Chapter

Service-Oriented Architecture

As we explored in the previous chapter, Web services promote an environment
for systems that is loosely coupled and interoperable. Many of the concepts for
Web services come from a conceptual architecture called service-oriented archi-
tecture (SOA). SOA configures entities (services, registries, contracts, and prox-
ies) to maximize loose coupling and reuse. This chapter describes these entities
and their configuration in an abstract way. Although you will probably use Web
services to implement your service-oriented architecture, this chapter explains
SOA without much mention of a particular implementation technology. This is
done so that in subsequent chapters, you can see the areas in which Web services
achieve some aspects of a true SOA and other areas in which Web services fall
short. Although Web services are a good start toward service-oriented archi-
tecture, this chapter will discuss what a fully implemented SOA entails. We will
examine the following issues:

What is SOA? What are its entities?
What are the properties of SOA?

How do I design an interface for a service?

Before we analyze the details of SOA, it is important to first explore the con-
cept of software architecture, which consists of the software’s coarse-grained
structures. Software architecture describes the system’s components and the way
they interact at a high level.

These components are not necessarily entity beans or distributed objects.
They are abstract modules of software deployed as a unit onto a server with other
components. The interactions between components are called connectors. The
configuration of components and connectors describes the way a system is struc-
tured and behaves, as shown in Figure 2.1. Rather than creating a formal defini-
tion for software architecture in this chapter, we will adopt this classic definition:
“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally

35



36 Chapter 2 Service-Oriented Architecture

Figure 2.1
Software
architecture
describes a
system’s com-
ponents and
connectors.

Connector
Component Component

visible properties of those components, and the relationships among them.”
(Bass, Clements, and Kazman 1997)

Service-oriented architecture is a special kind of software architecture that has
several unique characteristics. It is important for service designers and developers
to understand the concepts of SOA, so that they can make the most effective use
of Web services in their environment.

SOA is a relatively new term, but the term “service” as it relates to a software
service has been around since at least the early 1990s, when it was used in Tuxedo
to describe “services” and “service processes” (Herzum 2002). Sun defined SOA
more rigorously in the late 1990s to describe Jini, a lightweight environment for
dynamically discovering and using services on a network. The technology is used
mostly in reference to allowing “network plug and play” for devices. It allows de-
vices such as printers to dynamically connect to and download drivers from the
network and register their services as being available.

The goal in developing Jini was to create a dynamically networked environ-
ment for devices, services, and applications. In this environment, services and
devices could be added to and removed from the network dynamically (Sun
Microsystems, Jini Network Technology, www.sun.com/jini). There is more interest
lately in the software development community about the concepts behind SOA
because of the arrival of Web services.

Figure 2.2 shows that other technologies can be used to implement service-
oriented architecture. Web services are simply one set of technologies that can be
used to implement it successfully.

The most important aspect of service-oriented architecture is that it separates
the service’s implementation from its interface. In other words, it separates the
“what” from the “how.” Service consumers view a service simply as an endpoint
that supports a particular request format or contract. Service consumers are not
concerned with how the service goes about executing their requests; they expect
only that it will.

Consumers also expect that their interaction with the service will follow a
contract, an agreed-upon interaction between two parties. The way the service ex-
ecutes tasks given to it by service consumers is irrelevant. The service might fulfill
the request by executing a servlet, a mainframe application, or a Visual Basic ap-
plication. The only requirement is that the service send the response back to the
consumer in the agreed-upon format.



SOA Entities 37

SOA Entities

Figure 2.2
Web services
are one set of
technologies
for implement-
ing service-
oriented
architecture.

Figure 2.3

The “find-bind-
execute”
paradigm.

The “find, bind, and execute” paradigm as shown in Figure 2.3 (Talking Blocks
2001) allows the consumer of a service to ask a third-party registry for the service
that matches its criteria. If the registry has such a service, it gives the consumer a
contract and an endpoint address for the service. SOA consists of the following
six entities configured together to support the find, bind, and execute paradigm.

Software Architecture

Service-Oriented Architecture

Implements
Web Services Jini
Service
Consumer
A
"

@

>

o

Q

3 .

= Contract Registry

x

[0}

o]

<

(0]

et
ge%‘s
Y

Service

Provider




38

Chapter 2 Service-Oriented Architecture

Service Consumer

The service consumer is an application, service, or some other type of software
module that requires a service. It is the entity that initiates the locating of the ser-
vice in the registry, binding to the service over a transport, and executing the ser-
vice function. The service consumer executes the service by sending it a request
formatted according to the contract.

Service Provider

The service provider is the service, the network-addressable entity that accepts
and executes requests from consumers. It can be a mainframe system, a compo-
nent, or some other type of software system that executes the service request. The
service provider publishes its contract in the registry for access by service con-
sumers. Chapter 3 describes the issues involved with creating a service provider
by using component-based development techniques.

Service Registry

A service registry is a network-based directory that contains available services. It
is an entity that accepts and stores contracts from service providers and provides
those contracts to interested service consumers.

Service Contract

A contract is a specification of the way a consumer of a service will interact with
the provider of the service. It specifies the format of the request and response
from the service. A service contract may require a set of preconditions and
postconditions. The preconditions and postconditions specify the state that the
service must be in to execute a particular function. The contract may also specify
quality of service (QoS) levels. QoS levels are specifications for the nonfunc-
tional aspects of the service. For instance, a quality of service attribute is the
amount of time it takes to execute a service method.

Service Proxy

The service provider supplies a service proxy to the service consumer. The service
consumer executes the request by calling an API function on the proxy. The ser-



Figure 2.4
A service

proxy.

SOA Entities 39

vice proxy, shown in Figure 2.4, finds a contract and a reference to the service
provider in the registry. It then formats the request message and executes the re-
quest on behalf of the consumer. The service proxy is a convenience entity for
the service consumer. It is not required; the service consumer developer could
write the necessary software for accessing the service directly.

The service proxy can enhance performance by caching remote references
and data. When a proxy caches a remote reference, subsequent service calls will
not require additional registry calls. By storing service contracts locally, the con-
sumer reduces the number of network hops required to execute the service.

