
Spring Framework Case Study
Rebuilding the AutoZone.com Engine

Zachary Lendon
Programmer Analyst
AutoZone, Inc.

Outline
AutoZone.com overview

Why rebuild?

How to rebuild?
• Acknowledge weaknesses
• Understand business climate
• Develop plan of attack

Approaching, applying, and integrating Spring Framework
• Data access layer
• Services/business domain layer
• Views/controllers
• AOP

Lessons learned

Q&A

AutoZone.com overview

E-commerce site for leading domestic aftermarket auto parts
retailer

Over 700,000 parts & accessories in online catalog

Over 3,500 retail brick & mortar stores

Over 37,000 pages of repair guides

Component locations, troubleshooting tips

Service interval and technical service bulletins (TSB)
notifications

Why Rebuild?

Challenges

Improve performance and maintainability of website
while reducing system errors

Make future changes easier to integrate into
website

Address logic and layering issues through the
introduction and integration of the Spring
Framework

Convert site over a long period of time with limited
resources while still supporting changes using
current site’s software

Why Rebuild?
For the customers
• Improve reliability of site by reducing errors and improving

performance

For the company
• Save money

Reduce additional hardware needs in future
Reduce future software development/support costs

• Make money
Improve customer experience -> improve Sales

For the developers
• Upgrade technology of website
• Increase flexibility for future improvements/fixes
• Ease future integration with other project work
• Pride factor

Introducing the Spring Framework
•Components we used (in blue)

Spring

AOP
Source-level metadata

AOP infrastructure

Spring Web
WebApplcationContext

Multipart resolver

Web utilities

Spring ORM
Hibernate support

iBatis support

JDO support
Spring Web

MVC
Web MVC Framework

Web Views

JSP/Velocity

PDF/Excel
Spring DAO
Transaction Infrastructure

JDBC support

DAO support

Spring Context
Application context

UI support

Validation

JNDI, EJB support & Remoting

Mail

Spring Core
Supporting utilities

Bean container

How to Rebuild?
Acknowledge your biggest weaknesses/
opportunities
• AutoZone.com used unreliable, proprietary, and overly-

complex data access layer
Initially developed to communicate with mainframe DB2
tables, became out-dated several years ago after switch
to Informix
Effort necessary to develop and support the data access
and its resulting code at times was overwhelming
Re-inventing the wheel
Did not own source
Product support: one person
Caused issues with garbage collections
Added points of failure

• Weak MVC implementation

Controllers containing
state information,
instance data, and
business domain logic

Views containing business
logic

Controller example

from “CatalogController“

How to Rebuild?
Acknowledging weaknesses (cont’d).

View Example:
Catalog page (circa 07/05)

How to Rebuild? (cont’d)

Understand business climate

• Maintain current site functionality

• Be able to fix critical ‘bugs’ throughout ‘upgrade’ life-cycle

• Limited resources

• Limited time

How to Rebuild? (cont.)
Develop plan of attack
• Methodical, phased back-to-front end ‘layered’ approach –

data access, service, business domain, controllers, view, etc.

• Once enough back and middle-tier functionalities are defined,
slowly introduce front-end change-over; new
views/controllers should interact primarily with other new
components

• Extract and re-factor business logic from previous
“architecture” into service and business domain layer.

• After significant milestones are reached, educate
developers/business team on various approaches to
encourage adoption

Approaching Spring Data Access
• We chose Spring’s ‘JDBC abstraction layer’

• Important factors for us in defining approach:
Legacy Data Model
Rich Spring API: exception hierarchy and transaction support
Ease of migration for developers familiar with JDBC
Less code the better

• Use DAO Interfaces and DAO Implementation classes

• Use service layer as ‘wrapper’ to DAOs

Applying Spring Data Access
• Laying the groundwork

• Configure property files

<bean id="propertyConfigurer"
class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">

<property name="locations">
<list>

<value>/WEB-INF/jdbc.properties</value>
<value>/WEB-INF/sql.properties</value>

</list>
</property>

</bean>

Define
DataSource

<bean
id="dataSource"
class="org.apache.commons.dbcp.BasicDataSource">
<property name="url">
<value>${ecom.jdbc.url}</value>
</property>
<property name="driverClassName">
<value>${ecom.jdbc.driver}</value>
</property>
<property name="username">
<value>${ecom.jdbc.username}</value>
</property>
<property name="password">
<value>${ecom.jdbc.password}</value>
</property>
<property name="testOnBorrow">
<value>true</value>
</property>
<property name="validationQuery">
<value>SELECT FIRST 1 sir_store_no FROM az.vsir</value>
</property>
<property name="maxActive">
<value>32</value>
</property>
<property name="maxIdle">
<value>32</value>
</property>
<property name="maxWait">
<value>10000</value>
</property>
</bean>

Applying Spring Data Access (cont).

