
Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

TSS Editors Note: 
Manning Publications and TheServerSide.com have partnered to bring you this chapter of Java Doctor, a 
new book, in which you can contribute to and get published! Manning is providing you free early access to 
these tips and in the spirit of cooperation we hope you will also contribute tips back to the authors. To 
proceed directly to the tips, scroll down to page 5 (section 9.3), or read on to learn how you can contribute 
and also have your name published.  

Reality: action and pitfall tips 
 

 In this Chapter 

 How it happened 
 Reality 
 Submission guidelines 
 Action tips 
 Pitfall tips 
 

  
It happened one Thursday night. The night, like most weekday evenings, was filled with 

keyboard clicking sounds as we cranked away at the chapters of this book. Collaborating via 
instant messenger, we were engrossed in edits and re-edits, adding and moving content, and 
checking for grammar and thought flow. We knew we had a lot of work to do to get the book out 
on schedule. Everything took a backseat, even our personal lives. But this was no ordinary 
Thursday night: “The Apprentice” would be on TV at 9PM, and that’s when all work ceased and 
we became glued to the glowing boxes in our living rooms. 

If you’re not familiar with “The Apprentice,” it’s a reality TV show on which contestants in 
business attire compete in teams over several weeks to get a job with Donald Trump. The day-to-
day trials and tribulations, politics, and drama between the individuals and teams come to a head 
each week when one contestant is fired. Reality TV had a grip on us and a lot of other people. 
The camera was there to capture things as they were, without a lot of scripting. Hmm. 

That’s when it struck us. 

9.1 Reality 
Why not have a “reality” chapter? After all, we’re dealing with troubleshooting, something 

we’re sure many people have war stories about. Like many other books, much of the material in 
this book is based on our factual knowledge. But where are the real-life, real-world elements? 
Where’s the drama? The trials? The tribulations? Why not have a chapter that lets people 
contribute their own troubleshooting tips and techniques to share with the world? It sounded like 
a great idea, and we were excited. 



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

We took our idea to the people at Manning and asked them to consider doing something with 
the folks at TheServerSide.com. If we could tap into the TSS community and solicit 
troubleshooting tips from the community, we believed we’d get an enormous response. As 
members of the community, we also wanted to give something back. So we decided that when we 
receive and accept a submission, we’ll not only use it in this chapter but also give full credit to the 
submitter. That’s right—submitters’ names (and contact information) will appear in print. Try 
that on your resume!  
 

Tip 

If you’re interested in sending us a troubleshooting tip for possible publication, email it to 
javadoctor@manning.com. We highly suggest that you read the tip submission guidelines 
discussed in the rest of this chapter. 

 
The idea evidently went over well with Manning and TheServerSide.com. However, they 

asked us to take care of some formalities. The most important is making sure submissions are on 
target with what we’re looking for. This chapter provides a clear explanation of our expectations, 
so contributions will have a high chance of being accepted. We want to include a large number of 
tips, and having guidelines in place will increase the hit ratio. So before you rush off an email 
with a story from the trenches, please look at the submission guidelines that follow. 

 

Note 

We’ll do our best to include as many tips as possible. However, we may not be able to 
include certain tips that are similar to the ones already submitted or that don’t conform to 
the guidelines, or if we’ve run out paper to print them on. 

9.2 Submission categories and guidelines 
As it turned out, we couldn’t finish watching that episode of “The Apprentice” because we 

got so wrapped up with the idea of including real-world troubleshooting tips. While Donald 
Trump was busy firing someone in the boardroom, we were coming up with ways to categorize 
tips and some simple guidelines.  

9.2.1 Tip categories 
We knew a hodgepodge of tips would be messy, so we came up with ways to categorize the 

content we received: 
 

 Action tips—These tips provide information about tool usage or techniques and how a tool 
can be ingeniously used to identify or solve a production issue. Such a tip could be about a 
little-known switch to a command-line tool or the JVM or a script you’ve written and 
found very useful. It could be a special technique for using a common tool such as 
vmstat (see chapter 2 for information about vmstat). A good criterion for an action tip 
is that it involves a degree of activity from the reader to be able benefit from it. That is, 
the reader must perform some actions to use the tip. 



