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TSS Editors Note: 
Manning Publications and TheServerSide.com have partnered to bring you this chapter of Java Doctor, a new 
book, in which you can contribute to and get published! To contribute, read the tips  chapter 9 (available on TSS) 
and send new tips to javadoctor@manning.com.  

Profiling 
In this Chapter 

 Introducing profilers and the values they can provide 
 Profiling approaches: JVMPI/TI and bytecode instrumentation 
 Profiling memory mismanagement with HPROF and Optimizeit 
 Profiling thread contentions with HPROF and Optimizeit 
 Profiling CPU usage with HPROF and Optimizeit 
 

 
Many of us have seen TV shows where a gifted individual arrives at a crime scene, touches a piece of 

cloth or hair, and begins to visualize what took place earlier. Known in the crime fighting industry as a 
profiler, such an individual’s responsibility is to determine the characteristics and behavior of the entity 
or entities that may have perpetrated a crime. Often this requires looking at scant pieces of evidence, 
possibly listening to testimony from individuals affected by the incident, and digging into historic cases 
that seem to have similar traits. It’s a critical job, and profilers have been instrumental in solving many 
cases. 

In the world of Java, profilers perform a strikingly similar role. The major difference is that our 
profilers are smart programs instead of smart individuals. And, of course, profilers are used to identify 
root-cause problems in applications rather than criminals. 

In this chapter, we’ll turn our attention to observing an application in a more, well, prolific sense. 
This becomes necessary when problem-solving using methods as described in previous chapters isn’t 
sufficient or is too isolated. If starting from the lowest stack (the operating system) and moving up to the 
JVM doesn’t point to the source of a systemic problem, then you may have to take a deeper look into the 
application via a profiler.  

The objective of this chapter is to wet your feet and whet your appetite for profiling. In fact, profiling 
and the technologies surrounding it could be the subject of its own book. Therefore, we’ll look at simple 
pieces of source code and run them on profilers to illustrate the value proposition to you. The goal is not 
to promote any single profiler over others, but rather to let you decide what profilers can do for you. 

5.1 What is profiling, and what are profilers? 
No, we’re not talking about hiring a psychoanalyst to sit down, touch a server, and then draw a sketch 

of the perpetrating code (but if you know someone who can do that, please let us know). Profilers are 
tools that let you take an expansive and more holistic picture of your application during run-time. They 
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can show CPU consumption, memory profile, lock contention, and garbage-collector activity in one fell 
swoop. 

But, you may ask, haven’t we already talked about this information being provided by the JVM, in 
the previous chapter? After all, if you need to see whether there is a thread deadlock, you can do so by 
sending a thread dump signal to the JVM (see chapter 4), right? The answer is yes and no. One of the 
strengths of a profiler is its ability to leverage information provided by the JVM and provide a 
comprehensive and a more correlated analysis. This means that a profiler should be able to take all the 
information a JVM spews out, analyze it, and provide a more insightful conclusion or representation of 
activity. Given that profilers try to give you a picture of the complex inner plumbing of your application, 
it’s no surprise that many commercial profilers tend to have a visual interface that is easy to understand, 
especially if you know what you’re looking for. 

Recall from chapter 4 that JVMs have API hooks, such as the JVMPI, which profilers can use to trap 
events and obtain fine-grained information about the JVM’s doings. Profilers may be used early, as the 
first step in troubleshooting, or after exhausting several troubleshooting strategies. Different bugs and 
systemic problems may manifest themselves with similar symptoms, so only certain issues are visible 
with profilers; other problems require tools from the other stacks, such as the JVM or operating system. 
When you’re following a bottom-up approach, you’ll use profilers during the later stages, after the lower 
stacks have been analyzed. In the top-down approach, on the other hand, profilers will be used early on, 
either from the onset or right after a code review 

You can use profilers when you see or sense problems with scalability, reliability, or performance. 
Applications may suffer these quality problems when unnecessary CPU hot spots exist (sections of code 
that consume large amounts of CPU). In the case where there is excessive object creation and retention, 
which may result in high garbage-collector activity, a profiler can help identify memory-allocation sites. 
Another source of systemic problems can be thread contention. Profilers can identify this by visually 
showing threads that are competing for locks when the application is running. In addition to identifying 
such problems, we’ll also walk you through examples of them in the coming sections. 