• Extends
org.springframework.jdbc.core.support.JdbcDaoSupport

• Test class extends
AbstractTransactionalDataSourceSpringContextTests

• DAOs contain inner classes that extend Spring’s
MappingSqlQuery Class for object mapping (as needed)

Our standard DAO implementation:

Example: Retrieving Store Information

• DAO Inner Class

• DAO Inner Class Constructor

• Define Query objects (at class level)

• Initialize them

•Map ResultSet to Object (in inner class)

• Finally - Get Data!

• In retrospect, we could simplify further by…

public Store findStoreInfoByStoreNumber(int storeNumber)

throws DataAccessException {

Store store = (Store) storeNumberInfoQuery.findObject(storeNumber);

return store;

}

Adding Logging Aspect/Interceptor to handle logging

Removing statements originally written for “clarity”
purposes

End up with something like…

Integrating Spring – Data Access
In our initial code-base, only servlet had access to request object

In init() for main servlet
• ContextLoaderListener (web.xml) loads beans into ServletContext
• In main servlet, define public static variable equal to

WebApplicationContextUtils.
getRequiredWebApplicationContext(getServletContext())

Directly in current “database layer” :

ApplicationContext ctx = UiBroker.getApplicationContext();
CustomerDao dao = (CustomerDao) ctx.getBean("customerDao");

Where essentially all previous data access logic resided

Can easily co-exist within or alongside prior database layer

Rarely call DAO directly – usually access through service or business
domain layer. This allows for phasing out of old database/business
layer(s).

As Spring becomes more widespread in code-base, can re-define how
applicationContext is accessed if necessary.

Approaching Service Layer

Layer between controllers and DAO that exposes business logic.

Leverages DAOs and business domain-level objects to bundle
information for controllers and remote systems.

Use interfaces!

Be wary – all the business logic doesn’t have to go in the service
itself.

Much of our “mis-layered” code either belongs in this layer or
should be accessed using this layer.

Define transactions at this level.

• Transaction across DAOs

• Involve JMS

Applying Spring – Service layer

• Example: Implementation for service to retrieve
store information

• Some key thoughts
• When layers are properly separated, methods will often look
simple…
• Opportunity for better defining service and business domain layer
exists

<bean
id="storeInfoService"
class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean“>
<property name="target">
<ref local="storeInfoServiceTarget" />
</property>
</bean>

•Create Transaction Proxy for Service

Applying Spring – Service layer
Configuration

•Create Target For Proxy

<bean
id="storeInfoServiceTarget"
class="com.autozone.www.service.StoreInfoServiceImpl">
<property name="storeDao">
<ref local="storeDao" />
</property>
</bean>

• Transaction Attributes
o Default in above example
o Isolation levels
o Propagation levels

• Pre and post interceptors defined here

Integrating Spring – Service Layer
Similar to DAO integration

If used across legacy controller layer (i.e. multiple controllers), define
in ‘Controller’ base class (or some other generically accessible
location)

public CustomerInfoService getCustomerInfoService() {
// retrieve Spring application context
ApplicationContext ctx = UiBroker.getApplicationContext();
// retrieve customer info service bean from Spring
CustomerInfoService service =

(CustomerInfoService) ctx.getBean("customerInfoService");
return service;

}

Simply call ‘getCustomerInfoService().method…’

Otherwise, above logic in individual controller…

Approaching Spring

View/Controller Layer:
• Move site towards Spring Web MVC

• Why we chose it
Promote flexibility
• Ease of switching between multiple controller and view options

Ease of taking advantage of other Spring-based components through
Dependency Injection
Allows easier integration of future non-AutoZone.com-specific project
work (that hopefully will also leverage the Spring Framework)

Key Motivation:
• Remove ties between business logic and presentation logic

Approaching Spring MVC
• We chose Struts Tiles (with JSP pages) as primary view

technology

• Map virtual URL’s to Controllers
Mainly use Spring supplied implementations
• BeanNameUrlHandlerMapping: we use primarily for dynamic pages
• SimpleUrlHandlerMapping: use primarily for static pages

Spring-provided UrlFilenameViewController

For our custom controllers
• MultiActionControllers (MAC)

Use MethodNameResolver for defining handler/action to map
request to
Similar to previous approach (reflection-based) and Struts

Approach Spring MVC with Tiles

Why Tiles, why not Velocity, SiteMesh, etc?

• Html in such a state that move to Tiles provides simple
means for ‘clean up’ of view layer.

• Smallest ‘idealogy’ change from previous architecture.

• Build with view layer flexibility in mind.

