU

…Annotations – simplify configuration
z Configuration today is VERY XML HEAVY

z Most open source frameworks & standards will offer
configuration via annotations instead of in XML

z EJB 3 example:
package example;

import static javax.ejb.TransactionAttributeType.SUPPORTS;

@javax.ejb.Stateless public class HelloBean implements Hello

{

private String _greeting;

@javax.ejb.Inject

public void setGreeting(String greeting) { _greeting = greeting; }

@javax.ejb.TransactionAttribute(SUPPORTS)

public String hello() { return _greeting; }

}

…Annotations – industry effects
zAnnotations will be developed as needed for

each tool you use

z Standardization efforts are also in effect (JSR
250):
• PropertySet, a generalized property set for J2SE

• Generated, an indicator that the object or class was not
hand-written

• Resource and Resources, annotations to declare single and
multiple resource references in J2EE, respectively

• RunAs, RolesAllowed, Unchecked, and Exclude, annotations
to control access to a given method based on J2EE security

• RolesReferenced, an annotation to specify the roles
required by a given class or method

…Annotations

zAdoption
• Early, but will be in widespread use by late 2006

• J2EE 5 to be released in 2006

• Open source frameworks currently working on annotations

Foundations of tomorrow’s application design

z Community moving back to OO, POJO
applications

zDependency Injection, Aspects, and
Annotations the foundations of such a modern
application – Adrian Coyler

Java as a platform for scripting languages
z Dynamically typed Scripting languages such as Groovy

becoming very popular

z Groovy combines features from languages like Python,
Ruby, Smalltalk, and Perl in a very Java-like syntax

z Designed to be quick and easy to use:

• Optional static typing

• Regular expressions, lists and maps are first class citizens

• Optional semi colons, parenthesis for method invocations,
many more

z Groovy code compiles to Java .class files, and have
access to the JDK

… Java as a platform for scripting languages
zDevelopers can be more productive than in

Java when:
• IO/Data manipulation

• SQL scripting

• Gui prototyping

• Unit testing

• batch/script processing – used on TSS as cron scripts

• Implementing actions in MVC web apps

z JSR 223: Scripting languages for the Java
platform
• Standardizes hooks by which new languages can integrate

into Java

… Java as a platform for scripting languages
z The Java platform is no longer just Java

z Java = JVM + JDK = bytecode = Any language

z Java will be a host to other languages, such as
BeanShell and Groovy

z Lack of standards have prevented mass Java-enabled
scripting language adoption in the Java community
• Finalizing Groovy and Beanshell will change that

z Having multiple languages in Java will attract a wider
audience to Java

z Good strategy to increase mass Java adoption

AJAX and Rich Clients
z Enterprise User Interface evolution

• Dumb terminal

• Thick client / Client-Server / Fat Client

• Today’s standard: Thin client / HTML+HTTP / three tier

z Benefits of thin client / HTML based UI’s:
• Zero install

• Standard platform for hosting/viewing UI’s (the browser)

• Real time updating of application (pages served from the server)

z Problems with thin client / HTML UI’s:
• Lack of rich features available in the desktop worlds

• Stateless, request-response content-retrieval system

• Server maintains state, all operations need to go to the server

• Poor support for non-linear workflows

…AJAX and Rich Clients

zGap between desktop and web clients is huge

z Solution: Applications will have rich UI
capabilities running on existing universally
deployed platforms

z Platforms & rich client alternatives
• Macromedia Flash – Lazslo, Macromedia Flex

• Swing/Java – Swing on the client, Java webstart, JDNC

• Browsers - AJAX

z The hottest trend: AJAX – Asynchronous Java
Script and XML

…AJAX

zAjax is several technologies used together:
• XHTML and CSS

• dynamic display and interaction using the Document Object
Model

• data interchange and manipulation using XML and XSLT

• asynchronous data retrieval using XMLHttpRequest

• and JavaScript binding everything together

zXMLHttpRequest allows making asynchronous
Javascript requests behind web pages

z Load of pages in partial fragments instead of
all or nothing

AJAX

- Adaptive Path

Industry is just beginning to use AJAX
z Partial page refreshes

z Piece meal real time
validation

z Auto-completion

z Server-delivered pop-ups

z Asychronous page
refreshing

z Complex workflow in a
single page

…

AJAX and Rich clients
z Availability of mainstream AJAX

implementations (Google GMail, Amazon.com,
and more every day) will mean your manager
will be soon demanding a rich client experience

zWe are at the beginning of the adoption curve

z Java industry is tooling up
• Open source frameworks to simplify AJAX & J2EE are

emerging – DWR, JSON-RPC, SAJAX, Javascript templating

• Web frameworks (Tapestry, JSF, etc) adding AJAX support

z Prepare for it now – learn AJAX

Web services and SOA
z Web services being used pragmatically – far below the

initial hype

z SOA – everyone talking about it – few realizing it’s full
potential

z What is SOA?
• SOA is an architectural style that encourages the creation of

loosely coupled business services

• Loosely coupled services that are interoperable and technology-
agnostic enable business flexibility