Profilers gather data for analyses in two fundamentally different categories. Some are based on the 
profiling interface of a JVM (for example, JVMPI/JVMTI) from which profiling information is retrieved, 
and others are based on modifying the bytecode for measuring various metrics. Profilers based on the 
profiling interface of the JVM are more detail oriented and are generally more helpful when a problem is 
reproducible in a controlled environment. Bytecode instrumentation-based profilers are more helpful 
when you’re attempting to profile applications in production. We’ll look more deeply at these two types 
of profilers later in this chapter. 

Note 

Typically, profilers aren’t used for bugs related to the functionality or business logic of the 
application, but rather are used for systemic behaviors. For instance, a Java class that isn’t 
calculating the total sum of an order correctly is an example of a functional or use-case issue. As 
such, bug identification should be done through a debugger. 

5.2 Obtaining a profiler 
Naturally, for profilers to be of any use, you need to know how to best leverage them to gain a better 

understanding of an application. An application has many traits, and our goal is to identify the traits that 
lead to problems and group them into categories, such as heavy memory allocation sites, memory leaks, 
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CPU hot spots, unnecessary object retention, and thread contention. These types of issues are the usual 
culprits of performance and scalability downturns and are thus our primary focus. This chapter will 
explain each of these categories in later sections. 

But first, how and where do you get a profiler? Tons of them are available. Table 5.1 lists some of the 
better-known commercial profilers, and table 5.2 lists open-source or free profilers. Of course, your needs 
may be met by the profilers that come bundled with the Sun JVM, such as HPROF, or by the -Xprof and 
-Xaprof JVM switches. We suggest that you download the trial editions of these profilers (if provided) 
and tinker with them to see which is more suitable for your needs. Just like any other type of Java tool, 
each product has pros and cons that you should consider and evaluate before purchasing. 
 
Table 5.1 Commercial profiler 
Profiler Vendor Website 
JProfiler ej-technologies www.ej-technologies.com 
JProbe Quest Software www.quest.com 
DevPartner Compuware www.compuware.com 
Optimizeit Borland www.borland.com 
Indepth for J2EE VERITAS www.veritas.com 
Introscope Wily www.wilytech.com 
PerformaSure Quest Software www.quest.com 
 
Table 5.2 Free or open-source profilers 
Profiler Source 
xdProf http://xdprof.sourceforge.net/ 
*J www.sable.mcgill.ca/~bdufou1/starj/ 
JMemProf http://oss.metaparadigm.com/jmemprof/ 
JRat http://jrat.sourceforge.net/ 
JMP www.khelekore.org/jmp/ 
GCSpy (see appendix E) www.experimentalstuff.com/Technologies/GCspy/ 
HPROF Sun JVMs 
 

For our purposes, this chapter will primarily use a pair of profilers to obtain observations and 
demonstrate general profiling capabilities and virtues. The first tool is Optimizeit from Borland 
Corporation. This definitely isn’t a marketing plug for Borland—we don’t endorse or specifically 
recommend this or any product. However, this tool has proven to be popular in the Java community, and 
we find it useful for learning and providing nice screen snapshots. The second tool we’ll us is HPROF, 
which comes free with any post-1.2.x Sun JVM. Similar profiling tools should be available with the IBM 
JVM (HPROF or JPROF). In addition to these two profilers, we’ll also interject the flow by mixing it up 
and dabbling with some of the open-source offerings. 

For those who like free things (like us), using HPROF and PerfAnal is a good way to get familiar 
with JVMPI and profiling. HPROF doesn’t have an agent, because it hooks directly into the JVMPI of the 
HotSpot JVM. Since it isn’t an agent with a wire protocol but an output file, other tools can use the output 
file and give a more visual presentation. For example, PerfAnal is a tool that feeds off HPROF. You can 
download PerfAnal and associated documentation freely from the Sun Developer website 
(developer.sun.com). We’ll look at HPROF and PerfAnal later in the chapter. 

