OpenCms and Apache Velocity

Extending OpenCms's functionality with modules

This article explains the process of extending the functionality of OpenCms using the built-in module mechanism. In this case, I will extend OpenCms to provide Apache Velocity template support.

Introduction
OpenCms is an enterprise-class Java-based content management system (CMS) designed to provide services for managing large amounts of content for web-based delivery. As you might expect, it runs as a Java servlet, storing data in a relational database.

While the real meat of OpenCms is its web-based workplace for editors and administrators, OpenCms is designed to serve information directly to the end user. To that end, OpenCms provides a templating mechanism to take the contents of a resource in the CMS and format them for presentation to the end user. In previous versions of OpenCms, this was done using a proprietary XML-based language called XML Templates. However, beginning with the 5.0 release, the preferred template mechanism is JSP. While JSP is a quick and powerful way to create feature-rich templates in OpenCms, development of the templates usually requires work by a competent Java coder. While OpenCms does have its own taglibs, custom scriptlets are necessary for even basic features like creating dynamic site navigation.

In this article, I want to explore the possibility of adding Apache Velocity template handling in addition to JSP. Velocity templates overcome many of the complexities inherent in JSPs and is, many would say, a better implementation of the MVC pattern. If you are unfamiliar with Velocity, you may want to read Rob Harrop's introduction:

http://theserverside.com/news/thread.tss?thread_id=28002

I want to add Velocity templates as an extension – a module, in OpenCms parlance – that can be used seamlessly with OpenCms. Modules provide a simple, portable way of adding to the base functionality of OpenCms without having to modify a single line of OpenCms code. What I want to illustrate in doing this is how easy it is to fit OpenCms into your existing architecture and in-house expertise, rather than having to fit the enterprise around the CMS.

Creating a Module:

An OpenCms module serves as a portable container that holds code (classes and jars as well as JSP files), content, and templates, and other files. Really, the module concept is pretty simple. There are no required APIs that must be implemented or any sort of object registration, although the module interface does give you access to the entire OpenCms API, should you need it. In fact, it is easier to think of a module as a set of directories that OpenCms has a special awareness of. Classes in the module are automatically loaded during startup, as are jar files. All files in a module are maintained under the CMS's version control mechanism. And, best of all, modules can be exported from one OpenCms instance and installed on another.

Our goal here is to create a module that will provide Velocity templating services to resources in the CMS. The first step in achieving this goal is to create a new module. Creating a module is as simple as completing one form. To do this, log into OpenCms as the administrator. Then, go to the administration view (choose Administration from the view dropdown list at the top of the page) and click on the Module management icon. Click on the magic wand icon to create a new module.

[image: image1.png]
The important fields are Package name, Version, Module name, and Description.

Package name should be in the form of a Java package. I'm calling mine tv.aleph_null.opencms.velocity.

Version is used to handle upgrades to the module. The default, 1, is correct. Each time a new version of this module is released, you ought to update the version number. Simple dot notation is supported, so a minor version upgrade would be 1.1, while a major upgrade would be 2 (or 2.0, if you prefer).

Module name allows a human-friendly title for the module: we'll call ours OpenCms Velocity Template Support.

The Description field is used to provide a basic description of the module. Since it is the only built-in field for module information, module maintainers often use the field for critical information about the module (e.g. major differences between current and previous versions, license information, etc.).

The only other two fields that need to be modified from their default are Author and Email, which should be set to your name and email, respectively. For information on the rest of the fields in this form, click on the help icon at the upper-right of the workplace.

Once you have created the module, the module structure will be automatically created in the /system/modules directory of the OpenCms installation. You can navigate to it by switching from the Administration view back to the Explorer view and using the left-hand tree view to go to /system/modules/tv.aleph_null.opencms.velocity/.

OpenCms creates four folders for you. These folders have special significance to OpenCms. While it is perfectly acceptable to create other folders in the module, you should not delete any of these four special folders.

In fact, of the four folders, we will use three in the course of creating this module:

· lib/ is the location for storing jar files that your application will need. We will use it to store the velocity jar file.

· classes/ is for storing Java class files. In fact, if you look inside classes/, you will see that the requisite directory structure, classes/tv/aleph_null/opencms/velocity/, has been created for you. We will store our custom Java classes here.

· The templates/ directory is for storing XML Template files. Later on, we will be creating one XML Template file to instruct OpenCms on how to load the Velocity template handler.

The next thing to do is create the necessary code.

OpenCms Template Handlers

There are a number of ways that we could add Velocity template handling to OpenCms. One approach would be to add a new resource type for Velocity templates, effectively creating a new type of content in the CMS system. For example, you can use such an approach to add XSLT and extended XML support to OpenCms. In this case, however, we're specifically interested in the template mechanism, so the simple and straightforward approach is to add a new template handler to OpenCms.