In addition, proxies can improve performance by eliminating network calls
altogether by performing some functions locally. For service methods that do
not require service data, the entire method can be implemented locally in the
proxy. Methods such as currency conversion, tip calculators, and so on, can be
implemented entirely in the proxy. If a method requires some small amount of
service data, the proxy could download the small amount of data once and use it
for subsequent method calls. The fact that the method is executed in the proxy
rather than being sent to the service for execution is transparent to the service
consumer. However, when using this technique it is important that the proxy
support only methods the service itself provides. The proxy design pattern
(Gamma et al. 2002) states that the proxy is simply a local reference to a remote
object. If the proxy in any way changes the interface of the remote service, then
technically, it is no longer a proxy.

A service provider will provide proxies for many different environments. A
service proxy is written in the native language of the service consumer. For in-
stance, a service provider may distribute proxies for Java, Visual Basic, and
Delphi if those are the most likely platforms for service consumers. Although the
service proxy is not required, it can greatly improve both convenience and per-
formance for service consumers.

Registry

O
Service Consumer <

Implementation Service \4 Bind and Execute

Code Proxy

Service Provider

Y




40

Chapter 2 Service-Oriented Architecture

Service Lease

The service lease, which the registry grants the service consumer, specifies the
amount of time the contract is valid: only from the time the consumer requests it
from the registry to the time specified by the lease (Sun Microsystems, Jini Tech-
nology Core Specification, 2001). When the lease runs out, the consumer must re-
quest a new lease from the registry.

The lease is necessary for services that need to maintain state information
about the binding between the consumer and provider. The lease defines the
time for which the state may be maintained. It also further reduces the coupling
between the service consumer and the service provider, by limiting the amount
of time consumers and providers may be bound. Without the notion of a lease, a
consumer could bind to a service forever and never rebind to its contract again.
This would have the effect of a much tighter coupling between the service con-
sumer and the service provider.

With a service lease, if a producer needs to somehow change its implementa-
tion, it may do so when the leases held by the services consumers expire. The im-
plementation can change without affecting the execution of the service consum-
ers, because those consumers must request a new contract and lease. When the
new contract and lease are obtained, they are not guaranteed to be identical to
the previous ones. They might have changed, and it is the service consumer’s re-
sponsibility to understand and handle this change. >

SOA Characteristics

Each system’s software architecture reflects the different principles and set of
tradeoffs used by the designers. Service-oriented software architecture has these

While Web services provide support for many of the concepts of SOA,
they do not implement all of them. They do not currently support the no-
tion of a contract lease. Also, no official specification provides QoS levels
for a service. An organization cannot implement a complete service-ori-
ented architecture given these limitations with Web services. In addition,
service consumers can execute Web services directly if they know the ser-
vice’s address and contract. They do not have to go to the registry to ob-
tain this information. Today, in fact, most organizations implement Web
services without a registry. Consequently, the extent to which an organi-
zation implements an SOA with Web service varies greatly.



SOA Characteristics 11

characteristics Bieber and Carpenter 2001, Stevens, Service-Oriented, 2002, Sun
Microsystems, Jini Technology Architectural Overview 2001):

e Services are discoverable and dynamically bound.
® Services are self-contained and modular.

® Services stress interoperability.

® Services are loosely coupled.

® Services have a network-addressable interface.

® Services have coarse-grained interfaces.

® Services are location-transparent.

® Services are composable.

® Service-oriented architecture supports self-healing.

Discoverable and Dynamically Bound

SOA supports the concept of service discovery. A service consumer that needs a
service discovers what service to use based on a set of criteria at runtime. The ser-
vice consumer asks a registry for a service that fulfills its need. The best way to ex-
plain dynamic binding and discover is to use an example. For example, a banking
application (consumer) asks a registry for all services that perform credit-card val-
idation. The registry returns all entries that support this. The entries also contain
information about the service, including transaction fees. The consumer selects
the service (provider) from the list based on the lowest transaction fee.

Using a pointer from the registry entry, the consumer then binds to the pro-
vider of the credit card service. The description of the service consists of all the ar-
guments necessary to execute the service. The consumer formats a request mes-
sage with the data, based on the description provided by the directory pointer.

The consumer then binds the message to a transport type that the service ex-
pects and sends the service the request message over the transport. The service
provider executes the credit-card validation and returns a message, whose format
is also specified by the service description. The only dependency between pro-
ducer and consumer is the contract, which the third-party registry provides. The
dependency is a runtime dependency and not a compile-time dependency. All
the information the consumer needs about the service is obtained and used at
runtime.

This example shows how consumers execute services dynamically. Clients do
not need any compile-time information about the service. The service interfaces



42

Chapter 2 Service-Oriented Architecture

are discovered dynamically, and messages are constructed dynamically. The re-
moval of compile-time dependencies improves maintainability, because con-
sumers do not need a new interface binding every time the interface changes.

This method of service execution is powerful. The service consumer does not
know the format of the request message or response message or the location of
the service until the service is actually needed. If the transaction fees for the
credit-card validation services changed from minute to minute, consumers could
still ensure that they received the best price.

Self-Contained and Modular

Services are self-contained and modular. One of the most important aspects of
SOA is the concept of modularity. A service supports a set of interfaces. These
interfaces should be cohesive, meaning that they should all relate to each other in
the context of a module. The principles of modularity should be adhered to
in designing the services that support an application so that services can easily be
aggregated into an application with a few well-known dependencies. Since this is
such an important concept when creating services, we will explain some of the
principles of modularity and, in particular, how they apply to the creation of
services. Bertrand Meyer (Meyer 1997) outlined the following five criteria for
determining whether a component is sufficiently modular. These criteria apply
equally well when determining whether a service is sufficiently modular.

Modular Decomposability

The modular decomposability of a service refers to the breaking of an application
into many smaller modules. Each module is responsible for a single, distinct
function within an application. This is sometimes referred to as “top-down design,”
in which the bigger problems are iteratively decomposed into smaller problem:s.
For instance, a banking application is broken down into a savings account ser-
vice, checking account service, and customer service. The main goal of decom-
posability is reusability. The goal for service design is to identify the smallest unit
of software that can be reused in different contexts. For instance, a customer call-
center application may need only the customer’s telephone number and thus
need access only the customer service to retrieve it.

