
M A N N I N G

Vincent Massol
with Ted Husted

JUnit
IN ACTION

JUnit in Action
by Vincent Massol

with Ted Husted
 Chapter 3

Copyright 2003 Manning Publications

contents
PART I JUNIT DISTILLED

Chapter 1 ■ JUnit jumpstart
Chapter 2 ■ Exploring JUnit
Chapter 3 ■ Sampling JUnit
Chapter 4 ■ Examining software tests

Chapter 5 ■ Automating JUnit

PART II TESTING STRATEGIES
Chapter 6 ■ Coarse-grained testing with stubs
Chapter 7 ■ Testing in isolation with mock objects
Chapter 8 ■ In-container testing with Cactus

PART III TESTING COMPONENTS
Chapter 9 ■ Unit testing servlets and filters

Chapter 10 ■ Unit testing JSPs and taglibs
Chapter 11 ■ Unit testing database applications
Chapter 12 ■ Unit testing EJBs

39

3Sampling JUnit

This chapter covers
■ Testing larger components
■ Project infrastructure

40 CHAPTER 3

Sampling JUnit

Tests are the Programmer’s Stone, transmuting fear into boredom.
—Kent Beck, Test First Development

Now that you’ve had an introduction to JUnit, you’re ready to see how it works on
a practical application. Let’s walk through a case study of testing a single, signifi-
cant component, like one your team leader might assign to you. We should
choose a component that is both useful and easy to understand, common to many
applications, large enough to give us something to play with, but small enough
that we can cover it here. How about a controller?

 In this chapter, we’ll first introduce the case-study code, identify what code to
test, and then show how to test it. Once we know that the code works as expected,
we’ll create tests for exceptional conditions, to be sure the code behaves well even
when things go wrong.

3.1 Introducing the controller component

Core J2EE Patterns describes a controller as a component that “interacts with a cli-
ent, controlling and managing the handling of each request,” and tells us that it is
used in both presentation-tier and business-tier patterns.1

 In general, a controller does the following:

■ Accepts requests

■ Performs any common computations on the request

■ Selects an appropriate request handler

■ Routes the request so that the handler can execute the relevant business logic

■ May provide a top-level handler for errors and exceptions

A controller is a handy class and can be found in a variety of applications. For
example, in a presentation-tier pattern, a web controller accepts HTTP requests
and extracts HTTP parameters, cookies, and HTTP headers, perhaps making the
HTTP elements easily accessible to the rest of the application. A web controller
determines the appropriate business logic component to call based on elements
in the request, perhaps with the help of persistent data in the HTTP session, a
database, or some other resource. The Apache Struts framework is an example of
a web controller.

1 Deepak Alur, John Crupi, and Dan Malks, Core J2EE Patterns: Best Practices and Design Strategies
(Upper Saddle River, NJ: Prentice Hall, 2001).

Introducing the controller component 41

 Another common use for a controller is to handle applications in a business-
tier pattern. Many business applications support several presentation layers. Web
applications may be handled through HTTP clients. Desktop applications may be
handled through Swing clients. Behind these presentation tiers there is often an
application controller, or state machine. Many Enterprise JavaBean (EJB) applica-
tions are implemented this way. The EJB tier has its own controller, which con-
nects to different presentation tiers through a business façade or delegate.

 Given the many uses for a controller, it’s no surprise that controllers crop up in
a number of enterprise architecture patterns, including Page Controller, Front
Controller, and Application Controller.2 The controller you will design here could
be the first step in implementing any of these classic patterns.

 Let’s work through the code for the simple controller, to see how it works, and
then try a few tests. If you would like to follow along and run the tests as you go, all
the source code for this chapter is available at SourceForge (http://junit-
book.sf.net). See appendix A for more about setting up the source code.

3.1.1 Designing the interfaces

Looking over the description of a controller, four objects pop out: the Request,
the Response, the RequestHandler, and the Controller. The Controller accepts a
Request, dispatches a RequestHandler, and returns a Response object. With a
description in hand, you can code some simple starter interfaces, like those
shown in listing 3.1.

public interface Request
{
 String getName(); b
}

public interface Response C
{
}

public interface RequestHandler
{
 Response process(Request request) throws Exception; D
}

public interface Controller
{
 Response processRequest(Request request); E

2 Martin Fowler, Patterns of Enterprise Application Architecture (Boston: Addison-Wesley, 2003).

Listing 3.1 Request, Response, RequestHandler, and Controller interfaces

42 CHAPTER 3

Sampling JUnit

 void addHandler(Request request, RequestHandler requestHandler); F
}

Define a Request interface with a single getName method that returns the request’s
unique name, just so you can differentiate one request from another. As you
develop the component you will need other methods, but you can add those as
you go along.

Here you specify an empty interface. To begin coding, you only need to return a
Response object. What the Response encloses is something you can deal with later.
For now, you just need a Response type you can plug into a signature.

Define a RequestHandler that can process a Request and return your Response.
RequestHandler is a helper component designed to do most of the dirty work. It
may call upon classes that throw any type of exception. So, Exception is what you
have the process method throw.