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

 Pitfall tips—In chapter 6, we looked at common coding pitfalls. In that chapter, we examined 
code that we’ve seen in many cases at many organizations. The code had a negative 
impact on scalability, performance, or manageability. We’re looking for similar advice in 
the pitfall tips category, but in a broader sense than just code. We’re interested in hearing 
about the kinds of architectural, programmatic, or design flaws you’ve seen in 
applications. Such a tip could describe how incorrectly configured firewalls can affect a 
cluster. Or, it could tell how an EJB is commonly written in a not-so-ideal fashion.  

 
A good differentiator between a pitfall tip and an action tip is that pitfall tips usually provide 

information that can be absorbed by the reader, who then benefits from it the knowledge. No 
action is required—unless the reader realizes that the pitfall is something they have in their own 
production system! On the other hand, action tips arm the reader with techniques or tools to 
diagnose certain problems that may arise in production systems. 

Within these two categories, there are additional classifications:  
 

 Infrastructure—Primarily focused on hardware, such as memory and the network 
 Middleware—Applications, identity, LDAP, portals, and other middle-tier products 
 JVM—Common pitfalls seen in any version of any vendor’s JVM 
 Database—Items that cover Java and interactions with databases, such as transactions 

 
It’s possible that any of the tips you submit may fit in more than one classification. After all, 

technology boundaries aren’t clear cut. We urge you to pick the classification you feel best covers 
your tip. If you feel it can’t be appropriately classified, we’re open to your suggestions. We may 
reclassify all the tips as we get a wider grasp on the total content submitted over time. 

9.2.1 Submission guidelines 
In addition to identifying the category and classification you feel your tip belongs to, be sure 

your tips adhere to the five basic guidelines set forth here. As we mentioned earlier, these 
guidelines are in place to increase the likelihood that your tip will be published. The goal of the 
guidelines is to keep the tips aligned to the overall intent of this book. 

Production-related 
We all know that when stuff hits the fan, it’s in production. Therefore, the first guideline is that 
your tip should be applicable in a production environment. This means certain characteristics can 
be attributed to your tip. For example, its intrusion on a running application should be minimal. 
Using a Java debugger technique, although useful, isn’t applicable in a production environment, 
because the load of the debugger itself can destabilize the production environment. 

Related to systemic problems 
We’d like to hear how you tracked down issues that affected scalability, availability, 
performance, and manageability. How were you able to determine a bottleneck, undo it, and 
increase performance? How did you detect a connection pool issue? How were you able to 
monitor an application in ways that were extremely insightful? What technique did you use to 
identify scalability hurdles? 



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

Unique and creative 
The most interesting tips are always the ones that are unique and creative. This book has covered 
many tips and techniques; however, we’re looking for ingenious ways of doing interesting 
troubleshooting. 

Widely useful 
We prefer your tips to be applicable to a wide body of administrators, developers, and architects 
in a wide range of technologies (within the Java/J2EE universe), as opposed to being useful only 
in a unique, proprietary system. This may mean using some of the tools that come out of the box 
with many operating systems, JVMs, and best-of-breed vendor tools.  

The more people can immediately use your tip, the more likely it will be published. This 
doesn’t mean your tip should be technically simplistic; it just means that someone reading the tip 
should be able to say “Hmm, I think I’ll try that now!” and be able to do so. 

Consise and in the correct context 
When you’re writing, make sure you present the proper contextual information. You’ve 
troubleshot an environment, and as a result, you’re familiar with it. Writing a tip may involve 
making certain assumptions about what the reader knows—assumptions you take for granted due 
to the intimacy of the environment you worked with. Providing a proper context allows the reader 
to make fewer assumptions, understand the motivations and forces behind your troubleshooting 
effort, and thus be more appreciative.  

We’d also appreciate your keeping tips to fewer than 250 words, but we’ll leave room for 
exceptions. 

9.2.3 Sending your submissions 
If you’re interested in sending tips, please do so at javadoctor@manning.com. Be sure you 
include your name and, optionally, the email address you’d like printed next to your tip. The 
deadline for tip submission is January 30th, 2005, so hurry! 