5.3 Understanding how profilers work 
There are two types of profilers: those that are based on an interface available from within a JVM, and 
those that inject bytecode into existing Java class files. Each has advantage and disadvantage, ranging 
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from overhead to the amount and depth of information provided. The following sections highlight these 
differences and their implications. 

5.3.1 JVMPI/JVMTI/agent-based profilers 
Chapter 4 was filled with information about how to use the JVM to understand the behavior of the 

application. In this section, we talk about how profilers take advantage of the JVM by using an interface 
exposed by it to display detailed information about the application being executed. To enable this 
behavior, you must tell a JVM via a switch that it needs to enable the profiling interface (by default, it’s 
turned off and inaccessible). If started, the JVM can then send events to the profiler each time the 
application code triggers certain conditions, such as object creation, method invocation, or any number of 
events that we’ll discuss shortly. 

The JVM Profiling Interface (JVMPI) existed in JVMs 1.4 and earlier, and the JVM Tool Interface 
(JVMTI) replaces JVMPI in 1.5. In this book we mainly focus on JVMPI, because as we’re writing this 
chapter, 1.5 has just been released. However, we know that JVMTI is a more robust interface with lesser 
overhead. The JVMTI has a more granular approach to profiling, whereby the application is affected only 
by overhead in keeping with the task being profiled. This wasn’t the case in JVMPI, where the overhead 
was significant whether the CPU usage or the thread contention was being profiled. This change in 
interface should concern you only if you’re a developer of profiling technology and thus interact with 
these interfaces. For users of profilers such as HPROF or Optimizeit, this change should have minimal 
impact, because it’s the responsibility of the vendor (such as Borland) to interoperate with the new 
JVMTI API. 

Figure 5.1 shows how a profiler like Optimizeit traps events and requests information from the JVM. 
The JVM is accessed through a known interface, such as a JVM Profiler Interface, by an agent. The agent 
then communicates the gathered information to a profiler running remotely through a network connection, 
and finally the profiler front-end displays the given data in a more coherent and easy-to-understand 
manner.  

 

 
Figure 5.1 The interaction between a JVM and a profiler agent, as used by JVMPI/JVMTI/agent-based profilers 
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For the profiler to connect to the JVM, most profiler tools provide an option that lets Java 

applications be invoked via the profiler instead of your command line. That is, you can use a profiler’s 
front-end directly to start your application with the appropriate profiling switches automatically turned on 
in the JVM. Another way for profilers to profile an application is to connect to an independently 
executing JVM using a profiler agent. The benefit of the profilers that use the agent compared to those 
that invoke the JVM independently without an agent is that having a profiler run remotely on a separate 
machine allows for faster execution of the application, because profilers require plenty of CPU cycles. 
Another advantage is that you can sometimes profile certain applications that run on a JVM wrapped by 
another native application or a script, by passing the JVM the required parameters.  

Both means of connecting to the JVM are intrusive in nature and thus usually change the 
application’s behavior. The effect may not be a showstopper, and some applications may even continue to 
display the same characteristics as without a profiler, but being aware of the intrusion’s impact is critical 
to successful troubleshooting. Since JVMPI-based profilers are intrusive and therefore measurably affect 
the performance of the application, it’s highly recommended that these profilers not be used in production 
environments. If it’s absolutely necessary to use a profiler in production (you should do so only as a last 
resort), try to make sure there is adequate load-balancing capability in place to allow for most user 
requests to be routed to other application instances. 

5.3.2 Bytecode instrumentation 
Some profilers don’t use an API that is embedded in the JVM but instead use bytecode 

instrumentation. With this approach, a profiler takes a compiled Java class and then injects or modifies it 
with additional proprietary bytecode. Most of this additional code is logic that aids in calculating or 
gathering statistics about that class’s activities. This means of profiling isn’t new and has been used in 
native languages such as C++, where the runtime execution had no virtual machine for retrieval of such 
information. For a Java developer, it would be akin to inserting System.out.printlns or log 
statements (which may have a performance impact due to I/O) during development time to trace activity.  