Define a top-level method for processing an incoming request. After accepting the
request, the controller dispatches it to the appropriate RequestHandler. Notice
that processRequest does not declare any exceptions. This method is at the top of
the control stack and should catch and cope with any and all errors internally. If it
did throw an exception, the error would usually go up to the Java Virtual Machine
(JVM) or servlet container. The JVM or container would then present the user with
one of those nasty white screens. Better you handle it yourself.

This is a very important design element. The addHandler method allows you to
extend the Controller without modifying the Java source.3

Design patterns in action: Inversion of Control
Registering a handler with the controller is an example of Inversion of Con-
trol. This pattern is also known as the Hollywood Principle, or “Don’t call us,
we’ll call you.” Objects register as handlers for an event. When the event
occurs, a hook method on the registered object is invoked. Inversion of Con-
trol lets frameworks manage the event life cycle while allowing developers to
plug in custom handlers for framework events.3

3 John Earles, “Frameworks! Make Room for Another Silver Bullet”: http://www.cbd-hq.com/
PDFs/cbdhq_000301je_frameworks.pdf.

b

C

D

E

F

Introducing the controller component 43

3.1.2 Implementing the base classes

Following up on the interfaces in listing 3.1, listing 3.2 shows a first draft of the
simple controller class.

package junitbook.sampling;

import java.util.HashMap;
import java.util.Map;

public class DefaultController implements Controller
{
 private Map requestHandlers = new HashMap(); b
 protected RequestHandler getHandler(Request request) C
 {
 if (!this.requestHandlers.containsKey(request.getName()))
 {
 String message = "Cannot find handler for request name "
 + "[" + request.getName() + "]";
 throw new RuntimeException(message); D
 }
 return (RequestHandler) this.requestHandlers.get(
 request.getName());
 }

 public Response processRequest(Request request) F
 {
 Response response;
 try
 {
 response = getHandler(request).process(request);
 }
 catch (Exception exception)
 {
 response = new ErrorResponse(request, exception);
 }
 return response;
 }

 public void addHandler(Request request,
 RequestHandler requestHandler)
 {
 if (this.requestHandlers.containsKey(request.getName()))
 {
 throw new RuntimeException("A request handler has "
 + "already been registered for request name "
 + "[" + request.getName() + "]");
 }
 else

Listing 3.2 The generic controller

E

G

44 CHAPTER 3

Sampling JUnit

 {
 this.requestHandlers.put(request.getName(),
 requestHandler);
 }
 }
}

Declare a HashMap (java.util.HashMap) to act as the registry for your request
handlers.

Add a protected method, getHandler, to fetch the RequestHandler for a given
request.

If a RequestHandler has not been registered, you throw a RuntimeException
(java.lang.RuntimeException), because this happenstance represents a program-
ming mistake rather than an issue raised by a user or external system. Java does
not require you to declare the RuntimeException in the method’s signature, but
you can still catch it as an exception. An improvement would be to add a specific
exception to the controller framework (NoSuitableRequestHandlerException, for
example).

Your utility method returns the appropriate handler to its caller.

This is the core of the Controller class: the processRequest method. This method
dispatches the appropriate handler for the request and passes back the handler’s
Response. If an exception bubbles up, it is caught in the ErrorResponse class,
shown in listing 3.3.

Check to see whether the name for the handler has been registered, and throw an
exception if it has. Looking at the implementation, note that the signature passes
the request object, but you only use its name. This sort of thing often occurs when
an interface is defined before the code is written. One way to avoid over-designing
an interface is to practice Test-Driven Development (see chapter 4).

package junitbook.sampling;

public class ErrorResponse implements Response
{
 private Request originalRequest;
 private Exception originalException;

 public ErrorResponse(Request request, Exception exception)
 {
 this.originalRequest = request;
 this.originalException = exception;

Listing 3.3 Special response class signaling an error

b

C

D

E

F

G

Let’s test it! 45

 }

 public Request getOriginalRequest()
 {
 return this.originalRequest;
 }

 public Exception getOriginalException()
 {
 return this.originalException;
 }
}

At this point, you have a crude but effective skeleton for the controller. Table 3.1
shows how the requirements at the top of this section relate to the source code.

The next step for many developers would be to cobble up a stub application to go
with the skeleton controller. But not us! As “test-infected” developers, we can write
a test suite for the controller without fussing with a stub application. That’s the
beauty of unit testing! You can write a package and verify that it works, all outside
of a conventional Java application.

3.2 Let’s test it!

A fit of inspiration has led us to code the four interfaces shown in listing 3.1 and
the two starter classes shown in listings 3.2 and 3.3. If we don’t write an automatic
test now, the Bureau of Extreme Programming will be asking for our membership
cards back!

 Listings 3.2 and 3.3 began with the simplest implementations possible. So, let’s
do the same with the new set of unit tests. What’s the simplest possible test case we
can explore?

Table 3.1 Resolving the base requirements for the component

Requirement Resolution

Accept requests public Response processRequest(Request request)

Select handler this.requestHandlers.get(request.getName())

Route request response = getRequestHandler(request).process(request);

Error-handling Subclass ErrorResponse

46 CHAPTER 3

Sampling JUnit

3.2.1 Testing the DefaultController

How about a test case that instantiates the DefaultController class? The first step
in doing anything useful with the controller is to construct it, so let’s start there.