Modular Composability

The modular composability of a service refers to the production of software services
that may be freely combined as a whole with other services to produce new sys-



SOA Characteristics 43

tems. Service designers should create services sufficiently independent to reuse
in entirely different applications from the ones for which they were originally
intended. This is sometimes referred to as bottom-up design. Sometimes, the com-
posability and decomposability approaches to service design can create two dif-
ferent designs. The bottom-up approach is more focused on the application
functions. The top-down design tends to be more focused on the business prob-
lem. Itis important to use both methods to find the right interface for a service.

The typical design process starts as a decomposition exercise. When the de-
signers get to a point at which they have exhausted the top-down design, per-
forming a bottom-up analysis should validate the design. The bottom-up analy-
sis starts by defining the significant scenarios that the modules need to support.
For instance, in a banking application, a scenario is “deposit money into check-
ing account.” The significant scenarios will cover the important functional
aspects of the modular design.

Once designers define the scenarios, they create sequence diagrams to illus-
trate the messages that flow between modules to satisfy the scenarios. Once the
scenarios are satisfied, the designer can perform additional iterations of bottom-
up and top-down analysis to tune the design of the modules.

Modular Understandability

The modular understandability of a service is the ability of a person to understand
the function of the service without having any knowledge of other services. For
instance, if a banking application implements a checking account service that
does not implement a deposit function but instead relies on the client to use a
separate deposit service, this would detract from the service’s modular under-
standability. The modular understandability of a service can also be limited if the
service supports more than one distinct business concept. For example, a service
called CustomerCheckingAccount that mixes the semantics of both a customer ser-
vice and a checking account service also limits modular understandability. The
modular understandability is especially important for services, because any un-
known consumer can find and use a service at any time. If the service is not
understandable from a functional perspective, the person deciding whether to
use the service will have a difficult time making a decision.

Modular Continuity

The modular continuity of a service refers to the impact of a change in one service
requiring a change in other services or in the consumers of the service. An inter-
face that does not sufficiently hide the implementation details of the service
creates a domino effect when changes are needed. It will require changes to other



44

Chapter 2 Service-Oriented Architecture

services and applications that use the service when the internal implementation
of the service changes. Every service must hide information about its internal de-
sign. A service that exposes this information will limit its modular continuity, be-
cause an internal design decision is exposed through the interface.

Modular Protection

The modular protection of a service is sufficient if an abnormal condition in the ser-
vice does not cascade to other services or consumers. For instance, if an error in
the checking account service causes invalid data to be stored on a database, this
could impact the operation of other services using the same tables for their data.
Faults in the operation of a service must not impact the operation of a client or
other service or the state of their internal data or otherwise break the contract
with service consumers. Therefore, we must ensure that faults do not cascade
from the service to other services or consumers.

In addition to the above criteria for modularity, two rules ensure that a ser-
vice’s modularity and independence are not compromised: Direct mapping and
contracts and information hiding.

Direct Mapping

A service should map to a distinct problem domain function. During the process
of understanding the problem domain and creating a solution, the designer
should create boundaries around service interfaces that map to a distinct area of
the problem domain. This is important so that the designer creates a self-con-
tained and independent module. For instance, interfaces that deposit, withdraw,
and transfer from a checking account should map to the checking account ser-
vice. This sounds simplistic, but it is easy to accidentally pollute a service’s inter-
face with functions that

e Logically belong in another existing service
® Belong in a new service
® Span multiple services and require a new composite service

® Are really internal knowledge that should not be exposed through an inter-
face

To directly map a service’s interfaces to a distinct business concept in the
problem domain, the service designer needs a good understanding of the prob-
lem domain. Creating a conceptual service model provides this understanding.



Figure 2.5
A conceptual
service model.

SOA Characteristics 45

Conceptual Service Model The conceptual service model consists of a model of
the problem domain. Techniques for defining module interfaces assume that the
problem domain is known a priori. In other words, the application’s problem
domain is known when the designers and developers create or enhance an appli-
cation. With service-based development, this is not always the case. Services may
be assembled into applications in the future that the service designer had no
knowledge of when the service was designed. Therefore, designers must estimate
service interfaces based on the service’s expected use.

The conceptual model of the business, sometimes referred to as the business
architecture (Fowler 1997), helps drive the expected use of the services. A concep-
tual model is one created without regard for any application or technology. It
typically consists of a structural model derived from a set of use cases that illus-
trate how the business works. For instance, a bank manages checking accounts,
savings accounts, and customer information. A conceptual service model for this
domain might look similar to Figure 2.5, although it would be illustrated in much
more detail.

This logical model of the business provides the basis for creating and manag-
ing service interfaces. Each entity in the logical model is either a stateful entity or

Customer Manager

-Accounts

+Add Customer (in Customerinformation)

1 | +Delete Customer (in CustomerNumber)
* +Edit Customer (in CustomerNumber, in Customerinformation)
+Get Customer (in CustomerNumber)

Account 1

“Account Number N -Account Holders

-Amount Address

+Debit (in Money) | Customer T —

+Crebit (in Money) -First Name 1 % | -Street Name
-Amount City

T -Social Security Number | _aqqresses | -State
-Daytime Telephone -Zip Code
| | -Country
Savings Account Checking Account
+Apply Interest (in InterestRate) +Clear Check (in Amount)
1 -Accounts

Account Manager

+Add Account (in Accountinformation)

+Delete Account (in AccountNumber)

+Edit Account (in AccountNumber, in Accountinformation)
+Get Account (in AccountNumber)

f

Savings Account Manager Checking Account Manager

+Apply Interest (in AccountNumber, in Rate) +Clear Check (in AccountNumber, in Amount)




46

Chapter 2 Service-Oriented Architecture

a stateless entity. The manager classes are stateless entities, and the other classes
are stateful entities. For example, the account entity contains attributes that con-
tain the state of a single account; namely, account number and amount. The sav-
ings account, checking account, customer, and address entities also maintain
state and are also stateful entities. These entities can be translated into software as
entity beans and/or rows in databases. Each stateful entity also has a key that
uniquely identifies it within the system.