We’ll kick off the process by providing several tips of our own in the following sections. If 
you plan to send a submission, you may want to read our tips to get a feel what we’re looking for. 
As always, if you have any suggestions about the material, let us know. 

9.3 Action tips 
A dog may be a man’s best friend, but a good troubleshooting technique is ours. Following 
are some of the best tips from TheServerSide.com. Try them out!  

Tip 

If you’re interested in sending us a troubleshooting tip for possible publication, email it to 
javadoctor@manning.com. We highly suggest that you read the tip submission guidelines 
discussed earlier in this chapter. 

9.3.1 Action tip #1: Java and the CPUs 
By the authors, The Java Doctor 



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

We were assigned to an architecture assessment project at a large bank for an application that had 
been having tremendous performance problems for several months. Running through the usual 
checks described in this book, it became evident that the application was CPU starved. On further 
investigation, we determined that 4 CPUs were allocated to the application in a large Sun E10K 
box consisting of 32 CPUs. We also found that certain CPUs were completely idle while the 
remaining CPUs were assigned to other applications. When we asked why these CPUs were idle 
and whether they could be allocated to the ailing application, the administrative team responded 
that the CPUs were made available only when the need arose or a specific request was made and 
that the idle CPU would not be released. This seemed to be a political stance more than anything 
else, and in our opinion the need to maintain orderly distribution of resources shouldn’t hinder the 
critical need for the resources. Suffice to say, our architecture assessment report suggested a 
review of this policy and the allocation of one of the idle CPUs as the quickest remedy for the 
application.  

In another, very similar, situation, the client was fuming about how slowly a Java application 
ran on a four-CPU Sun system. Starting on the usual path, which was to get a feel for the problem 
and other externalities involved, we raised an important question: how many other applications 
ran on the server. The answer was that the server was entirely dedicated to the application. 
However, looking at the CPU utilizations, it was clear that one CPU always sat idle. Taking a 
psrset, we confirmed that the application wasn’t using all four CPUs, but just three. After the 
client escalated the matter within the organization, it turned out that the infrastructure group 
wanted to preserve the extra CPU for future work. (We still haven’t figured out the rationale 
behind this.)  

You need to be aware that in organizations, multiple groups are involved in the workings of 
an application. Not all groups are on the same page, making it the troubleshooter’s responsibility 
to check everything that would otherwise seem like a safe assumption. In this case, everyone on 
the development team assumed that the application was using all the CPUs. In the end, our 
discovery didn’t completely resolve the problem, but it helped improve application throughput. 

9.3.2 Action tip #2: Sniffing network communication 
By Kevin Tung, Software Architect, kev_tung@earthlink.net 
The first step in troubleshooting any type of application defect is to isolate the problem. 
Distributed applications generally complicate the process of problem isolation. One of the best 
tools available to developers is the Ethereal network protocol analyzer, an open-source network 
sniffer. 

Ethereal is lightweight and can be used to capture network traffic to and from your 
development and production machines. By seeing the actual TCP/UDP payload on the wire, you 
can easily determine the scope of the problem; that allows you to zero in on the particular node 
within which the problem resides. 

Due to the prominence of web services / SOAP as a means of remote invocation, I’m often 
faced with SOAP-related problems that are hard to trace back to a specific origin. Vendor-
generated stubs and proxy classes add another layer of indirection that makes troubleshooting 
web services difficult. In these circumstances, I often use Ethereal to validate the actual SOAP 
messages being sent and received. Sometimes I uncover subtle nuances in vendor 
implementation, and at other times I uncover errors of my own doing. Here’s a case in point: 

 
 Context—Building a SOAP web service client for a large pharmaceutical firm based in 



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

Denmark. 
 The requirement—Two disparate web sites need to share a common authentication 

mechanism. One of the sites is running on IIS/ASP.Net, and the other is running on 
Apache/Resin. 

 The approach—Generated stub classes wouldn’t work well because the WSDL could change 
and recompilation of the client side code is impossible. Instead, the SOAP calls must be 
made programmatically with parameters and types defined in deployment descriptors. 

 The problem—Without the convenience of WSDL binding, we had to figure out all the right 
options to set for the proper interoperation between Axis SOAP client and the Microsoft 
web service. Our first attempt using Axis’s default configuration didn’t work and returned 
little useful information. 