Of course, code injected by profilers uses more sophisticated techniques and methods and can 
automatically remove what was injected; the developer need not manually remove injected statements. 
Also, consideration needs to be made for some intelligence on the part of the instrumentation profiler and 
the user, to determine what classes and what regions of a particular class should be modified. A wholesale 
bytecode instrumentation of all the classes in an application can result in an overload of information 
output. Because of this, most bytecode instrumentation–based profilers require you to specify target class 
names. Selective instrumentation of class bytecode reduces the overhead compared with the 
instrumentation of all methods in all the classes, due to the work involved in generating and gathering of 
data.  

The advantage of the bytecode instrumentation approach is that performance isn’t hit as hard as via 
the JVMPI. The modified code runs within the JVM and in tandem with the application, as opposed to 
causing numerous event generations from the JVMPI. The downside is that after every recompile of your 
application, you need to instruct the profiler to instrument the newly compiled bytecode. However, with 
tools such as Ant to help automate such tasks, the downside isn’t so bad. Table 5.3 gives a breakdown of 
the advantages and disadvantages of the different approaches used for profiling an application. 

 
Table 5.3 Comparison of techniques and APIs used by profilers 
Method Pros Cons 
JVMPI Lots of fine-grained information Overhead of layers 
Bytecode instrumentation Better performance 

Minimal impact on application behavior 
No GC information 
Limited types of information 
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Manual (logging, 
System.out.println 
insertions) 

Very targeted to what information you need 
Lower impact on performance 

Limited types of information 
Maintenance of code (removal, and 
so on) 
Performance hit if using IO 

JVMTI Standardized interface 
Fine-grained information 
Overhead determined by granularity of 
information retrieved 

Relatively new technology (1.5 and 
beyond) 

 

Note 

Bytecode instrumentation–based profilers can be used in production with limited caution. 
Commercial tools that use bytecode instrumentation eagerly tout this benefit. However, you need 
to use good judgment when deciding which methods and classes to instrument, because the more 
extensive the instrumentation, the larger the overhead. 

5.3.3 Right tool, wrong conclusions 
Both kinds of profilers—JVMPI-based and, to a lesser degree, bytecode instrumentation—can incur a 

large overhead, which can slow the application significantly. The slowdown can cause the application to 
change its dynamic behavior, resulting in known systemic bugs disappearing while newer ones spring up. 
This can be frustrating when you’re trying to diagnose a systemic problem through a profiler, which 
instead of showing the true cause, points to a profiler-induced issue.  

As an example, let’s take a case of profiling an application that does extensive database querying. 
Generally, when you use profilers on such application, an abnormally large amount of time is shown to be 
spent in accessing the database. In reality, database access may not be a bottleneck, but it will appear that 
way because of the way event generation within JVMPI hampers JDBC-based communication. In the 
absence of any quick test to determine if the noticeable issue in a profiler is an anomaly, it’s 
recommended that you take time in connecting the dots between a known symptom and a noticeable 
issue. If the noticeable issue seems completely out of sync with the perceived problem, than the priority 
of digging deeper into it should be reduced. This involves investigating all possible issues made apparent 
through the use of a profiler, keeping an eye out for possible anomalies.  

A more important lesson is to never celebrate a troubleshooting victory prematurely. When you’re 
identifying the source of a systemic bug, more often than not the application is plagued with multiple 
problems that all need to be resolved before you can claim success.  

Now, let’s get on to the meaty stuff: using a profiler to identify and address memory, CPU hotspots, 
and other issues. 

5.4 Memory mismanagement 
The first area we’ll look at is memory mismanagement, commonly referred to in the industry as 

memory leaks (we examined some memory issues in chapter 3). In this scenario, objects that are deemed 
to be garbage by the Java developer aren’t collected by the garbage collector. In fact, the garbage 
collector passes over these objects as if they’re legitimately existing ones because they’re still being 
unnecessarily referenced. In this section, we’ll show how to identify such leaks through the use of a 
profiler. We’ll do this walking you through a complete cycle of how to handle these problems from their 
onset.  