 Listing 3.4 shows the bootstrap test code. It constructs the DefaultController
object and sets up a framework for writing tests.

package junitbook.sampling;

import junit.framework.TestCase;

public class TestDefaultController extends TestCase b
{
 private DefaultController controller;

 protected void setUp() throws Exception C
 {
 controller = new DefaultController();
 }

 public void testMethod() D
 {
 throw new RuntimeException("implement me"); E
 }
}

Start the name of the test case class with the prefix Test. Doing so marks the class
as a test case so that you can easily recognize test classes and possibly filter them in
build scripts.

Use the default setUp method to instantiate DefaultController. This is a built-in
extension point that the JUnit framework calls between test methods.

Here you insert a dummy test method, just so you have something to run. As soon
as you are sure the test infrastructure is working, you can begin adding real test
methods. Of course, although this test runs, it also fails. The next step will be to
fix the test!

Use a “best practice” by throwing an exception for test code that has not yet been
implemented. This prevents the test from passing and reminds you that you must
implement this code.

3.2.2 Adding a handler

Now that you have a bootstrap test, the next step is to decide what to test first. We
started the test case with the DefaultController object, because that’s the point of

Listing 3.4 TestDefaultController—a bootstrap iteration

b

C

D

E

Let’s test it! 47

this exercise: to create a controller. You wrote some code and made sure it com-
piled. But how can you test to see if it works?

 The purpose of the controller is to process a request and return a response.
But before you process a request, the design calls for adding a RequestHandler to
do the actual processing. So, first things first: You should test whether you can add
a RequestHandler.

 The tests you ran in chapter 1 returned a known result. To see if the test suc-
ceeded, you compared the result you expected with whatever result the object you
were testing returned. The signature for addHandler is

void addHandler(Request request, RequestHandler requestHandler)

To add a RequestHandler, you need a Request with a known name. To check to see
if adding it worked, you can use the getHandler method from DefaultController,
which uses this signature:

RequestHandler getHandler(Request request)

This is possible because the getHandler method is protected, and the test classes
are located in the same package as the classes they are testing.

 For the first test, it looks like you can do the following:

1 Add a RequestHandler, referencing a Request.

2 Get a RequestHandler and pass the same Request.

3 Check to see if you get the same RequestHandler back.

Where do tests come from?
Now you know what objects you need. The next question is, where do these
objects come from? Should you go ahead and write some of the objects you will
use in the application, like a logon request?

 The point of unit testing is to test one object at a time. In an object-oriented
environment like Java, objects are designed to interact with other objects. To cre-
ate a unit test, it follows that you need two flavors of objects: the domain object you
are testing and test objects to interact with the object under test.

DEFINITION domain object—In the context of unit testing, the term domain object is
used to contrast and compare the objects you use in your application
with the objects that you use to test your application (test objects). Any
object under test is considered to be a domain object.

48 CHAPTER 3

Sampling JUnit

If you used another domain object, like a logon request, and a test failed, it would
be hard to identify the culprit. You might not be able to tell if the problem was
with the controller or the request. So, in the first series of tests, the only class you
will use in production is DefaultController. Everything else should be a special
test class.

Where do test classes live?
Where do you put the test classes? Java provides several alternatives. For starters,
you could do one of the following:

■ Make them public classes in your package

■ Make them inner classes within your test case class

If the classes are simple and likely to stay that way, then it is easiest to code them as
inner classes. The classes in this example are pretty simple.

 Listing 3.5 shows the inner classes you can add to the TestDefaultController
class.

public class TestDefaultController extends TestCase
{
[...]
 private class TestRequest implements Request b
 {
 public String getName()
 {
 return "Test";
 }
 }

 private class TestHandler implements RequestHandler C
 {
 public Response process(Request request) throws Exception

JUnit best practices: unit-test one object at a time
A vital aspect of unit tests is that they are finely grained. A unit test indepen-
dently examines each object you create, so that you can isolate problems as
soon as they occur. If more than one object is put under test, you cannot pre-
dict how the objects will interact when changes occur to one or the other.
When an object interacts with other complex objects, you can surround the
object under test with predictable test objects.

Another form of software test, integration testing, examines how working objects
interact with each other. See chapter 4 for more about other types of tests.

Listing 3.5 Test classes as inner classes

Let’s test it! 49

 {
 return new TestResponse();
 }
 }

 private class TestResponse implements Response D
 {
 // empty
 }
[...]

Set up a request object that returns a known name (Test).

Implement a TestHandler. The interface calls for a process method, so you have
to code that, too. You’re not testing the process method right now, so you have it
return a TestResponse object to satisfy the signature.

Go ahead and define an empty TestResponse just so you have something to
instantiate.