 The solution—Using Ethereal’s packet-capture capability, we were able to trap and compare 
the Axis-generated SOAP messages against Microsoft’s expected message. It turned out 
that SOAPActionUri needs to be set properly. Once we changed that parameter, the two 
web servers happily interchanged authentication info. Ethereal allowed us to quickly 
identify the problem and easily resolve it instead of reading pages and pages of 
documentation or relying on a Good Samaritan to respond to our newsgroup postings. 

To get Ethereal, go to www.ethereal.com/. 

9.3.3 Action tip #3: Isolating JDBC misuse 
By Derek C. Ashmore, dashmore@dvt.com, author of The J2EE Handbook 
 Tip—Use a JDBC profiler to detect JDBC resource leaks in applications prior to production. 
 Background—After a lengthy testing period in testing environments, my client applied a 

service pack to their EJB container in production. Shortly after that, one of their most 
high-volume applications was erring out on all requests because it had allocated all 
available database connections allowed by its database connection pools. On a gradual 
basis, other applications affected by the same upgrade began experiencing the same 
symptoms.  

 Observations—We suspected that connections were being leaked (opened, but not closed), 
but we were puzzled as to why the same code worked properly prior to applying the 
service pack.  

 Actions—In the short term, we assigned an administrator to recycle all containers periodically 
to avoid outages due to the connection leaks. This bought us time to analyze the issue on 
test equipment. 

 
Visual inspection of the code didn’t reveal the source of the connection leaks. Many applications 
hadn’t centralized connection management, so I needed a general solution for detecting 
connection leaks.  

Fortunately, I had used an open-source JDBC profiler called P6Spy (www.p6spy.com). It 
works as a proxy for other JDBC drivers, so it can log SQL execution times for performance-
tuning purposes. Because it was open source, I altered it slightly to report connection leaks. Since 
then, I’ve further enhanced it to report leaks for other types of JDBC objects, such as 
Statements, PreparedStatements, CallableStatements, and ResultSets. 



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

Since then, before deploying builds to production, I run a test sequence using P6Spy to detect 
JDBC leaks. 

9.3.4 Action tip #4: JMX to the rescue 
By John Musser, jrmusser@hotmail.com 
The command line is your friend. 

In these days of ubiquitous GUI admin tools like those in front of everything from Tomcat to 
WebLogic to LDAP servers, it can be easy to forget just how useful good ol’ command-line tools 
can be. As any decent system administrator can tell you, a GUI can be handy at times, but trying 
to perform the same operation repeatedly or performing the same action across a cluster of 
servers can be slow, error-prone, and downright tedious through a GUI. There’s an old admin 
adage that says “If you do it more than once, script it.” Even to a Java developer, this can be sage 
advice.  

We encountered a situation in which a customer was running multiple applications on a 
WebLogic server cluster; they wanted to know how many user sessions were active at any given 
time. Time was short, and we didn’t have the luxury of developing a custom application to dig 
into the MBeans themselves; nor was there time (or authority) to instrument the application code 
itself. Using the WebLogic console also wasn’t an option because using that UI required 
repeatedly clicking across applications and clusters in order to get sum totals. In this case, it was 
WebLogic’s weblogic.Admin command-line interface to the rescue. 

This handy tool, often used for WebLogic administration and configuration, served our 
monitoring needs nicely. Because all WebLogic services are exposed as JMX MBeans (just like 
those from most of the major application servers), we were able to get the count of active sessions 
right from the command line. In our script, we summed the totals across all the applications and 
servers and presented the customer with a clean tabular output showing exactly how many users 
were currently in each application and in the system as a whole (yes, some sessions may have 
been stale and awaiting to expire, but with a 30-minute timeout, these were limited and could be 
factored into the calculation). 