The entity classes are not directly accessible to the service consumer in SOA.
However, in component-based systems, a component consumer accesses an en-
tity component by obtaining a handle to the component. The handle maintains
a stateful connection to an entity that has a unique key to identify it. In service-
oriented architecture, service consumers cannot access these entities. The service
consumer accesses them indirectly by going through the manager interfaces. In
SOA, these manager interfaces are implemented as service interfaces.

The manager classes in Figure 2.5 are stateless classes that manage entities of a
particular class. They are the classes that perform create, read, update, and delete
(CRUD) operations on the entities they manage. Because the manager classes do
not represent a single entity but manage multiple entities, the interfaces for the
manager classes require that a unique key be passed in. The unique key identifies
the entity for which the action is to be performed. For instance, the ApplyInterest
method of SavingsAccount Manager requires the rate as well as the account num-
ber to identify the entity for executing Applylnterest behavior. The Applylnterest
method on the SavingsAccount entity does not need a unique key, because it rep-
resents a single savings account instance.

The manager classes comprise the basis of the design of the service layer inter-
faces. The manager interfaces may be converted directly into service interfaces,
and the stateful entities may be converted directly into persistent state. The per-
sistent state may be an Enterprise JavaBean, a database row, or both. Stateful enti-
ties are not exposed outside the service. The service interface is a stateless inter-
face. Services manipulate stateful entities on behalf of consumers, based on the
method consumers call when requesting an operation to perform. Consumers
pass in the unique key of the entity they are manipulating and the data for the op-
eration. The service locates the entity that matches the unique key and performs
the operation on it with the data.

The integrity of the service layer interfaces will be maintained only if the in-
terfaces map directly to the logical model for the business. Because different ap-
plications will use the same services, the logical model must cross application
boundaries. Developers should add functionality to services as new applications
need those functions. The logical model provides the city plan for developing
the service layer. As developers build applications, the software will support
more of the logical model’s functionality. It is difficult to maintain services’ in-



SOA Characteristics 47

tegrity over time, because new applications need to interact with services in dif-
ferent ways. The more closely this conceptual model maps to the overall struc-
ture of the business it supports, the longer-lived the service layer will be.

Direct mapping is only the first rule we need to implement for modularity.
Contracts and information hiding is the second.

Contracts and Information Hiding

An interface contract is a published agreement between a service provider and a
service consumer. The contract specifies not only the arguments and return val-
ues a service supplies but also the service’s preconditions and postconditions.
The preconditions are those that must be satisfied before calling the service, to al-
low the service to function properly. For instance, consider a credit-card valida-
tion service that is a two-step process. In the first step, the application sends the
account number and amount information to the service. The service responds
with an OK. However, for the transaction to go through, the consumer must
send a confirmation message to the service. The precondition of the confirma-
tion function is that the information for the confirmation has previously been
sent.

The postcondition is the system’s state after a function has been executed.
The postcondition of the initial submission of information is that the informa-
tion has been stored for a subsequent commit request.

Parnas and Clements best describe the principles of information hiding:

Our module structure is based on the decomposition criterion known as informa-
tion hiding [IH]. According to this principle, system details that are likely to
change independently should be the secrets of separate modules; the only assump-
tions that should appear in the interfaces between modules are those that are con-
sidered unlikely to change. Each data structure is used in only one module; one or
more programs within the module may directly access it. Any other program that
requires information stored in a module’s data structures must obtain it by call-
ing access programs belonging to that module.

(Parnas and Clements 1984)

This statement assumes that the software executes in a single machine. With
service-oriented architecture, we take this principle a little further. The service
should never expose its internal data structures. Even the smallest amount of
internal information known outside the service will cause unnecessary depend-
encies between the service and its consumers. Although the information stored
in the data structures is necessarily exposed, that information must be trans-



48

Chapter 2 Service-Oriented Architecture

formed from the internal storage structure into an external structure. In other
words, the internal data semantics must be mapped into the external semantics
of an independent contract. The contract depends only on the interface’s prob-
lem domain, not on any implementation details.

Exposing internal implementation details is easy to do by creating an inter-
face design with arguments that map to the service’s implementation aspects
rather than to its functional aspects. For instance, consider a credit-card valida-
tion service. The service requires that a credit-card validation request contain the
account number, amount, and a special system code. The service uses the system
code to determine in which internal database to find the account. The special sys-
tem code is exposed through the interface, and it exposes information about the
internal structure of the service.

There is no functional reason to expose the system code outside the service,
because the service should identify the database itself based on the functional
data passed in to it. This information is necessary strictly for implementation.
Service maintainability is severely affected when designers implement designs
such as this. If the internal structure of the service changes, clients of this service
are likely to require changes also. If a third internal system is added, for example,
clients will have to be updated, even though the interface contract has not
changed. This design is generally not consistent with the principles of informa-
tion hiding and modular design.

The principle of separating the service’s interface from its implementation is
relevant to the topic of modular software design. It is often thought that service-
oriented architecture enforcesthis principle, which is not strictly true. Service-
oriented architecture promotes the idea of separation, but as the previous exam-
ple illustrates, implementation details can pollute a service’s interface.

These techniques and concepts help create modular services. Services also
stress interoperability, or the ability of different types of systems to use a service.

Interoperability

Service-oriented architecture stresses interoperability, the ability of systems using
different platforms and languages to communicate with each other. Each service
provides an interface that can be invoked through a connector type. An
interoperable connector consists of a protocol and a data format that each of the
potential clients of the service understands. Interoperability is achieved by sup-
porting the protocol and data formats of the service’s current and potential clients.
Techniques for supporting standard protocol and data formats consist of
mapping each platform’s characteristics and language to a mediating specifica-
tion. The mediating specification maps between the formats of the interoperable



SOA Characteristics 49

data format to the platform-specific data formats. Sometimes this requires map-
ping character sets such as ASCII to EBCDIC as well as mapping data types. For
instance, Web services is a mediating specification for communicating between
systems. JAX-RPC and JAXM map Java data types to SOAP. Other platforms
that support Web services mediate between Web service specifications and their
own internal specifications for character sets and data types.