• An SOA solution consists of a composite set of business services
that realize an end-to-end business process

• Each service provides an interface-based service description to
support flexible and dynamically re-configurable processes

- John Reynolds

Service Oriented Architectures
z Important points about SOA:

• “Services” in SOA are business services… updating a loan
application is a business service, updating a record in a database
isn’t

• When services are “composed” into wider business processes,
then you have an example of SOA
� Business Process Engines exist to make service composition

easier

• Services are meant to be re-useable in new business processes,
both internally and by business partners

• SOA solutions favor flexibility over efficiency... machine cycles
and network traffic are less important then being able to quickly
implement and change business processes

z What SOA is not:
• Services are not user interfaces. User interfaces invoke services.

• Services can be implemented in any language, but all services
must be invocable in a language agnostic way (eg: SOAP/HTTP)

- John Reynolds

…The truth about SOA
z Few are actually doing SOA, most simply using web services:

1. We connect fat .Net clients to Java application servers (and use soap in between)
2. We connect to some ASP (like Amazon, SF.com, etc.)
3. We front ended some legacy system with services. – Bruce Schnier

z Most applying the 3+N pattern
• Three tier application using web services to talk to N external services – this is not

service composition

z The standards are not fully ready for a complete SOA vision, but
commercial and open source tools exist today that fill these gaps

z We are seeing early successes with SOA

z Prediction: SOA to be fairly well understood by end of 2005, but might
not be called SOA

z Don Box 2005 prediction: “The term SOA will have been beaten to
death and the software industry will invent or recycle some equally
vague term to replace it. “

JSR 170 Content Repository API for Java
z Goal: abstract the details of application data storage

and retrieval such that many different applications can
use the same interface, for multiple purposes, without
significant performance degradation

z Storage format complete hidden

z Specifies a hierarchical system of content organization

z Contains notions of workspaces (staging/production
paradigm), versioning

z content querying/traversal capabilities

…JSR 170 Content Repository API for Java
z Possibilities

• Unified API to content across the enterprise

• Standards applied across all portal/CMS products which have
previously been highly proprietary

• End of vendor lock in with portal products (full import/export
capabilities)

• Better, higher level of abstraction for projects that would have
otherwise employed an object modeling + O/R approach

z Status
• Proposed Final Draft

• Support from all the major portal/CMS vendors

• Apache Jackrabbit project

z Implication: Early adopter use by early 2006,
mainstream use by 2007

The falling value proposition of old-style EJB
z 3 high-level categories of EJB benefits

• Framework Benefits – Security, Transactions,Pooling,
packaging/deployment

• Distribution Benefits – It’s the way to do distributed
communication

• Component Benefits

zWhere the community is going:
• Framework - POJO’s via the three foundations: AOP +

Dependency Injection + Annotations
• Distribution - Web Services over POJOs for distribution
• Components – Who cares? The Enterprise Component Market is

dead

z EJB 2.1 is still the best choice where a
distributed object is required and an SOA
approach is not feasible

Quick Poll:
How are
people
using
EJB?

…EJB 3 to the rescue
z Framework - POJO’s with annotations, dependency injection, and Interceptors (AOP) – surprised? ☺

z Distribution – can easily export both Web Services and RMI

z Components – Not components anymore – POJO’s with annotations

@Stateless

@Interceptors({

“com.acme.AccountAudit”,

“com.acme.Metrics”,

“com.acme.CustomSecurity”

})

public class AccountManagementBean implements AccountManagement {

public void createAccount(int accountNumber, AccountDetails

details) { ... }

public void deleteAccount(int accountNumber) { ... }

public void activateAccount(int accountNumber) { ... }

public void deactivateAccount(int accountNumber) { ... }

...

}

EJB 3 Becoming cool again
z Good ideas from Spring and Hibernate in EJB 3

z Persistence spec has been separated from EJB core spec
• Will allow tools to implement the spec in parts

z Status
• Proposed Final Draft 2

• Probably have a final final by end of 2005

• JBoss, Oracle, Resin already have draft implementations to play
with

z Implications
• Gavin King – EJB 3 to be the next java beans

• Nay sayers – Spring and Hibernate are already standards – who
will need EJB 3?

• Politics – what role will a vendor marketplace have when there are
leading open source implementations?