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

  
Java Architecture Diagnostics Manning Publications Co. 7 

7

The first major indication that a memory leak exists is the occurrence of the 
java.lang.OutOfMemoryError, which may also occur if the logic of the application requires more 
heap space. Getting an OutOfMemoryError early in the execution of an application can offer certain 
advantages in comparison to memory errors thrown over long durations. Memory errors that are thrown 
after a long period of execution are usually induced as small fragmentary memory leaks accumulate. 
When an application dies within minutes of starting because of memory constraints, the probability of 
quickly locating the leak is potentially higher because the leak grows large rapidly in short time span. 
Unless the JVM has been allocated a disproportionately low amount of maximum memory (-mx), the 
code responsible for the spike is likely to be solitary. In the case of long-running applications inducing 
memory errors, it’s possible that the minor leaks come from multiple, dispersed code sources. If so, they 
will be difficult to trace.  

Another disadvantage of leaks occurring over long spans of time is the time itself. Reproducing the 
error can become impossible within a reasonable timeframe. Of course, you can’t control when the 
application throws a memory error. The point is that these covert, enduring leaks should not be ignored. 
You can discourage long-running applications from slowly leaking by involving a profiler. Profilers 
should be involved early in application development to ensure that such issues are identified as soon as 
possible—especially and even when everything seems to be running smoothly.  

If you’re receiving an OutOfMemoryError, or if you have a gut feeling that your application may 
have leaks, or if your application’s throughput goes through a gradual slowdown as time progresses 
(based on increase of garbage collection frequency due to reduction of available memory), then one of the 
first things you can do is to run the application with the –verbose:gc flag. As discussed in chapter 4, 
verbose:gc generates information about the garbage collector’s activities to the console. Using –
verbose:gc can be a quick and easy way to get information about the garbage collector’s activity prior 
to loading a heavy-duty profiler. If you start to notice a pattern where fewer objects are claimed by the 
garbage collector for each successive collection, then you can be sure that a leak exists. To isolate the 
problem and drill down further, use a profiler. 

Before we delve deeper into profilers and their ability to track down memory leaks, let’s examine the 
behavior of the objects involved in a memory leak. Any object that has completed its useful life but is 
unable to be garbage-collected is a participant in a memory leak. Applications achieve a state of 
equilibrium once they’re done with the initializations involved during startup. As a result of this 
equilibrium, objects of classes follow a cyclical pattern of increasing in number before being collected by 
the garbage collector.  

After each collection, the number of objects for a given class returns to a lower count before 
increasing again as the application executes. Much like the human body, the application is homeostatic 
(the tendency of the body to adapt and change in order to eventually reach biological equilibrium). 
Keeping this in mind, you can be fairly certain that objects of classes involved in memory leaks deviate 
from this pattern, In other words, the object count never returns to an initial equilibrium count. The object 
count for an object that is a participant to a memory like will, after each collection, have a pattern of 
becoming larger and larger. If you can identify the class and object-creation place for those objects that 
continue to increase in count despite garbage collections, then you’ve found your leak!  

5.4.1 Identifying leaks through Optimizeit 
A common cause of memory mismanagement is inserting objects in a collection and then forgetting 

they’re there, so they’re never removed. In such a scenario, even though the developer may consider the 
inserted objects to be garbage, the JVM is unable to collect them because they’re still referenced by the 
Collection class. We’ll present a sample application, and then use a profiler to show how such leaks 
can be identified in more complex applications.  



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

 
Java Architecture Diagnostics Manning Publications Co.  8 

8

In the MemoryLeak class (listing 5.1), there exists a collection into which we continuously insert 
objects throughout the life of the application. During the execution of the application, with -verbose:gc 
as a JVM parameter, the behavior of more and more instances of the same object not being garbage-
collected becomes apparent. In the class, we insert the StringBuffer objects into the collection, making 
the assumption that we won’t be referencing them from the collection at a later time. As developers, we 
assume they’re no longer useful to us and are thus garbage. The resulting memory leak causes a portion of 
the heap to become uselessly occupied and, after a certain point in time, stalls the application altogether. 
How can we identify this problem with a profiler? 
 