Loose Coupling

Coupling refers to the number of dependencies between modules. There are two
types of coupling: loose and tight. Loosely coupled modules have a few well-
known dependencies. Tightly coupled modules have many unknown dependen-
cies. Every software architecture strives to achieve loose coupling between mod-
ules. Service-oriented architecture promotes loose coupling between service con-
sumers and service providers and the idea of a few well-known dependencies
between consumers and providers.

A system’s degree of coupling directly affects its modifiability. The more
tightly coupled a system is, the more a change in a service will require changes in
service consumers. Coupling is increased when service consumers require a large
amount of information about the service provider to use the service. In other
words, if a service consumer knows the location and detailed data format for a
service provider, the consumer and provider are more tightly coupled. If the con-
sumer of the service does not need detailed knowledge of the service before in-
voking it, the consumer and provider are more loosely coupled.

SOA accomplishes loose coupling through the use of contracts and bindings.
A consumer asks a third-party registry for information about the type of service it
wishes to use. The registry returns all the services it has available that match the
consumer’s criteria. The consumer chooses which service to use, binds to it over a
transport, and executes the method on it, based on the description of the service
provided by the registry. The consumer does not depend directly on the service’s
implementation but only on the contract the service supports. Since a service
may be both a consumer and a provider of some services, the dependency on
only the contract enforces the notion of loose coupling in service-oriented archi-
tecture.

Although coupling between service consumers and service producers is
loose, implementation of the service can be tightly coupled with implementa-
tion of other services. For instance, if a set of services shares a framework, a data-
base, or otherwise has information about each other’s implementation, they may
be tightly coupled. In many instances, coupling cannot be avoided, and it some-
times contradicts the goal of code reusability.



50

Chapter 2 Service-Oriented Architecture

Network-Addressable Interface

The role of the network is central to the concept of SOA. A service must have a
network-addressable interface. A consumer on a network must be able to invoke
aservice across the network. The network allows services to be reused by any con-
sumer at any time. The ability for an application to assemble a set of reusable ser-
vices on different machines is possible only if the services support a network
interface. The network also allows the service to be location-independent, mean-
ing that its physical location is irrelevant.

It is possible to access a service through a local interface and not through the
network, but only if both the consumer and service provider are on the same ma-
chine. This is done mainly to enhance performance. Although a service may be
configured for access from a consumer on the same machine, the service must
also simultaneously support a request from across the network.

Because of this requirement, service interface design is focused to a large
extent on performance. In a pure object-based system design, data and behavior
are encapsulated into objects. This design works well for objects in the same
machine. However, when those objects are distributed across a network, perfor-
mance degrades quickly because of the “chatter” that occurs between fine-
grained objects. Because we can assume that services will be distributed, it is pos-
sible to design service interfaces to be more coarse-grained and, as a result,
enhance network performance.

Coarse-Grained Interfaces

The concept of granularity applies to services in two ways. First, it is applied to
the scope of the domain the entire service implements. Second, it is applied
to the scope of the domain that each method within the interface implements.

The levels of granularity are relative to each other. For instance, if a service im-
plements all the functions of a banking system, then we consider it coarse-
grained. If it supports just credit-card validation, we consider it fine-grained. In
addition, if a method for inquiring about a customer returns all customer infor-
mation, including address, this method would be coarser-grained than a method
that does not return the customer’s address.

The appropriate level of granularity for a service and its methods is relatively
coarse. A service generally supports a single distinct business concept or process.
[t contains software that implements the business concept so that it can be reused
in multiple large, distributed systems.

Before components and services, distributed systems were centered on the
idea of distributed objects ( Object Management Group 2002). Distributed object-



Figure 2.6
Fine-grained
distributed
objects.

SOA Characteristics 51

based systems consist of many fine-grained networked objects communicating
with each other across a network. Each object has dependencies with many other
objects in the system. Since accessing an object requires a network hop and thus
does not perform well, the design principles for distributed object-based systems
quickly moved toward coarser-grained interfaces.

Figure 2.6 illustrates a distributed object-based system. The number of con-
nections between objects is great. As system size and complexity grows, these de-
pendencies become difficult to manage. Performance suffers because of the large
number of network hops. Maintainability also suffers because of the large num-
ber of dependencies between objects. Since any object can connect to and use
any other object, it becomes difficult to know what dependencies exist. When
the developer makes a necessary change to an interface, it might affect a large
number of other distributed objects. The developer must then compile and
deploy together all the changed objects and the objects that depend on them.

A service-based system controls the network access to the objects within the
service through a set of coarse-grained interfaces, as shown in Figure 2.7. A service
may still be implemented as a set of fine-grained objects, but the objects them-
selves are not accessible over a network connection. A service implemented as
objects has one or more coarse-grained objects that act as distributed facades.
These objects are accessible over the network and provide access to the internal
object state from external consumers of the service. However, objects internal to
the service communicate directly with each other within a single machine, not

Fine-Grained Distributed Objects

Distributed
Object

Distri ¥

Distributed Distributed

Object

Distributed

: Distributed
Object Distributed Object
Distributed
Distributed Distributed Object

Object Object




52 Chapter 2 Service-Oriented Architecture

Figure 2.7
Coarse-grained
services.

Coarse-Grained Services

Checking Account Service Savings Account Service

across a network connection. All service interfaces are relatively coarse-grained
compared with distributed object interfaces. However, within the range of
coarse, there are options. It is important to understand these options for interface
design.

One of the benefits of service-oriented architecture is service composition.
Developers compose services into applications. Unfortunately, one cannot al-
ways know how services will be used in these applications. It is especially difficult
to predict how services will be used in future applications. This uncertainty is one
of the greatest challenges for service designers, who typically attempt to antici-
pate future applications when determining the structure of an interface. Because
services are executed across a network, it is especially important for interfaces to
be correct. If they are not, service consumers will either receive more data than
they need or will have to make multiple trips to the service to retrieve all the data
they need.

While services in general support coarser-grained interfaces than distributed
object-based systems and component-based systems do, the range of coarse still
contains degrees of granularity, as Figure 2.8 shows. Within the range of granular-
ity expected for services, designers still need to decide interface coarseness.