With the scaffolding from listing 3.5 in place, let’s look at listing 3.6, which shows
the test for adding a RequestHandler.

public class TestDefaultController extends TestCase
{
[...]
 public void testAddHandler() b
 {
 Request request = new TestRequest();
 RequestHandler handler = new TestHandler();

 controller.addHandler(request, handler); D
 RequestHandler handler2 = controller.getHandler(request); E
 assertSame(handler2, handler); F
 }
}

Pick an obvious name for the test method.

Instantiate your test objects.

This code gets to the point of the test: controller (the object under test) adds the
test handler. Note that the DefaultController object is instantiated by the setUp
method (see listing 3.4).

Listing 3.6 TestDefaultController.testAddHandler

b

C

D

C

b

c

d

50 CHAPTER 3

Sampling JUnit

Read back the handler under a new variable name.

Check to see if you get back the same object you put in.

Although it’s very simple, this unit test confirms the key premise that the mecha-
nism for storing and retrieving RequestHandler is alive and well. If addHandler or
getRequest fails in the future, the test will quickly detect the problem.

 As you create more tests like this, you will notice that you follow a pattern of
steps:

1 Set up the test by placing the environment in a known state (create objects,
acquire resources). The pre-test state is referred to as the test fixture.

2 Invoke the method under test.

3 Confirm the result, usually by calling one or more assert methods.

3.2.3 Processing a request

Let’s look at testing the core purpose of the controller, processing a request.
Because you know the routine, we’ll just present the test in listing 3.7 and review it.

public class TestDefaultController extends TestCase
{
[...]
 public void testProcessRequest() b
 {
 Request request = new TestRequest();
 RequestHandler handler = new TestHandler();
 controller.addHandler(request, handler);

 Response response = controller.processRequest(request); D
 assertNotNull("Must not return a null response", response); E
 assertEquals(TestResponse.class, response.getClass()); F
 }
}

JUnit best practices: choose meaningful test method names
You must be able to understand what a method is testing by reading the name.
A good rule is to start with the testXxx naming scheme, where Xxx is the
name of the method to test. As you add other tests against the same method,
move to the testXxxYyy scheme, where Yyy describes how the tests differ.

E

F

Listing 3.7 testProcessRequest

C

Let’s test it! 51

First give the test a simple, uniform name.

Set up the test objects and add the test handler.

Here the code diverges from listing 3.6 and calls the processRequest method.

You verify that the returned Response object is not null. This is important because
in F you call the getClass method on the Response object. It will fail with a
dreaded NullPointerException if the Response object is null. You use the assert-
NotNull(String, Object) signature so that if the test fails, the error displayed is
meaningful and easy to understand. If you had used the assertNotNull(Object)
signature, the JUnit runner would have displayed a stack trace showing an Asser-
tionFailedError exception with no message, which would be more difficult to
diagnose.

Once again, compare the result of the test against the expected TestResponse
class.

Factorizing setup logic
Because both tests do the same type of setup, you can try moving that code into
the JUnit setUp method. As you add more test methods, you may need to adjust
what you do in the standard setUp method. For now, eliminating duplicate code
as soon as possible helps you write more tests more quickly. Listing 3.8 shows the
new and improved TestDefaultController class (changes are shown in bold).

package junitbook.sampling;

import junit.framework.TestCase;

public class TestDefaultController extends TestCase
{
 private DefaultController controller;
 private Request request;
 private RequestHandler handler;

JUnit best practices: explain the failure reason in assert calls
Whenever you use the assertTrue, assertNotNull, assertNull, and
assertFalse methods, make sure you use the signature that takes a String as
the first parameter. This parameter lets you provide a meaningful textual
description that is displayed in the JUnit test runner if the assert fails. Not
using this parameter makes it difficult to understand the reason for a failure
when it happens.

Listing 3.8 TestDefaultController after some refactoring

b

C

D

E

F

52 CHAPTER 3

Sampling JUnit

 protected void setUp() throws Exception
 {
 controller = new DefaultController();
 request = new TestRequest();
 handler = new TestHandler();
 controller.addHandler(request, handler);
 }

 private class TestRequest implements Request
 {
 // Same as in listing 3.5
 }

 private class TestHandler implements RequestHandler
 {
 // Same as in listing 3.5
 }

 private class TestResponse implements Response
 {
 // Same as in listing 3.5
 }

 public void testAddHandler() C
 {
 RequestHandler handler2 = controller.getHandler(request);
 assertSame(handler2, handler);
 }

 public void testProcessRequest() D
 {
 Response response = controller.processRequest(request);
 assertNotNull("Must not return a null response", response);
 assertEquals(TestResponse.class, response.getClass());
 }
}

The instantiation of the test Request and RequestHandler objects is moved to
setUp. This saves you repeating the same code in testAddHandler C and testPro-
cessRequest D. 4

Note that you do not try to share the setup code by testing more than one opera-
tion in a test method, as shown in listing 3.9 (an anti-example).