As an example of how the weblogic.Admin tool works, here’s a basic administrative 
command to shut down a server: 

 
java weblogic.Admin -url <hostname:port> -username <user> -password 
<mypass> SHUTDOWN 
 
In our case, we needed a command that looked like the following query (note that this is very 
implementation- and deployment-specific): 
 
java weblogic.Admin -url <hostname:port> -username <user> -password 
<mypass> 1 -GET -pretty -mbean 
mydomain:ApplicationRuntime=myserver_explodeweb,Location=myserver,Name=
myserver_myserver_explodeweb_exploded_mywebapp,ServerRuntime=myserver,T
ype=WebAppComponentRuntime -property SessionsOpenedTotalCount 
 
We put this in a script that repeated it for each application and cluster we were interested in, and 
then summed the result. 



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

Note that in order for this technique to work, you first need to set Enable Session Monitoring 
on the WebLogic server. You can do this in the console or, of course, via the command line. You 
can verify this setting via the following command:  
 
java weblogic.Admin -url <hostname:port> -username <user> -password 
<mypass>  
GET -type WebAppComponent -property SessionMonitoringEnabled 

 
Remember, everything that can be done in the console can be done via command line. You 

can also do some things via command line that can’t be done in the console, such as interact not 
just with the Administration Server but also with Managed Servers—something quite handy when 
the admin server has crashed.  

9.4 Pitfall tips 
We all know the saying that a wise person is one who learns from his mistakes, but a wiser person 
is one who learns from the mistakes of others. In that spirit, this section will highlight some 
common problems that occur in enterprise systems and discuss the symptoms they display. It 
covers problems that we’ve encountered numerous times in production environments. We expect 
to see them again in the future without fail, even after the virulent, stampeding success of this 
book! Well, anyway, the idea is to help you home in on a similar problem quickly and 
comfortably once you’ve acquainted yourself with what’s described here. Better yet, these tips 
will make you aware of issues that will lead you to take more preventive measures, and an ounce 
of prevention is always better than a pound of cure.  

 

Tip 

If you’re interested in sending us a pitfall tip for possible publication, email it to 
javadoctor@manning.com. We highly suggest that you read the tip submission guidelines 
discussed earlier in this chapter. 

9.4.1 Pitfall tip #1: Check the firewall 
By the authors, The Java Doctor 
We’ll describe a problem we faced while trying to figure out why a certain application kept 
failing, especially during the wee hours of the morning. The client had a web-based application 
that catered to a large user base. The application was required to have high availability, and 
because of that the customer required that any unplanned outages should be minimal. For each 
outage, a report needed to be filed and tracked to ensure the problem wasn’t repeated in the 
future.  

Unfortunately, the application had at least one unplanned outage per day. At the point we 
were called in, the application development team as well as the operations team had run out of 
ideas and theories as to the source of the problem. The striking part was the time at which the 
application suffered the outage: the early hours of the morning, just as the first few customers 
signed in. The users weren’t happy that the application repeatedly failed on them, day after day. 

After a close look at the application logs, it became clear that the application failure occurred 
around the time that database connections were refreshed. This in itself was an enigma: Why did 



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

the application attempt to refresh the database connections? And this possibly had something to 
do with the application server not being able to create a new connection pool. We first started 
looking into the source of this problem, hoping to catch a lucky break by solving why the 
connections couldn’t be reestablished. However, the source of this problem turned out to be more 
obvious and also less relevant to the real issue.  

As the last few users signed off at the end of the previous business day, the database 
connections in the pool sat idle. After a few hours, some idle connections started getting timed-
out by the database server. Therefore, the application database connection pool began dropping 
connections but held on to the stale connection objects.  

As the first users logged in during the early hours of the morning, the database connection 
threw a SQLException. The exception was thrown because an attempt was made to execute a 
SQL query using a stale connection. When the application connection pool received the 
exception, it attempted to refresh the whole pool. 

We were finally able to explain the anomaly of why the database connections were being 
refreshed. But we still had to deal with the main problem: why the application was unable to 
create a new connection pool. The inability of the application to create a new connection pool 
meant that the end users could no longer use the system, because access to the database was 
severed. We tried a number of tools and techniques, including an attempt to reproduce the 
problem in the test environment by waiting overnight for the database connections to become 
stale. The test environment was able to easily re-create the connections to the database, much to 
our dismay. Why was the problem only occurring in production?  