As explained previously, the service itself can be coarse-grained or fine-grained.
This refers to how much functionality the service covers. Let’s assume developers
need to create an application for manipulating both a checking account and a
savings account. Developers have two choices when creating a service to support
this function. They could create a coarse-grained service called BankAccount-
Service that manipulates both checking and savings accounts, or they could create
two fine-grained services—a SavingsAccountService and a CheckingAccountService.



Figure 2.8
Degrees of
granularity.

SOA Characteristics 53

Finer Coarser
Object Interfaces Component Interfaces Service Interfaces
Fine-Grained Coarse-Grained

Because Bank AccountService supports the functionality of both checking and sav-
ings, it is coarser-grained.

Granularity also applies to the way developers implement service methods.
Suppose Bank AccountService contains a method called GetAccountHolder. A coarse-
grained implementation of this function would return the account holder’s
name and address. A fine-grained version would return just the name. A separate
method, called GetAccountHoldersAddress, would return the address. A service
method that returns more data is a coarse-grained method. A service method that
returns less, more specific, data is a fine-grained method. Sometimes service con-
sumers need both fine-grained and coarse-grained methods for a similar func-
tion. This is the concept of multi-grained services.

Multi-Grained Services

Because services will be used in ways the designers cannot fully anticipate when
designing them, the decision about granularity does not have to be absolute. Ser-
vices do not have to be coarse-grained or fine-grained; they can be coarse-grained
and fine-grained, or multi-grained (Stevens 2002). In other words, BankAccount-
Service, Savings AccountService, and CheckingAccountService can exist simultaneously,
as in Figure 2.9. If service consumers needs access only to a customer’s savings
account, they should use SawingsAccountService. There is no need for them to
know anything about checking accounts. If; on the other hand, they need to know
about both checking accounts and savings accounts, they should use Baznk-
AccountService.

Why is it necessary to create a composite BankAccountService if there is al-
ready a Savings AccountService and CheckingAccountService? The reason is that ser-
vices should be as easy as possible to use, and they should meet the expectations
of the consumers that use them. It is logical that a consumer would more often
than not want access to both checking and savings accounts. Implementing both
interfaces is best, because it provides all service consumers with the interfaces
that best suit their needs.

Service designers create multi-grained service interfaces by first creating fine-
grained services and then wrapping them in coarse-grained fagades. It is also pos-



54 Chapter 2 Service-Oriented Architecture

Figure 2.9
Multi-grained
services.

«interface»
BankAccountService

+ Debit()

+ Credit()

+ ClearCheck()

+ GetAccountHolder()

Client -Uses

1.” 1

1

-Implements
1. -Uses P

1..*| -Uses 1

<interface» BankAccountServicelmpl

SavingsAccountService | 1

+Debit()
1| +credit) "Uses

+Debit()
+Credit()
+ClearCheck()

N * -Implements

— 1

SavingsAccountServicelmpl

+Debit()
+Credit()
1| -Uses
«interface» CheckingAccountServicelmpl
CheckingAccountService
-Implements
+ Debit() +Debit()
1 | +Credit() 1 1 | +Credit()()
+ClearCheck() +ClearCheck()

sible to create fine-grained fagades that access coarse-grained services. However,
it is better to create finer-grained base services, because developers will have more
flexibility when deploying them. It is difficult to break up a larger service and de-
ploy it onto multiple machines. However, it is easy to deploy a large number of
small-grained services to multiple machines.

The granularity of the service is a crucial design decision. If it is incorrectly
predicted, consumers will have access to more functionality than they need. This
can be a problem for security at the service level. It might not be possible to re-
strict a consumer from some methods and not others, only to the entire service. If
this is the case, the entire service might have to be opened up to consumers. De-
velopers can do this if they design services at the appropriate level of granularity.

The service interfaces constitute an established contract between the services
and the clients. One of the tradeoffs of creating multiple interfaces is that each
interface is essentially a published contract. Additional interfaces make manag-
ing these contracts between clients and services more difficult, because a change



Figure 2.10
A method that
returns only
account-holder
information.

SOA Characteristics 55

to a functional requirement will affect multiple interfaces. Although it is impor-
tant to provide the best possible interfaces to consumers, it is also important not
to substantially compromise the service’s maintainability.

Multi-Grained Methods

The granularity of the methods within a service is of equal or greater importance
than the granularity of the service itself. Using the previous bank account exam-
ple, consider the retrieval of account holder information from the bank account
service. There are several ways to implement this interface:

e A method in BankAccountService called GetAccountHolder that returns only
account-holder information and not the address

® Two methods in BankAccountService, called GetAccountHolder and GetAccount-
Holder Address; GetAccountHolder would not return address information

® A method in BankAccountService called GetAccountHolder that could return
both the name and address of the account holder

® A method in BankAccountService called GetAccountHolder that could have a
switch that tells the service whether to return address information as well as
account-holder information

® A method in BankAccountService called GetAccountHolder that could accept a
list of attributes it wants the service to return; the consumer can choose to get
the address by adding the address attributes to the attribute list it passes in to
the service

Let’s examine these options and their consequences. As Figure 2.10 shows,
Bank AccountService returns just account-holder information.

Client BankAccountService SavingsAccount AccountHolder

>l
[l

GetAécountHoIder(AccountNuhber) i

1
>

new(Data)

AccountHolder

[0}
[v]
e
>
Q
Q
o
c
=
2
T
<3
(o)
[
=
>
Q
Q
o)
c
>
2
z
c
3
o
=




56 Chapter 2 Service-Oriented Architecture

Figure 2.11

A method that
returns both
the account-
holder’s infor-
mation and
address.

This scenario works well if the consumer needs only account-holder informa-
tion. But a consumer who needs address information as well is out of luck. The
address information could be retrieved from the service by adding a GetAccount-
Holder Address method, as illustrated in Figure 2.11.

This solves the problem of retrieving address information, but if most of the
consumers need address information, more trips are necessary. Having the
Get AccountHolder method return both account-holder information and address
information in one call would improve performance and reduce the work neces-
sary for the consumer to assemble the two results.

Figure 2.12 illustrates this scenario.

This solution works well for consumers who always retrieve address informa-
tion, but if they almost never need this information, more data than necessary
will travel across the network. It will also take longer for service consumers to ex-
tract the account-holder data they need from the larger message.