DEFINITION refactor—To improve the design of existing code. For more about
refactoring, see Martin Fowler’s already-classic book.4

4 Martin Fowler, Refactoring: Improving the Design of Existing Code (Reading, MA: Addison-Wesley,
1999).

B

b

Let’s test it! 53

public class TestDefaultController extends TestCase
{
[...]
 public void testAddAndProcess()
 {
 Request request = new TestRequest();
 RequestHandler handler = new TestHandler();
 controller.addHandler(request, handler);

 RequestHandler handler2 = controller.getHandler(request);
 assertEquals(handler2,handler);

 // DO NOT COMBINE TEST METHODS THIS WAY
 Response response = controller.processRequest(request);
 assertNotNull("Must not return a null response", response);
 assertEquals(TestResponse.class, response.getClass());
 }
}

Listing 3.9 Do not combine test methods this way.

JUnit best practices: one unit test equals one testMethod
Do not try to cram several tests into one method. The result will be more com-
plex test methods, which will become increasingly difficult to read and under-
stand. Worse, the more logic you write in your test methods, the more risk
there is that it will not work and will need debugging. This is a slippery slope
that can end with writing tests to test your tests!

Unit tests give you confidence in a program by alerting you when something
that had worked now fails. If you put more than one unit test in a method, it
makes it more difficult to zoom in on exactly what went wrong. When tests share
the same method, a failing test may leave the fixture in an unpredictable state.
Other tests embedded in the method may not run, or may not run properly.
Your picture of the test results will often be incomplete or even misleading.

Because all the test methods in a TestCase share the same fixture, and JUnit
can now generate an automatic test suite (see chapter 2), it’s really just as
easy to place each unit test in its own method. If you need to use the same
block of code in more than one test, extract it into a utility method that each
test method can call. Better yet, if all methods can share the code, put it into
the fixture.

For best results, your test methods should be as concise and focused as your
domain methods.

54 CHAPTER 3

Sampling JUnit

Each test method must be as clear and focused as possible. This is why JUnit pro-
vides a setUp method: so you can share fixtures between tests without combining
test methods.

3.2.4 Improving testProcessRequest

When we wrote the testProcessRequest method in listing 3.7, we wanted to con-
firm that the response returned is the expected response. The implementation
confirms that the object returned is the object that we expected. But what we
would really like to know is whether the response returned equals the expected
response. The response could be a different class. What’s important is whether
the class identifies itself as the correct response.

 The assertSame method confirms that both references are to the same object.
The assertEquals method utilizes the equals method, inherited from the base
Object class. To see if two different objects have the same identity, you need to
provide your own definition of identity. For an object like a response, you can
assign each response its own command token (or name).

 The empty implementation of TestResponse didn’t have a name property you
can test. To get the test you want, you have to implement a little more of the
Response class first. Listing 3.10 shows the enhanced TestResponse class.

public class TestDefaultController extends TestCase
{
[...]
 private class TestResponse implements Response
 {
 private static final String NAME = "Test";

 public String getName()
 {
 return NAME;
 }

 public boolean equals(Object object)
 {
 boolean result = false;
 if (object instanceof TestResponse)
 {
 result = ((TestResponse) object).getName().equals(
 getName());
 }
 return result;
 }

Listing 3.10 A refactored TestResponse

Testing exception-handling 55

 public int hashCode()
 {
 return NAME.hashCode();
 }
 }
[...]

Now that TestResponse has an identity (represented by getName()) and its own
equals method, you can amend the test method:

 public void testProcessRequest()
 {
 Response response = controller.processRequest(request);
 assertNotNull("Must not return a null response", response);
 assertEquals(new TestResponse(), response);
 }

We have introduced the concept of identity in the TestResponse class for the pur-
pose of the test. However, the tests are really telling you that this should have
existed in the proper Response class. Thus you need to modify the Response inter-
face as follows:

public interface Response
{
 String getName();
}

3.3 Testing exception-handling

So far, your tests have followed the main path of execution. If the behavior of one
of your objects under test changes in an unexpected way, this type of test points to
the root of the problem. In essence, you have been writing diagnostic tests that
monitor the application’s health.

 But sometimes, bad things happen to healthy programs. Say an application
needs to connect to a database. Your diagnostics may test whether you are follow-
ing the database’s API. If you open a connection but don’t close it, a diagnostic
can note that you have failed to meet the expectation that all connections are
closed after use.

 But what if a connection is not available? Maybe the connection pool is
tapped out. Or, perhaps the database server is down. If the database server is con-
figured properly and you have all the resources you need, this may never happen.
But all resources are finite, and someday, instead of a connection, you may be

56 CHAPTER 3

Sampling JUnit

handed an exception. “Anything that can go wrong, will” (http://www.geo-
cities.com/murphylawsite/).

 If you are testing an application by hand, one way to test for this sort of thing is
to turn off the database while the application is running. Forcing actual error con-
ditions is an excellent way to test your disaster-recovery capability. Creating error
conditions is also very time-consuming. Most of us cannot afford to do this several
times a day—or even once a day. And many other error conditions are not easy to
create by hand.

 Testing the main path of execution is a good thing, and it needs to be done. But
testing exception-handling can be even more important. If the main path does not
work, your application will not work either (a condition you are likely to notice).

We are all too human, and often we tend to be sloppy when it comes to exception
cases. Even textbooks scrimp on error-handling so as to simplify the examples. As
a result, many otherwise great programs are not error-proofed before they go into
production. If properly tested, an application should not expose a screen of death
but should trap, log, and explain all errors gracefully.