In OpenCms, template handlers perform the task of taking a request and determining how the requested resources should be formatted. As I mentioned above, there is already more than one method to handling formatting, including the deprecated XML Template language and the newer JSP-based templates. When a new page request comes to the OpenCms servlet, the servlet looks up the requested resource's template file (this template, incidentally, is always in the old XML Template language). This small template file is closer to a configuration file than a formatting template. It indicates which template handler class should be used in the request. It also references the source template file (if applicable) for the resource. In a few moments, we'll take a look at an example file, but first, let's look at the implementation of a template handler.

Template handler classes must implement the interface com.opencms.template.CmsTemplate. In the OpenCms distribution, there are already several implementations of this interface, including a useful abstract class, com.opencms.templates.A_CmsTemplate, which provides generic handling for many of the methods specified in the interface. Our own velocity template class, however, will look very similar to the built-in com.opencms.flex.CmsJspTemplate class, which handles JSP-based templates. We can extend that class, then, to create our own CmsVelocityTemplate class.

The CmsVelocityTemplate Class

At this point, we will step through the code of the CmsVelocityTemplate class. The full code is available for download at [[Insert link]].

Here's the beginning of the code (sans Javadoc):

package tv.aleph_null.opencms.velocity;

import java.util.Hashtable;

import java.util.Map;

import java.util.Properties;

import java.io.StringWriter;

import org.apache.velocity.app.Velocity;

import org.apache.velocity.VelocityContext;

import com.opencms.core.A_OpenCms;

import com.opencms.core.CmsException;

import com.opencms.file.CmsRequestContext;

import com.opencms.file.CmsFile;

import com.opencms.file.CmsObject;

import com.opencms.flex.CmsJspTemplate;

import com.opencms.template.CmsXmlControlFile;

import com.opencms.template.CmsXmlTemplateFile;

public class CmsVelocityTemplate extends CmsJspTemplate {

 public static String VELOCITY_PROPS_FILE =

 "tv/aleph_null/opencms/velocity/velocity.properties";

 public CmsVelocityTemplate() {

 // This space intentionally left blank

 }

The VELOCITY_PROPS_FILE String should point to the location of the velocity properties file. Since we are dealing with a servlet, we will load the properties file with the classloader, so the path should be relative to the classpath. OpenCms takes care of the details of generating a classpath, so all we need to do is put the file in the classes/tv/aleph_null/opencms/velocity folder in our new module. Later, we will put the compiled Java class files in the same place. The classloader will load this class during OpenCms' initialization, so a default constructor will be called. There is not really an initialization that we need to do, so we'll leave this blank.

Now, there is only one method that we need to implement in this class: getContent(). This method will receive a reference to the current request's CmsObject (used for access to the CMS repository), the template name as a String, an element name as a String (this is actually used for XML Template files) and a Hashtable of XML Template parameters (also only used in old XML Template files). Given these parameters, we will fetch the requested resource, format it with the given template, and prepare the results as a byte array for return to the client.

As you may have noticed, of the parameters passed into the getContent() method, none point to the request, or even the requested file name. So the first order of business is to get the request and locate the requested resource:

 public byte[] getContent(CmsObject cms,

 String velocityTemplate,

 String elementName,

 Hashtable parameters)

 throws CmsException

 {

 String content = null;

 byte[] res = null;

 // Mainly, this is to catch any CmsException

 // thrown by accessing the CMS.

 try {

 // First, get resource that we are going to

 // put in template:

 CmsRequestContext requestCtx =

 cms.getRequestContext();

 String fileName = requestCtx.getUri();

 // Next, get file properties Map:

 Map props = cms.readProperties(fileName);

 // Now, get file content:

 CmsFile resFile = cms.readFile(fileName);

 int fileType = resFile.getType();

The first thing of note is the beginning of a try/catch block. Typically, OpenCms classes only throw com.opencms.core.CmsException. (This design flaw will be rectified in the next major release.) However, the velocity code throws a few different exceptions, depending on the nature of the error. For the sake of brevity (and since the only exception we can throw is CmsException), I've enclosed a large block of code inside of one try/catch.

Next, we use the CmsObject (cms) to get the com.opencms.file.CmsRequestContext object. The CmsRequestContext contains useful information about the request, as well as a wrapped request object. We can get the name of the requested file with the getUri() method of CmsRequestContext, and once we have the name, we can get the requested file's metadata (called “properties”) as well as the requested file (CmsFile) from the CmsObject instance.

In OpenCms, file metadata is stored separately from the file itself. Primarily, this is to allow for quick access to the frequently-used metadata (used for building navigation, amongst other things) without requiring the overhead of retrieving the entire file. Metadata is stored as a Map of String keys and String values.