Another solution is to pass in an argument that directs the service whether to
return address information. A BankAccountService would have only one Get-
AccountHolder method. The developer would add an additional argument to the
method, to instruct the service whether to return address information as well.

o}
=
-

=

BankAccountService SavingsAccountService AccountHolder HolderAddress

GetAccountHolder(AccountNumber)
1
1
1
1

GetAccountHolder(AccountNumber)

>
>

new(Data)

Y

AccountHolder

Y

GetHolderAddress(HolderlD)
L

i
i
:
:
:
GetHolderlD() !
1
:
:
i
i
i

GetHolderAddress(HolderlD)

>l

new(Data)

S /O

HolderAddress




Figure 2.12

A method that
returns either
the account-
holder’s infor-
mation or
address.

SOA Characteristics 57

Client BankAccountService | | SavingsAccountService | | AccountHolder | | HolderAddress

»!
>

1

1

i

1

GetAccountHolder(AccountNumber, AddressBoolean) |
| |

1

1

GetAccountHolder(AccountNumber)

>

Y

D AddressBooleanTrue()
1 .

GetHolderAddress(HolderID)

1 1

H H new(Data)

1 1
—_—

1 1

1 AccountHolder 1

I T LT A

1 1

1 1

! !

i GetHolderlD()

E 1

1

1

1

el
i new(Data)

A

!

1 1
1 1
1

1 1
i HolderAddress i
1 1
| |
: 1
i CombineNameAddress()

Y

1
HolderNameAddress

Consumers who need only account-holder information could pass in the proper
switch to retrieve it. Users who need address information as well could pass in the
proper switch to retrieve both.

But what if consumers need only zip codes for all account holders? They
would have to retrieve both account-holder information and address informa-
tion and extract zip codes from a very large message. What if consumers pass in
the list of attributes in which they’re interested?

This sophisticated alternative implements an interface that accepts a list of at-
tributes to return to the consumer. Instead of sending the account number and
an address indicator, consumers submit a list of all of the attributes to return. The
list may contain just first and last names or may include all or portions of the ad-
dress data, such as city and street address. The service would interpret this list and
construct the response to consumers to include only the data requested. This so-
lution minimizes both the number of trips consumers make to the service and
the amount of data that must travel the network for each request. Figure 2.13
illustrates this option.



58 Chapter 2 Service-Oriented Architecture

Figure 2.13

A method that
returns just the
attributes
requested.

o}
=
>

=

BankAccountService | | SavingsAccountService | | AccountHolder | | HolderAddress

GetAccountHolder(AccountNumber, AttributeList)

>

GetAccountHolder(AccountNumber)

>
>

new(Data)

\

AccountHolder

A

GetHolderID()

Y

\

i
IncludedAddress()

GetHolderAddress(HolderlD)

new(Data)

A

1
1
1
1
HolderAddress i
1
|
1

ApplyAttributeListFilter

AttributeValues

This approach has two downsides. The first is that the request message will be
larger than any of the previous solutions, because the consumer must send the re-
quest data as well as the data map on each request. If all service consumers need
the exact same data from the service, this solution would perform worse than the
previously discussed alternatives.

Second, this solution is also more complex to implement for service develop-
ers, and service consumers might find the interface more difficult to understand
and use. To alleviate this problem, a service proxy could wrap the complexities of
the service interface and provide a simple interface for consumers. A consumer
would use multiple distinct and simple service methods on the proxy. The meth-
ods map to the way the consumer wants to use the service. The proxy would inter-
nally map these multiple methods into a single service-request interface format
that accepts a map of data to return. The advantage of this technique is that it al-
lows the service to support any granularity, while providing specific granularities
to consumers based on their domain understanding.

If these implementations are not possible, it is always better to return more
data, to minimize network round trips, because future clients are likely to need



SOA Characteristics 59

the data. It is also possible to implement several of these options, to solve the
needs of multiple consumers. However, this increases the effort to maintain the
service and also detracts somewhat from the service’s modular understandability.

A service’s ability to have multi-grained methods that return the appropriate
amount of data is important to reduce network traffic. Extra network traffic is due
either to excessive unnecessary data or to a large number of requests to get data.

Granularity is a difficult problem to reconcile when designing service inter-
faces. It is important to understand the options and implement the most appro-
priate interface. In the past, arguments surrounding service interfaces have fo-
cused mainly on determining the right granularity. Services actually require the
designer to find the right granularities for service consumers.

Location Transparency

Location transparency is a key characteristic of service-oriented architecture.
Consumers of a service do not know a service’s location until they locate it in the
registry. The lookup and dynamic binding to a service at runtime allows the ser-
vice implementation to move from location to location without the client’s
knowledge. The ability to move services improves service availability and perfor-
mance. By employing a load balancer that forwards requests to multiple service
instances without the service client’s knowledge, we can achieve greater availabil-
ity and performance.

As mentioned earlier, a central design principle in object-oriented systems is
separation of implementation from interface. This means that an object’s inter-
face and its implementation may vary independently. The primary motivation
for this principle is to control dependencies between objects by enforcing the
interface contract as their only means of interaction.

Service-oriented architecture takes this principle one step further, by reduc-
ing the consumer’s dependency on the contract itself. This reduced dependency
through the use of dynamic binding also has the effect of making the service’s
location irrelevant. Because the service consumer has no direct dependency on
the service contract, the contract’s implementation can move from location to
location.

Composability

A service’s composability is related to its modular structure. Modular structure
enables services to be assembled into applications the developer had no notion of
when designing the service. Using preexisting, tested services greatly enhances a sys-
tem’s quality and improves its return on investment because of the ease of reuse.



60

Chapter 2 Service-Oriented Architecture

A service may be composed in three ways: application composition, service
federations, and service orchestration.

An application is typically an assembly of services, components, and applica-
tion logic that binds these functions together for a specific purpose. Service federa-
tions are collections of services managed together in a larger service domain. For
example, a checking account service, savings account service, and customer ser-
vice may be composed into a larger banking-account service. Service orchestration
is the execution of a single transaction that impacts one or more services in an or-
ganization. It is sometimes called a business process. It consists of multiple steps,
each of which is a service invocation. If any of the service invocations fails, the
entire transaction should be rolled back to the state that existed before execution
of the transaction.