3.3.1 Simulating exceptional conditions

The exceptional test case is where unit tests really shine. Unit tests can simulate
exceptional conditions as easily as normal conditions. Other types of tests, like

JUnit best practices: test anything that could possibly fail
Unit tests help ensure that your methods are keeping their API contracts with
other methods. If the contract is based solely on other components’ keeping
their contracts, then there may not be any useful behavior for you to test. But
if the method changes the parameter’s or field’s value in any way, then you
are providing unique behavior that you should test. The method is no longer
a simple go-between—it’s a filtering or munging method with its own behav-
ior that future changes could conceivably break. If a method is changed so it
is not so simple anymore, then you should add a test when that change takes
place, but not before. As the JUnit FAQ puts it, “The general philosophy is this:
if it can’t break on its own, it’s too simple to break.”

But what about things like JavaBean getters and setters? Well, that depends. If
you are coding them by hand in a text editor, then yes, you might want to test
them. It’s surprisingly easy to miscode a setter in a way that the compiler
won’t catch. But if you are using an IDE that watches for such things, then
your team might decide not to test simple JavaBean properties.

Testing exception-handling 57

functional and acceptance tests, work at the production level. Whether these tests
encounter systemic errors is often a matter of happenstance. A unit test can pro-
duce exceptional conditions on demand.

 During our original fit of inspired coding, we had the foresight to code an error
handler into the base classes. As you saw back in listing 3.2, the processRequest
method traps all exceptions and passes back a special error response instead:

 try
 {
 response = getHandler(request).process(request);
 }
 catch (Exception exception)
 {
 response = new ErrorResponse(request, exception);
 }

How do you simulate an exception to test whether your error handler works? To
test handling a normal request, you created a TestRequestHandler that returned a
TestRequest (see listing 3.5). To test the handling of error conditions, you can
create a TestExceptionHandler that throws an exception instead, as shown in
listing 3.11.

public class TestDefaultController extends TestCase
{
[...]
 private class TestExceptionHandler implements RequestHandler
 {
 public Response process(Request request) throws Exception
 {
 throw new Exception("error processing request");
 }
 }
}

This just leaves creating a test method that registers the handler and tries process-
ing a request—for example, like the one shown in listing 3.12.

public class TestDefaultController extends TestCase
{
[...]
 public void testProcessRequestAnswersErrorResponse()
 {

Listing 3.11 RequestHandler for exception cases

Listing 3.12 testProcessRequestAnswersErrorResponse, first iteration

58 CHAPTER 3

Sampling JUnit

 TestRequest request = new TestRequest();
 TestExceptionHandler handler = new TestExceptionHandler();
 controller.addHandler(request, handler); c
 Response response = controller.processRequest(request);
 assertNotNull("Must not return a null response", response);
 assertEquals(ErrorResponse.class, response.getClass());
 }
}

Create the request and handler objects.

You reuse the controller object created by the default fixture (see listing 3.8).

Test the outcome against your expectations.

But if you run this test through JUnit, you get a red bar! (See figure 3.1.) A quick
look at the message tells you two things. First, you need to use a different name
for the test request, because there is already a request named Test in the fixture.
Second, you may need to add more exception-handling to the class so that a Run-
timeException is not thrown in production.

 As to the first item, you can try using the request object in the fixture instead
of your own, but that fails with the same error. (Moral: Once you have a test, use it
to explore alternative coding strategies.) You consider changing the fixture. If you
remove from the fixture the code that registers a default TestRequest and Test-
Handler, you introduce duplication into the other test methods. Not good. Better
to fix the TestRequest so it can be instantiated under different names. Listing 3.13
is the refactored result (changes from listing 3.11 and 3.12 are in bold).

B

D

b

C

D

Figure 3.1 Oops, red bar—time to add exception-handling!

Testing exception-handling 59

public class TestDefaultController extends TestCase
{
[...]
 private class TestRequest implements Request
 {
 private static final String DEFAULT_NAME = "Test"; B
 private String name;

 public TestRequest(String name) C
 {
 this.name = name;
 }

 public TestRequest() D
 {
 this(DEFAULT_NAME);
 }

 public String getName()
 {
 return this.name;
 }
 }
[...]
 public void testProcessRequestAnswersErrorResponse()
 {
 TestRequest request = new TestRequest("testError"); E
 TestExceptionHandler handler = new TestExceptionHandler();
 controller.addHandler(request, handler);
 Response response = controller.processRequest(request);
 assertNotNull("Must not return a null response", response);
 assertEquals(ErrorResponse.class, response.getClass());
 }
}

Introduce a member field to hold the request’s name and set it to the previous
version’s default.

Introduce a new constructor that lets you pass a name to the request, to override
the default.

Here you introduce an empty constructor, so existing calls will continue to work.

Call the new constructor instead, so the exceptional request object does not con-
flict with the fixture.

Of course, if you added another test method that also used the exception handler,
you might move its instantiation to the setUp method, to eliminate duplication.