Presentation Overview
z Technology Trends

• Foundations of tomorrow’s application design
� AOP, Dependency Injection, Annotations

• Java as a platform for scripting languages

• AJAX & Rich Clients

• Web Services and SOA

• JSR 170 – Content Repositories

• The falling value proposition for EJB – can it come back?

z Business / Political Trends
• Continued Dominance of Eclipse

• Emerging Economies and Open Source

• Apache Harmony

• Open Source Business Models

• Areas for commercial models?

• J2EE to become the plumbing of the future?

Continued Dominance of Eclipse
z Recent poll of 242 senior developers in the US at a TSS

conference

Eclipse , 53.30%

emacs , 2.10%

IDEA , 19.80%

Java Studio , 0.80%

JBuilder , 6.60%

JDeveloper , 3.30%

Netbeans , 2.50%

vim , 3.30%

WSAD , 7.40%

other , 0.80%

…Continued Dominance of Eclipse
z Evans Data on Eclipse as a primary IDE

• 70 - 90% growth world wide in 2004

z Large ecosystem of plug-ins

z Industry giants contributing development resources to Eclipse

z A number of free tools available in the open source
distribution

z May 31, 2005 – JBuilder announces Eclipse will be foundation
of future versions of JBuilder IDE

z Implications
• Eclipse becomes the Java community's answer to Visual Studio.NET

• IntelliJ IDEA, NetBeans, and Oracle JDeveloper to cater to niche markets

• Eclipse to foster a market/ecosystem for development tools much like Visual
Basic

• Very important for Java’s continued growth and adoption

Emerging Economies and Open Source

z Emerging economies will further open source

z Case study: Brazil
• Government mandate to use open source, and multi-

platform software. Linux and Java seen as core to national
interest.

• Building their own open source JVM called JAVALI

• Freedom from vendor lock-in important on a national scale

Why does Brazil want open source Java?
z Freedom to distribute JVM on any OS, (specifically

Linux) not just Windows and Mac. Free systems require
a free Java

z Want to build desktop apps with it on Linux, but can’t if
it’s not part of the core distribution

z Want to expand Open Office with Java!

z Tax breaks for open source

z Port it to other systems, such as hand helds, voting
machines, etc

z Guarantee that we have the rights to use it in the future
• In other words: protect from US trade sanctions

… Emerging Economies and Open Source

z Implications:
• China, Brazil, India, and emerging economies share the

same interests

• Expect massive resources put behind open source in the
next 5 years

• Open source Java on the way…

Apache Harmony

zOpen source JVM and JDK

zGoals:
• create a compatible, independent implementation of J2SE 5

under the Apache License v2

• create a community-developed modular runtime (VM and
class library) architecture to allow independent
implementations to share runtime components, and allow
independent innovation in runtime components

zBrought together some of the best minds on
JVM’s to contribute

Apache Harmony – Why?
z An open source implementation can survive if Sun / vendors

stop supporting Java

z Distribution rights – Linux and FreeBSD& more availability for
Java

z Ability to ship custom JVM’s with an application
• Eg: JVM’s with custom features, or ship apps with parts of JVM’s (2meg exe

file, or 100KB JAR that needs the JRE?)

z “enables collaboration in the parts of technology that are
common to all”… letting organizations focus on things that
add value on top of the common – Geir Magnussen

z Risks
• A project of this scale is no easy matter

• Other similar projects (Geronimo) proceeding slowly, so might this

• Forking Java

• Secret attempt by IBM to rule the world

New open source business models

z JBoss - pioneer

z Simula labs – VC focused on open source

z Interface21, numerous others

zGluecode software – IBM buys Gluecode

z Implications

What’s left for commercial models?

zOpen source software is increasingly
standardizing more complex infrastructures

z First web servers, then appservers, now even
portal servers and integration servers!

zOpportunities for commercial firms
• High end, large scale (Websphere XD, BEA Tuxedo)

• Niche tools – caching, finance, Jini

• Anything ahead of the open source curve

J2EE the plumbing of the future?
z J2EE is increasingly becoming ‘plumbing’

z Server vendors are focusing on building
solutions on top of J2EE, such as portals &
integration, will we need to use J2EE or
abstractions on top of J2EE?

z J2EE 1.4 spec lead Mark Hapner…
• It’s natural for the level you code at one point becomes

plumbing in the future.
• The challenge is for the community to continue evolving

and creating better abstractions, such as Portlets, or JAX-
RPC

• “We will not continue to focus at one level, and sort of get
stuck on that one level as the world moves forward. I think
that's the challenge, and I think we're rising to that
challenge now, and I think that you'll see new JSRs that are
the product of that.”

Questions