Listing 5.1 The MemoryLeak class, which showcases memory mismanagement 
import java.util.*; 
 
public class MemoryLeak { 
    public static int MAX_ITR=70000000; 
    public static int STR_SIZE=100;     
    protected static List coll = new ArrayList(); 
        
    public static void main(String[] args)throws Exception { 
        StringBuffer foo;  
        for(int i=0;i<MAX_ITR;i++){ 
                foo=new StringBuffer(STR_SIZE);                          #1 
                if(i%100==0) {                                          |#2 
                   coll.add(foo);                                       |#2 
 
                  /* Do some work with foo */                   
 
                  foo = null;                                            #3 
 
//Thread put to sleep to slow down execution of program.  
                   Thread.currentThread().sleep(2);  
                }  
                 
               // if(i%10000==0) coll.clear();                          #4 
        } 
    }     
} 
(annotation)<#1 Create new object of type StringBuffer 
(annotation)<#2 Add every 100th object to a collection 
(annotation)<#3 Nullify foo, forgetting that ArrayList holds separate reference 
(annotation)<#4 Uncomment line to fix memory leak 

 
In the MemoryLeak class, while most of the instantiated objects quickly become garbage (as is the 

behavior with most applications), our application manages to retain some of these objects for the duration 
of its life. As we continue to add objects to the collection for the life of the application, the JVM’s heap 
start to fill up; at some point, the garbage-collection activity dwarfs everything else. The final nail in the 
coffin is an OutOfMemoryError. As you can see, not all of the instantiated objects are placed in the 
collection because this helps to show how the heap usage of a typical application looks. 

Now, we take the code and run it through Optimizeit. We do this by invoking the Java application 
from within Optimizeit through its option of executing a program. We use the memory profiling option 
once our application starts executing. In the memory profiling view, Optimizeit shows us line charts of 
object counts for each class. Remember, to identify memory mismanagement and leaks in an application, 
it should be allowed to execute until it gets to a point when all/most of the initializations have completed.  
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Generally, startup and shutdown are aberrations in the behavior of the normal dynamics of an 
application. For certain applications, it’s difficult to assess exactly when the initializations have 
completed and the normal execution of the application has begun, but don’t worry: If it’s difficult to 
assess when most initializations have completed, let the application run for a sufficient amount of time to 
reduce any initialization-related noise that may muddy the profiling metrics. For example, in a Swing 
application, you may want to wait till the entire GUI is loaded, whereas for a GUI-less application, you 
should wait 10 minutes or until CPU consumption is down. To accomplish this, either ignore the 
profilers’ monitors and other output until the application reaches the equilibrium state, or start the 
application outside of the profiler (in this case, Optimizeit) and connect it after sufficient time has elapsed 
for the application to reach its post-initialization state. 

Figure 5.2 shows a screen capture of Optimizeit taken right after the sample application code was 
started. For the example, we haven’t put in any initializations for the sake of simplicity, and hence we 
didn’t have to wait for the initialization to complete. Note the upper-left frame: The darker line (a red line 
on a colored display) signifies the maximum heap size, and the lighter (green) line signifies the portion of 
heap currently in use. As the figure shows, the heap continues to grow and shows no sign of reaching 
equilibrium. Once you notice such a graph in a post-initialization phase of an application that has been 
running for some time, you can conclude that there is a high probability of some type of memory 
mismanagement in the Java application. Of course, this conclusion is based on the assumption that 
soft/phantom references aren’t being used in the application, because their use will make it difficult to tell 
between memory mismanagement and general heap-sizing problems. (For discussion of reference types, 
see chapter 3.) 
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Figure 5.2 Memory profiling in Optimizeit (integrated with JBuilder X here) consists of four frames. The upper-left frame 
denotes the total heap (dark line) and the heap currently in use (light line). The upper-right window shows garbage-
collection activity. The lower-right frame gives the number of Java classes loaded, and the lower-left frame gives the 
number of the threads in the application being profiled. If you’re profiling memory, the upper-left window shows how the 
heap fails to reach equilibrium and continues to grow unchecked. 
 

With a strong hunch about a memory leak, we next attempt to identify the class of the objects that 
partake in the leak. To do that, we use the heap view in Optimizeit (see figure 5.3) and try to locate the 
objects that keep increasing in count without coming back to an equilibrium state. The heap view allows 
us to drill down and see what objects currently exist in the heap. As the heap occupancy decreases after 
each garbage collection, with all well-behaved objects returning to an equilibrium count, it’s a matter of 
identifying the odd class out.  