Finally, the code gets the int resource type ID to find out what kind of file was requested. This template handler will only deal with plain text and page types:

 if(fileType == cms.getResourceType("page").getResourceType()) {

 // Must get the content from the body file:

 CmsXmlControlFile controlCode =

 new CmsXmlControlFile(cms, resFile);

 String bodyFileName =
 controlCode.getElementTemplate("body");

 CmsXmlTemplateFile bodyFile =

 new CmsXmlTemplateFile(cms, bodyFileName);

 content = bodyFile.getTemplateContent(null, null, null);

 } else if(fileType ==

 cms.getResourceType("plain").getResourceType()) {

 //Just get the content...

 content = new String(resFile.getContents());

 } else {

 throw new CmsException(

 "Unsuported file type. Only Plain and "

 + "Page documents can be handled by”

 + “CmsVelocityTemplate.");

 }

This block checks to make sure that the file type is either a page (HTML-formatted content) or a plain (text) file. If the file is of another type (binary, JSP, image, etc.), it throws a new CmsException. Otherwise, it fetches the file contents.

If the requested file is of type "page", there is a bit of work to be done in order to get the file's contents. For historical reasons, pages are stored in two files – the main file contains information about how the file is to be handled by the CMS, and the body file contains the actual content. The CmsFile to which we already have a handle points to the main (control) file, so to get the contents, we have to get the control code from the CmsFile, and then find out where the body file is and parse that file. Again, this whole process is a vestige of the old XML Template language. This old language used multiple tiers of XML files to handle processing. Here's the snippet of code (a subset of the last example) that handles this procedure:

CmsXmlControlFile controlCode =

 new CmsXmlControlFile(cms, resFile);

String bodyFileName =

 controlCode.getElementTemplate("body");

CmsXmlTemplateFile bodyFile =

 new CmsXmlTemplateFile(cms, bodyFileName);

content = bodyFile.getTemplateContent(null, null, null);
The CmsXmlControlFile contains an object representation of the XML Template data stored in the CmsFile (resFile). From the CmsXmlControlFile, we get the name of the body file (getElementTemplate(“body”)). Using that String as a key, we can create a new CmsXmlTemplateFile that contains the content of the template.

Finally, in a feat of astounding abstruseness, we fetch the actual text of the content of the body file by calling getTemplateContent() and passing it three null arguments. (The first, an Object, is used for callbacks that are never made, the second is a Hashtable for properties that aren't used, and the third is a String that can be used for grabbing a particular label from the XML file. We need the default, so we use null.) Finally, we have the contents of the file. (The next major version of OpenCms has a much more elegant way of retrieving file contents, and this odd construct will go away.)

Getting the text from a plain text file is significantly easier:

content = new String(resFile.getContents());

Once we have the file content, we are on the home stretch. We have the main text that the user requested. Next, we get the contents of the template file.

CmsFile templateFile = cms.readFile(velocityTemplate);

String templateContents =

 new String(templateFile.getContents());

The template is stored in a plain text file, so getting the contents is as easy as creating a new CmsFile and then calling its getContents() method. Velocity needs a String object, so we create the String from the byte[] returned by getContents().

Like other MVC architectures, Velocity uses a context (org.apache.velocity.VelocityContext) to pass data to the template. Since Velocity allows pull-style execution of templates, the VelocityContext can contain just about any Java object, and the template designer can access the object's methods.

VelocityContext ctx = new VelocityContext();

ctx.put("properties", props);

ctx.put("content", content);

ctx.put("request", requestCtx.getRequest());

ctx.put("session", requestCtx.getSession(false));

ctx.put("cms", cms);

//CmsVelocityTools tools = new CmsVelocityTools(cms, ctx);

//ctx.put("cmstools", tools);

The first thing we put in the VelocityContext is the Map containing the requested file's metadata. Then, we put in the content String. The request and the session will also likely be useful to the template designer. As we've seen already, the CmsObject is useful for many reasons.

Also, in the example above I included a commented out section that creates a new instance of a fictional CmsVelocityTools object and inserts this instance in the context object. A tools object, in velocity parlance, contains methods that make the template developer's life easier by formatting text or providing utility methods. Our tools class might, for instance, contain a method for taking a CMS resource identifier or VFS path and generating a URL or URI.

Now we're ready to merge the data into the template:

 StringWriter out = new StringWriter();

 Properties p = new Properties();

 ClassLoader cl = Thread.currentThread().getContextClassLoader();

 try {

 p.load(cl.getResourceAsStream(VELOCITY_PROPS_FILE));

 } catch (NullPointerException npe) {

 throw new CmsException("Could not find " +
 VELOCITY_PROPS_FILE,

 npe);

 }

 Velocity.init(p);

 Velocity.evaluate(ctx, out, "VELOCITY", templateContents);

 res = out.toString().getBytes();

 } catch(Exception e) {

 throw new CmsException(

 "[CmsVelocityTemplate] Error with velocity file: "

 + velocityTemplate + "\n"

 + e.toString(),

 e);

 }

 return res;

This code is probably the most straightforward section that we've seen thus far.