Then it was time to request the deployment diagram for the production environment. We 
wanted to see how the database server and the application server communicated. The presence of 
a firewall between the application server and the database in production immediately caught 
everyone’s attention. The test environment didn’t have that, and so we excitedly started viewing 
the configurations of the firewall. The firewall turned out to be the culprit, because it was 
configured to keep connections alive for a longer duration of time.  

This might not have been much of a problem if the database wasn’t running near capacity 
with a limit on maximum number of open connections, but here’s how the two interplayed. The 
application would establish connections to the firewall, which would then open separate 
connections to the database. When connections to the database became stale, the application 
attempted to drop its connection pool and re-create a new pool of connections. However, because 
the firewall was configured to retain connections for a long span of time, it retained the older 
connections going to the database server. The refresh couldn’t happen because the number of 
connections being attempted was greater than the database’s maximum limit. As a result, the 
refresh of the connection pool failed. 

The solution was simple: Change the firewall setting to reduce the time for which the 
connections were held alive.  

9.4.2 Pitfall tip #2: Pool connections 
By the authors, The Java Doctor 
A client had an outage problem with their web-based application and couldn’t determine why 
they occurred during peak hours. They had decided not to use database connection pools and 
instead were creating a new connection for each request to the database. As a result, during peak 
load periods, a large number of connections were instantiated and opened to the database. Their 
rationale for giving up on database connection pooling was that an average programmer writes 



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

code with lots of bugs, and they couldn’t force a programmer to use the connection pool properly. 
If their programmers didn’t properly code or didn’t return the connection back to the pool, then 
the total available connections would be exhausted. This does happen in many development 
shops, so their rationale may have been justified—but their workaround wasn’t. 

Digging in deeper, we found that the application stopped responding due to very high lock 
contention at the java.sql.DriverManager level. The client couldn’t understand why a 
simple lock contention caused the application to stall. After all, they argued, slight performance 
degradation was to be expected during high loads.  

It’s important to understand that when lock contentions exist, as they did with the 
synchronizations in DriverManager, performance degradation won’t be linear, and a spike in 
load can cause the system to stall. The fear of bad programming led the client to bad application 
design. The solution was to use connection pooling, which is a necessity especially when a large 
number of connections need to be made to the database. Improper programming shouldn’t be 
acceptable when you’re writing enterprise-level applications; instead, a rigorous process should 
be in place to enforce and encourage good coding techniques. 

With the connection pool in place, the application outages were reduced by 70%. The 
remaining outages were due to buggy JNI code. This code was later identified and eventually 
resolved. Ah yes, another satisfied customer. 

9.4.3 Pitfall tip #3: Data latency in clusters 
By the authors, The Java Doctor 
We were called in by a client whose Java application stopped displaying data correctly when the 
directory servers failed-over. The application required data that was stored and updated in a 
directory server. To improve application availability, redundancy had been built it. The directory 
server architecture incorporated redundancy as well, by having one primary server and another 
backup server. 

The two directory server IP addresses were known by the application, and when the primary 
failed, the application established connections with the backup. For the data to be consistent 
across the two directory servers, the configuration enforced the two to synch up any changes 
made. 

However, the Java application just wouldn’t recover from a failover by the directory servers. 
The application showed incorrect data once the failover had occurred. The values the application 
had reported only moments before the failover were now different. The complexity of the 
application required that we reduce the problem down to simpler terms and solve it. We therefore 
wrote a basic test application that changed data in the directory server and then requested the 
changed entries.  

After we wrote the application, we attempted to re-create the test case in which their 
application had been failing. After running the application, we intentionally failed-over the master 
directory server. The directory server architecture replaced the failed directory server with a new 
master directory server, as correctly claimed by the infrastructure group. However, what the 
infrastructure group got wrong was the fact that the failover wasn’t perfect, because the test 
application retrieved stale data from the new master directory server. The stale data had only 
moments earlier been updated before we flicked off the switch of the primary directory server. 
The test application showed that the directory servers were the ones not returning correct data to 
the application. And all along, the assumption had been that the Java application was at fault.  



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

The client was finally convinced of the nature of the problem, which was due to 
synchronization delays between the directory servers. The synchronization configuration of the 
directory servers was three seconds. The solution was simple in this case: The configuration for 
synchronization was reduced, because three seconds was too long. Within this time frame, crucial 
data written to one directory server didn’t synchronize with the backup in case of a failover. We 
reduced the synchronization time to a 100 milliseconds. Problem solved, case closed. 