An easy way to do this is to identify objects with a high instance count in the heap view, because a 
memory leak is the result of many objects failing to be garbage collected. Optimizeit has a marker feature 
you can use to mark the current state of the components in the JVM, including the count of objects. Use 
the marker, and then view the heap state during execution for objects that continue to increase without 
returning to the marked state. All such objects become candidates for further investigation.  
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Figure 5.3 The Optimizeit heap view with instance counts for different classes 
 

In figure 5.3, you can see that four classes have object counts with the largest difference from the 
marked state:  

 An array of char 
 java.lang.StringBuffer  

 An array of Object 
 java.lang.String  

 
The black lines in the middle of the horizontal bars depict the marked state of the object count for the 

classes and serve as a rough point of reference for an equilibrium. You can see that total object counts of 
StringBuffer and char arrays are high, as well as their difference from our marked equilibrium state.  

Given that the high instance count of char arrays is coupled with the high instance count of 
StringBuffer, we need a way to drill down further. We can then try to determine the source of char 
array creation by performing a backtrace, which shows what code is responsible for what instantiations of 
a particular object type. Using the backtrace in Optimizeit leads us to the StringBuffer class. Listing 
5.2 shows the implementation of StringBuffer, which uses an array of char internally for storage. We 
therefore move our attention to the StringBuffer objects, instead of the array of char, because they’re 
internally created to constitute a StringBuffer. Applying a backtrace to the StringBuffer identifies 
that the main() method is where 100% of the StringBuffer instantiations take place, as shown in 
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figure 5.4. In a more realistic situation, the backtrace would show multiple methods and would be slightly 
harder to figure out. However, the strategy remains the same; you focus on the code with a high 
percentage of instantiations and the greatest difference in count compared with equilibrium. 
 
Listing 5.2 Strings and StringBuffers store their values as array of characters. 
/* 
 * @(#)StringBuffer.java      1.78 03/05/16 
 * 
 * Copyright 2003 Sun Microsystems, Inc. All rights reserved. 
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. 
 */ 
 
package java.lang; 
 
[Some text deleted] 
 
* @author      Arthur van Hoff 
 * @version       1.78, 05/16/03 
 * @see     java.io.ByteArrayOutputStream 
 * @see     java.lang.String 
 * @since   JDK1.0 
 */  
public final class StringBuffer 
    implements java.io.Serializable, CharSequence 
{ 
    /** 
     * The value is used for character storage. 
     *  
     * @serial 
     */ 
    private char value[]; 
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Figure 5.4 Optimizeit backtrace showing all StringBuffers being allocated from the main() method of our class 
 

After drilling down on the method, the profiler has completed its role. Your next course of action is to 
identify the actual offending code within that method. This means you must comb through each line of 
code within the given method(s) with some serious concentration. We recommend that a competent Java 
developer other than the one who authored the code be the reviewer; this allows for a fresh perspective 
when the code is reviewed. No matter how good a developer may be, mistakes are bound to be made. And 
more times than not, finding these mistakes is quicker and easier with a new pair of objective eyes.  

After you successfully identify the bad code, you should make the appropriate changes and run the 
profiler again. Figure 5.5 shows another snapshot of heap graphs from Optimizeit. This time, however, 
you’re viewing a healthy application, with the memory-leak removal lines uncommented in the original 
code. The upper-left frame shows that the maximum heap remains constant while the heap being used 
peaks and then returns to a baseline level. This cycle continues and is very much in synch with the 
activity of the garbage collector in a typical healthy application. 
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Figure 5.5 How a healthy application behaves after reaching a state of equilibrium. The usage of the heap grows but returns 
to equilibrium after garbage collection, and the cycle repeats itself. 
 

As the example showed, it’s a straightforward task to identify classes and objects that are the source 
of a memory leak. This task become more difficult as the scale of the memory leak is reduced, because 
the difference between the equilibrium object counts is smaller and requires more application execution 
time. Next, we’ll show you how achieve the same goal using the freely available tool bundled with the 
Sun JVM, HPROF. 