Applying Spring MVC with Tiles

•Define ‘Tiles Configurer’ Bean
•To load tiles definitions
•‘Configure’ Tiles

<bean id="tilesConfigurer"

class="org.springframework.web.servlet.view.tiles.TilesConfigurer">
<property name="definitions">
<list>
<value>/WEB-INF/tiles-layout.xml</value>
</list>
</property>

</bean>

<bean id="viewResolver"
class="org.springframework.web.servlet.view.InternalResourceViewResolver">
<property name="viewClass">
<value>org.springframework.web.servlet.view.tiles.TilesView</value>
</property>
</bean>

•Define ‘TilesView’ View Resolver
•Maps view names to view implementations

Applying Spring MVC and Tiles (cont’d)

Title

Meta

Hitbox

Top Navigation

Left
Navigation

“Main”

Footer

Layout Components of Tiles Page

Define Tiles-Layout Configuration

<definition name=".root" path="/WEB-INF/views/tiles/root.jsp">
<put name="header" value=".header"/>
<put name="hitbox" value="/WEB-INF/views/tiles/js/hitbox.jsp"/>
<put name="meta" value="/WEB-INF/views/tiles/html/meta.jsp"/>
<put name="left_nav" value="/WEB-
INF/views/tiles/left_nav/left_nav_df.jsp"/>
<put name="footer" value="/WEB-INF/views/tiles/bottom.jsp"/>
</definition>

•Base/Root page

Applying Spring MVC
AutoZone.com Home Page

• User requests http://www.autozone.com

• <welcome-file> in web.xml is home.htm

• Web Server’s docroot has empty file called ‘home.htm’

• DispatcherServlet mapping is *.htm

• Request mapped to Spring’s DispatcherServlet

• Looking for first match for ‘home.htm’

<bean name="/home.htm"
class="org.springframework.web.servlet.mvc.ParameterizableViewController">

<property name="viewName"><value>index</value></property>
</bean>

Applying Spring MVC and Tiles

Home example (cont).

• Searching for viewResolver for index – TilesView is
viewClass

• Find ‘index’ Tiles definition

<!-- Home Page -->
<definition name="index" extends=".root"
controllerClass="com.autozone.www.control.tiles.MainTileController">
<put name="title" value="AutoZone.com - Get in the Zone!"/>
<put name="main" value="/WEB-INF/views/tiles/home.jsp"/>
<put name="pageName" value="Home"/>
</definition>

Applying Spring MVC (and AOP)

Home Page Example

• More going on behind-the-scenes…

• Interceptor performs ‘customer’ logic common to nearly all
requests

<bean id="urlBeanMapping"
class="org.springframework.web.servlet.handler.BeanNameUrlHandlerMapping">
<property name="interceptors">

<list>
<ref local="ecomInterceptor"/>

</list>
</property>

</bean>

Approaching Interceptors
‘Interceptors’ get at requests before and/or after your handler
does

Our current ‘main’ interceptor provides conduit to logic
previously contained primarily within ‘main’ servlet
• Previous servlet became catch-all for quick-fix issues

Conditional logic for 2% of cases being evaluated 100% of the time
• Logic now layered, accessed through interceptor

Pre-Request: Determine Customer Type

Post Request:
• Determine and add data for commonly used ‘view’ beans if have

not already been defined
Top Navigation
Hitbox

• Write cookie (if needed)

Pre-Request
private MasterService service;

public boolean preHandle(HttpServletRequest request,HttpServletResponse response,Object handler) {

//get application context; if not defined, define it
if (UiBroker.context == null) {

javax.servlet.ServletContext servletContext =
request.getSession().getServletContext();

UiBroker.context = WebApplicationContextUtils.getRequiredWebApplicationContext(
servletContext);

}

ApplicationContext ctx = UiBroker.context;

//get MasterController
MasterController masterController =

UiBroker.getMasterController(request.getSession());

//determine customer type and act appropriately
masterController =

service.processCustomerCredentials(request, response, ctx);

return true;
} //slightly altered for demonstration purposes

Spring AOP and MVC – Approach Follow-up

Handler methods should be specific to user request,
not be doing housekeeping common to website

Views should be specific to presentation logic, not
contain repetitive logic

Examples where we leverage Spring AOP:

• Site Breadcrumbs/Navigation

• HitBox (customer tracking)

Spring Rocks!

Spring promotes good coding habits.

There’s seemingly always a better way to do what
you just did.

Mistakes will be made, but they’ll be easier to fix
when you use the Spring Framework and the design
principles it helps developers enforce.

Lessons Learned

Resources

“Pro Spring” book, Rob Harrop and Jan Machacek.

“Spring Live” online book, Matt Raible.

“Professional Java Development with the Spring
Framework” book, Johnson, Hoeller, et al.

http://www.springframework.org,
http://forum.springframework.org

Thank You

Questions