For a service to be composed into a transactional application, federation, or
orchestration, the service methods themselves should be subtransactional. That
is, they must not perform data commits themselves. The orchestration of the
transaction is performed by a third-party entity that manages all the steps. It de-
tects when a service method fails and asks all the services that have already exe-
cuted to roll back to the state that existed before the request. If the services have
already committed the state of their data, it is more difficult for the method to be
composed into a larger transactional context.

If the service cannot be subtransactional, it should be #ndoable. Especially
when dealing with legacy systems, it is sometimes impossible to execute a func-
tion within the context of a transaction. For instance, consider an older system
that manages checking accounts. The service is a fagade for the legacy applica-
tion. When the service receives a request to deposit money into a checking
account, it puts the request into a queue. The legacy system reads the request
from the queue and executes it. It is difficult to make this request subtransactional,
but it can be undoable. If the deposit transaction is composed into a larger trans-
action and another step in the larger transaction fails, the checking account de-
posit transaction can be undone by withdrawing the same amount from the
checking account. While to a developer this makes perfect sense, a customer
would probably see the deposit and withdrawal transactions on his or her state-
ment at the end of the month, so it should be used with care.

Self-Healing

With the size and complexity of modern distributed applications, a system’s abil-
ity to recover from error is becoming more important. A self-healing system is one
that has the ability to recover from errors without human intervention during
execution.



Summary 61

Reliability measures how well a system performs in the presence of distur-
bances. In service-oriented architecture, services will be up and down from time
to time. This is especially true for applications assembled from services from mul-
tiple organizations across the Internet. The extent to which a system is self-heal-
ing depends on several factors.

Reliability depends on the hardware’s ability to recover from failure. The net-
work must also allow for the dynamic connection to different systems at run-
time. Modern Internet networking protocols inherently provide this capability.

Another aspect of self-healing is the architecture from which the application
is built. Architecture that supports dynamic binding and execution of compo-
nents at runtime will be more self-healing than one that does not. For instance,
service-based systems are self-healing to a greater degree than previous architec-
tures, because services are bound to and executed dynamically at runtime. If a
service fails, the client may find, bind, and execute a different service, as long as
the other service provides the same or a similar interface contract.

In addition, because service-based systems require that the interface be sepa-
rate from the implementation, implementations may vary. For instance, a service
implementation may run in a clustered environment. If a single service imple-
mentation fails, another instance can complete the transaction for the client
without the client’s knowledge. This capability is possible only if the client inter-
acts with the services interface and not its implementation. This property is fun-
damental to all service-oriented architectures.

Summary

Software architecture has been emerging as a discipline over the last decade
(Garlan 2000). A system’s software architecture describes its coarse-grained struc-
tures and its properties at a high level. As long as the technology supports those
structures and properties, the technology can be considered to implement the ar-
chitecture. For instance, Jini is a technology that supports service-oriented archi-
tecture, because it supports the properties of SOA.

[t is important to apply the concepts of software architecture to any new tech-
nology to take full advantage of it. Service-oriented architecture is implemented
by technologies other than Web services, but the term and concepts have gained
popularity recently because of Web services. For instance, the computer industry
has used the term service for about two decades to describe various platforms.

Some of the characteristics of service-oriented architecture are supported
better by certain technologies than by others. For instance, CORBA and Jini are



62

Chapter 2 Service-Oriented Architecture

less interoperable than Web services, but Jini excels in other properties (though
this is arguable), such as discovery.

Interface design is perhaps the most difficult part of designing services in ser-
vice-oriented architecture. The modularization techniques practiced for decades
still apply to services. Service design is even more difficult, because the domain a
service supports is not limited to a single application. Therefore, it is best to per-
form modularization starting with a conceptual model of the business rather
than of a single application. If the interface design is done well, the services are
more likely to be reusable in other applications, and organizations will realize a
higher return on their investment.

Web services are refocusing organizations on the concepts of service-oriented
architecture. Although highly reusable, loosely coupled architectures have been
a goal for many organizations. Web services are fostering interest in and provid-
ing the technology to implement service-oriented architectures that enable them
to realize their vision.

References

Bass, L., Clements, P., and Kazman, R. Sofiware Architecture in Practice. Addison-
Wesley, 1997.

Bieber, G., and Carpenter, J. Introduction to Service-Oriented Programming (Rev 2.1).
www.openwings.org/download/specs/ Service OrientedIntroduction.pdf, — accessed
October 2002.

Fowler, M. UML Distilled: Applying the Standard Object Modeling Language.
Addison-Wesley, 1997.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

Garlan, D. Sofiware Architecture: A Roadmap. ACM Press, 2000.

Herzum, P. Web Services and Service-Oriented Architectures. Executive Report, vol. 4,
no. 10. Cutter Distributed Enterprise Architecture Advisory Service, 2002.

Meyer, B. Object Oriented Software Construction. Prentice Hall, 1997, pp. 39-48.

Object Management Group (OMG). CORBA Basics. www.omg.org/gettingstarted/
corbafaq.htm, accessed October 2002.

Parnas, D., and Clements, P. The Modular Structure of Complex Systems. IEEE, 1984.

Potts, M. Find Bind and Execute: Requirements for Web Service Lookup and Discovery.
www.talkingblocks.com/resources.htm#, accessed January 2003.



References 63

Stevens, M. Service-Oriented Architecture Introduction, Part 2. Developer.com, hitp:/
/softwaredev.earthweb.com/msnet/article/0,,10527 _1014371,00.html, accessed
October 2002.

—— Multi-grained Services. Developer.com, http://softwaredev.earthweb.com/java/
sdjjavaee/article/0,,12396_1142661,00.html, accessed October 2002.

Sun Microsystems. Jini Network Technology, www.sun.com/jini.

——. Jini Technology Architectural Overview, bttp://wwws.sun.com/software/jini/
whitepapers/architecture.html, accessed October 2002.

——. Jini Technology Core Specification: LE-Distributed Leasing. http://wwws.sun.com
/software/jini/specs/jinil.2html/lease-spec.html, accessed October 2002.