9.4.4 Pitfall tip #4: IO buffering 
By the authors, The Java Doctor 
We received an emergency call requesting assistance and fast! A client that was known for good 
software-engineering processes and excellent architects had run into a problem. They had spent 
six months developing a large enterprise application for B2B transactions, but during its first load 
test it had failed to achieve the expected SLA. The application couldn’t scale over a few hundred 
users, and the response times were unacceptable.  

We flew in and were immediately taken to a conference room, which was referred to as the 
“war room.” The application’s architecture was drawn on a white board, showing the class, 
deployment, and sequence diagrams. The team knew what software engineering was about. They 
were fairly confident about their skills—so much so that they had openly begun wondering 
whether Java was up to the enterprise level.  

The client took us through all the tests and analysis they had done, from running profilers to 
writing micro benchmarks, but they couldn’t isolate the source of the problem. They even had 
detailed performance numbers taken by each subsystem of their application through the use of 
performance logs. They had definitely given performance some thought in the design process, by 
ensuring that their application logged the time taken by each transaction and, for each transaction, 
the time taken in each component. After reviewing what had already been done, we decided to 
take the driver’s seat.  

It was time to get down and dirty. We started looking at the operating system during the load 
runs. It was initially puzzling to see that the CPUs were on the idle side when they shouldn’t be in 
an application with significant business logic. We used sar –d 2 1, which shows the average 
queue size of jobs waiting to be written to disk as well as the average service time of each request 
before it’s written to disk (details in chapter 2). Although the application wasn’t logging large 
amounts of data, including the performance log, the disk was showing excessively large average 
disk queue lengths—over 30 in our case. The CPUs were idling, and the disk queues were large. 
Very strange, we thought. It must be related to logging, but we had seen log files in other 
applications being written to at a much faster pace without an issue.  

So we moved to the next step of pulling up code where the logging was occurring, and to our 
surprise, the output file streams weren’t using any buffering (such as the 
BufferedOuputStream wrapper). We modified the code, the disk queues disappeared, and the 
application worked like a breeze. 

9.4.5 Pitfall tip #5: Throttle when required 
By the authors, The Java Doctor 

One client we worked with admitted that their hardware wasn’t the best. In fact, the servers 
were slow. The client was aware of this problem but couldn’t replace them in the very near 
future. The problem they wanted solved was that their application was unable to respond to users 



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

during peak work times. They wondered if there was a simple way to throttle the application 
server so as to accept all incoming user requests but still be able to respond to the users. 

To enable all incoming requests to be accepted by the application, we first ensured that the 
web server’s incoming request queues were large enough to hold user requests. However, our 
strategy revolved around configuring the worker threads in the application server. Setting the 
number of worker threads in a J2EE application server is a tricky issue. It’s a common practice to 
have a large number of worker threads in application servers, to avoid making clients wait. 
However, this becomes a problem, because a very large number of worker threads is detrimental 
to the application’s overall throughput. If the CPUs are already maxed out, having more active 
threads than a certain threshold (specific to the server) reduces the throughput of the server and, 
at a certain stage, can cripple it.  

All servers have a certain threshold of work that they can do, after which any additional work 
starts queuing up. With more threads, the server has to do the additional work of context-
switching between threads. For a server already overloaded with work, context-switching takes 
priority. This can lead to a server doing no useful work, because its gets bogged down in context-
switching between threads.  

In our case, we wanted the number of worker threads in the application server to be 
sufficient. This would mean having a balanced number of worker threads to enable optimal 
performance for the given server. We determined the numbers of ideal worker threads through 
load testing.  

When J2EE application servers run out of worker threads, the web server holds onto the 
requests in its queue until they time out. However, if the application server can service the 
requests in a sufficient time, then the worst that the end users notice is a long pause. But they do 
get their response, and the operations folks don’t have to bounce the application servers to get the 
servers out of a state of doing very little except context-switching threads.  