Listing 3.13 testProcessRequestExceptionInHandler, fixed and refactored

b

C

D

E

60 CHAPTER 3

Sampling JUnit

But because the duplication hasn’t happened yet, let’s resist the urge to anticipate
change, and let it stand. (“Don’t anticipate, navigator!” the captain barked.)

3.3.2 Testing for exceptions

During testing, you found that addHandler throws an undocumented RuntimeEx-
ception if you try to register a request with a duplicate name. (By undocumented,
we mean that it doesn’t appear in the signature.) Looking at the code, you see
that getHandler throws a RuntimeException if the request hasn’t been registered.

 Whether you should throw undocumented RuntimeException exceptions is a
larger design issue. (You can make that a to-do for later study.) For now, let’s write
some tests that prove the methods will behave as designed.

 Listing 3.14 shows two test methods that prove addHandler and getHandler will
throw runtime exceptions when expected.

public class TestDefaultController extends TestCase
{
[...]
 public void testGetHandlerNotDefined() B
 {
 TestRequest request = new TestRequest("testNotDefined"); C
 try
 {
 controller.getHandler(request); D
 fail("An exception should be raised if the requested "
 + "handler has not been registered");
 }
 catch (RuntimeException expected) F
 {
 assertTrue(true); G
 }
 }

 public void testAddRequestDuplicateName() H

JUnit best practices: let the test improve the code
Writing unit tests often helps you write better code. The reason is simple: A
test case is a user of your code. And, it is only when using code that you find
its shortcomings. Thus, do not hesitate to listen to your tests and refactor
your code so that it is easier to use. The practice of Test-Driven Development
(TDD) relies on this principle. By writing the tests first, you develop your
classes from the point of view of a user of your code. See chapter 4 for more
about TDD.

Listing 3.14 Testing methods that throw an exception

E

Testing exception-handling 61

 {
 TestRequest request = new TestRequest();
 TestHandler handler = new TestHandler();
 try
 {
 controller.addHandler(request, handler); I
 fail("An exception should be raised if the default "
 + "TestRequest has already been registered");
 }
 catch (RuntimeException expected)
 {
 assertTrue(true);
 }
 }
}

Give the test an obvious name. Because this test represents an exceptional case,
append NotDefined to the standard testGetHandler prefix. Doing so keeps all the
getHandler tests together and documents the purpose of each derivation.

You create the request object for the test, also giving it an obvious name.

Pass the (unregistered) request to the default getHandler method.

Introduce the fail method, inherited from the TestCase superclass. If a test ever
reaches a fail statement, the test (unsurprisingly) will fail, just as if an assertion
had failed (essentially, assertTrue(false)). If the getHandler statement throws an
exception, as you expect it will, the fail statement will not be reached.

Execution proceeds to the catch statement, and the test is deemed a success.

You clearly state that this is the expected success condition. Although this line is
not necessary (because it always evaluates to true), we have found that it makes
the test easier to read. For the same reason, at F you name the exception vari-
able expected.

In the second test, you again use a descriptive name. (Also note that you do not
combine tests, but write a separate test for each case.)

You follow the same pattern as the first method:

1 Insert a statement that should throw an exception.

2 Follow it with a fail statement (in case the exception isn’t thrown).

3 Catch the exception you expect, naming the exception expected so the
reader can easily guess that the exception is expected!

4 Proceed normally.

b

C

D

E

F

G

H

I

62 CHAPTER 3

Sampling JUnit

The controller class is by no means done, but you have a respectable first iteration
and a test suite proving that it works. Now you can commit the controller package,
along with its tests, to the project’s code repository and move on to the next task
on your list. 5 6

3.4 Setting up a project for testing

Because this chapter covers testing a fairly realistic component, let’s finish up by
looking at how you set up the controller package as part of a larger project. In
chapter 1, you kept all the Java domain code and test code in the same folder.
They were introductory tests on an example class, so this approach seemed sim-
plest for everyone. In this chapter, you’ve begun to build real classes with real

JUnit best practices: make exception tests easy to read
Name the exception variable in the catch block expected. Doing so clearly
tells readers that an exception is expected to make the test pass. It also helps
to add an assertTrue(true) statement in the catch block to stress even fur-
ther that this is the correct path.

JUnit best practices: let the test improve the code
An easy way to identify exceptional paths is to examine the different branches
in the code you’re testing. By branches, we mean the outcome of if clauses,
switch statements, and try/catch blocks. When you start following these
branches, sometimes you may find that testing each alternative is painful. If
code is difficult to test, it is usually just as difficult to use. When testing indi-
cates a poor design (called a code smell, http://c2.com/cgi/wiki?CodeSmell),
you should stop and refactor the domain code.

In the case of too many branches, the solution is usually to split a larger
method into several smaller methods.5 Or, you may need to modify the class
hierarchy to better represent the problem domain.6 Other situations would
call for different refactorings.

A test is your code’s first “customer,” and, as the maxim goes, “the customer is
always right.”

5 Fowler, Refactoring, “Extract Method.”
6 Ibid., “Extract Hierarchy.”

Setting up a project for testing 63

tests, as you would for one of your own projects. Accordingly, you’ve set up the
source code repository just like you would for a real project.