The place that needs attention when going with an approach of throttling an application based 
on its worker threads is the callback logic. A callback is when the application uses certain logic or 
when the configuration is such that a request made by a worker thread requires that the request be 
sent out of the container and back in. A callback in an application server with a drained thread 
pool results in a deadlock.  

One source of a callback in an application is when an object opens a URLConnection to a 
resource within the same container. Another is deployment configuration related where J2EE 
application servers enforce a callback when invoking an EJB, as a different thread executes the 
EJB then the one calling it. If you’re using the throttling approach and run into a deadlock, get a 
thread dump to determine where the callback is being made from (chapter 4 has details on 
figuring deadlocks based on thread dumps).  

In our case, our solution worked to the extent that the application became slow during peak 
hours, but it continued to service the clients. This was an acceptable solution to the client, and in 
the absence of better hardware, we felt it was the best alternative. 

9.4.6 Pitfall tip #6: Use JVM as prescribed 
By the authors, The Java Doctor 
A potential client was experiencing constant down times with their application, which consisted 
of an applet on the front end and servlets in the back end. They complained that they had to 
constantly kill the JVM process that housed the servlet container, thus dropping their applet 



Draft Manuscript - Not Final.  
Please send your comments to the authors at javadoctor@manning.com 

clients and losing any state information. This occurred with more frequency as the load reached a 
mere 100 concurrent users.  

A conference call was set up for one of us, the client’s tech lead, and several of their 
developers. After the initial onslaught of blaming Java for being slow and unreliable, the true 
discovery process started. The client’s perspective was that since the JVM was the cause of the 
problem, the creators of the JVM needed to address the issue.  

The conference call wasn’t meant to solve their problems on the spot but was meant to advise 
them on possible remedies. The first goal was to identify the architecture so we could build a base 
on which to make recommendations. Figure 9.1 shows a rough view of their architecture, based 
on the information collected during the call 
 

[Picture of Applet Servlet JVM Scripts Database] 
Figure 9.1 Client architecture 

 
As they described the architecture, it started to become clear that they were a very heavy UNIX 
shop and looked at the JVM as a kernel for the servlet container. For them, since a UNIX process 
could be killed externally, a thread in the virtual machine should be able to be killed just as easily 
(for example, the kill command in Solaris). Their analogy was that the OS was to a process 
what the JVM was to a thread. They constantly said, “A thread is the same as a process.” At some 
level this may be true, but the differences are huge. Wiping out a process releases the entire 
address space allocated to that process. Killing a thread externally can have unpredictable or 
uncontrollable consequences. The client disagreed and insisted the two were identical. With these 
types of concepts held fervently, we knew there were darker and murkier areas in the architecture 
yet to appear. Yet we hadn’t gotten to the JVM misuse! 

As the architecture became clearer (settling into that shown in figure 9.1), the question that 
begged to be asked was, why did they want to kill threads? Assuming it could be done safely 
externally (from outside the JVM), what was the reasoning? The answer was that they were doing 
Runtime.exec()s from within their servlets and calling dozens of Solaris shell scripts. The 
scripts were themselves opening connections to the database, querying it, writing the results to a 
file, and then closing the connection. Occasionally, they said, the scripts would hang. So they 
wanted to kill the thread that was hung by the script. Since they couldn’t kill the thread, they 
killed the whole JVM process. They wanted to know why the JVM couldn’t have a parameter 
passed to it to indicate that a thread reaching a certain timeout period should automatically be 
terminated. A bad design was being blamed on the JVM, and we couldn’t let that happen! 

Here we had an example of misuse of the JVM. Not only were they not using database 
connection pools, but they were bound to have heavy I/O latency issues due to large report 
queries being put into UFS files. Their solution to the I/O issue was to set up a SAN, and now, 
according to them, their only problem was the misbehaving JVM. 

Since time was limited and the call was a freebie for the client to get them going in the right 
direction, we focused on the JVM issues. We put the database, I/O, and other yet-to-be 
discovered issues on the back burner. We explained that making calls to scripts from the JVM 
wasn’t a good practice. It was a well-known way to destabilize the VM, because the VM had no 
control over what happened once the script was executed. Scripts couldn’t report back exceptions 
to the JVM, and the state of the script couldn’t then be determined. The client finally understood 
and began looking for possible solutions to fix the problem. 