 So far, you have only one test case. Mixing this in with the domain classes
would not have been a big deal. But, experience tells us that soon you will have at
least as many test classes as you have domain classes. Placing all of them in the
same directory will begin to create file-management issues. It will become difficult
to find the class you want to edit next.

 Meanwhile, you want the test classes to be able to unit-test protected methods,
so you want to keep everything in the same Java package. The solution? One pack-
age, two folders. Figure 3.2 shows a snapshot of how the directory structure looks
in a popular integrated development environment (IDE).

 This is the code for the “sampling” chapter, so we used sampling for the top-
level project directory name (see appendix A). The IDE shows it as junitbook-
sampling, because this is how we named the project. Under the sampling direc-
tory we created separate java and test folders. Under each of these, the actual
package structure begins.

 In this case, all of the code falls under the junitbook.sampling package. The
working interfaces and classes go under src/java/junitbook/sampling; the classes
we write for testing only go under the src/test/junitbook/sampling directory.

 Beyond eliminating clutter, a “separate but equal” directory structure yields
several other benefits. Right now, the only test class has the convenient Test pre-
fix. Later you may need other helper classes to create more sophisticated tests.

Figure 3.2
A “separate but equal” filing system keeps tests
in the same package but in different directories.

64 CHAPTER 3

Sampling JUnit

These might include stubs, mock objects, and other helpers. It may not be conve-
nient to prefix all of these classes with Test, and it becomes harder to tell the
domain classes from the test classes.

 Using a separate test folder also makes it easy to deliver a runtime jar with only
the domain classes. And, it simplifies running all the tests automatically.

3.5 Summary

In this chapter, we created a test case for a simple but complete application con-
troller. Rather than test a single component, the test case examined how several
components worked together. We started with a bootstrap test case that could be
used with any class. Then we added new tests to TestCase one by one until all of
the original components were under test.

 We expect this package to grow, so we created a second source code directory
for the test classes. Because the test and domain source directories are part of the
same package, we can still test protected and package default members.

 Knowing that even the best-laid plans go astray, we were careful to test the
exception- and error-handling as thoroughly as the main path of execution. Along
the way, we let the tests help us improve our initial design. At the end, we had a
good start on the Controller class, and the tests to prove it!

 In the next chapter, we will put unit testing in perspective with other types of
tests that you need to perform to fully test your applications. We will also talk
about how unit testing fits in the development life cycle.

JUnit best practices: same package, separate directories
Put test classes in the same package as the class they test but in a parallel
directory structure. You need tests in the same package to allow access to pro-
tected methods. You want tests in a separate directory to simplify file manage-
ment and to clearly delineate test and domain classes.

Vincent Massol with Ted Husted

D
evelopers in the know are switching to a new testing strategy—
unit testing—in which coding is interleaved with testing. This
powerful approach results in better-designed software with

fewer defects and faster delivery cycles. Unit testing is reputed to
give developers a kind of “high”—whenever they take a new
programming step, their confidence is boosted by the knowledge
that every previous step has been confirmed to be correct.

JUnit in Action will get you coding the new way in a hurry. As
inevitable errors are continually introduced into your code, you'll
want to spot them as quickly as they arise. You can do this using unit
tests, and using them often. Rich in real-life examples, this book is
a discussion of practical testing techniques by a recognized expert. It
shows you how to write automated tests, the advantages of testing a
code segment in isolation from the rest of your code, and how to
decide when an integration test is needed. It provides a valuable—
and unique—discussion of how to test complete J2EE applications.

What’s Inside

■ Testing in isolation with mock objects
■ In-container testing with Cactus
■ Automated builds with Ant and Maven
■ Testing from within Eclipse
■ Unit testing

◆ Java apps
◆ Servlets
◆ JSP
◆ Taglibs

◆ Filters
◆ EJB
◆ DB apps

Vincent Massol is the creator of the Jakarta Cactus testing framework
and an active member of the Maven and MockObjects development
teams. He is CTO of Pivolis, a specialist in agile offshore software
development. Vince lives in the City of Light—Paris, France.

M A N N I N G $39.95 US/$59.95 Canada

www.manning.com/massol

Author responds to reader questions

Ebook edition available

AUTHOR
✔

ONLINE

✔

,!7IB9D0-bbajjb!:p;n;T;T;p
ISBN 1-930110-99-5

JAVA

JUnit IN ACTION
“... captures best practices for
effective JUnit and in particular
J2EE testing. Don’t unit test your
J2EE applications without it!”

—Erich Gamma, IBM OTI Labs
Co-author of JUnit

“Outstanding job... It rocks—
a joy to read! I recommend it
wholeheartedly.”

—Erik Hatcher, co-author of
Java Development with Ant

“Brings the mass of information
out there under one coherent
umbrella.”

—J. B. Rainsberger, leader in
the JUnit community, author

“Doesn’t shy from tough cases ...
Vince really stepped up, rather
than side-stepping the real
problems people face.”

—Scott Stirling, BEA

The keep the bar green frog logo is a trademark of
Object Mentor, Inc. in the United States and other countries.