First, it creates a StringWriter into which the resulting content will be written. Next, it uses the classloader to retrieve the properties file.

Then, the Velocity singleton is initialized using the contents of the properties file and then it's evaluate() method is called, with the results being written to the StringWriter. Finally, if no exceptions occurred, a byte[] containing the results of the template evaluation is returned.

Once this code is compiled, it can be uploaded to OpenCms.

Uploading the Code

Now that we have the code written and compiled, we need to load it into our OpenCms module.

The first thing to do is upload the requisite Velocity jar, velocity-dep-1.4.jar. Navigate to the /system/modules/tv.aleph_null.opencms.velocity/lib directory and click on the magic wand icon in the explorer pane to create a new file. The last option in the list of file types is Upload new file – that's what we want to do. In the next form, we can browse to the local file and upload it (do NOT check the box labelled Unzip file). OpenCms will try to guess the type (binary), but will allow you to override its selection – leave it as binary. Using the browse dialog, select the velocity-dep-1.4.jar file and upload it. Once you've done that, you will need to navigate to the module's classes/tv/aleph_null/opencms/velocity/ folder and upload CmsVelocityTemplate.class.

If you already have a velocity.properties file, upload it, too. Otherwise, you will need to create a new file of type plain named velocity.properties. Make sure it is in the same directory as the CmsVelocityTemplate class. Initially, the properties file can remain empty, though you may want to peruse the Velocity documentation and make some customizations.

Once you have uploaded the class, publish the new module. The easiest way of doing this is to navigate to the /system/modules directory, left-click on the folder icon for tv.aleph_null.opencms.velocity, and select Publish Directly from the popup menu. Publishing will copy the class files into a location where the classloader can find them. Restart your servlet container so that the new classes are loaded.

Creating a New Velocity Template

Now that the code is installed and the server restarted, we are ready to start creating and using Velocity templates.

Currently, there is no place in our module for velocity templates. Add a directory named velocity/ in the /system/modules/tv.aleph_null.opencms.velocity/ directory. Inside this directory, we'll create a simple Velocity template, named demo_template.vm, that looks like this:

#set($title = $properties.get("Title"))

<html>

<head>

 <title>$title</title>

</head>

<body>

 <h1>$title</h1>

 <p style="background-color:#efefef;">

 $properties.get("Description")

 </p>

 $content

</body>

</html>

The above shouldn't look too daunting. Basically, it is HTML with one template directive, #set(), and a few template references (beginning with the dollar sign, '$').

The #set directive sets the value of $title to be the result of $properties.get(“Title”). As you may recall, in our CmsVelocityTemplate class, we put the properties Map into the VelocityContext under the name properties. That Map contains the metadata for the requested document (not the template's metadata). In this statement, we are accessing the properties Map to retrieve the requested document's Title metadata, and storing the value in the $title template variable. In the following lines, we use it to populate the <title/> and <h1/> elements.

Strictly speaking, the #set() directive is not required. It is simply more convenient than typing $properties.get(“Title”) twice. Since the Description property is used only once, there is no good reason to use #set(), and the property is retrieved only when it is needed.

Finally, you will recall that we placed the file text into the VelocityContext as a String. We gave it the name content. So, the $content reference inserts the file content into the template. Note, however, that the data in $content is not evaluated or processed at all – it is assumed to be text or HTML.

That's really all that there is to creating a simple template. Obviously, a real-world template will need a little more pizazz, but the official Velocity documentation provides all the information you'll need for that (http://jakarta.apache.org/velocity/)

Associating the Template with Content

The template is done, but it is not connected to any actual content. To do that, we need to create an XML Template file that will instruct OpenCms to use Velocity for templating instead of JSP. This file should go in the module's templates/ directory of the module and will look like this:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xmltemplate>

<template>

 <element name="velocity"/>

</template>

<elementdef name="velocity">

 <class>

 tv.aleph_null.opencms.velocity.CmsVelocityTemplate

 </class>

 <template>../velocity/demo_template.vm</template>

</elementdef>

</xmltemplate>

Really, there are only two important elements in this file. The <class/> element tells OpenCms which class to use. We want it to use the CmsVelocityTemplate class that we created. Directly below the <class/> element is a <template/> element that should point to the Velocity template we created in the last section.

Each Velocity template you create should have a corresponding XML Template file that looks like the above. Copy this file and simply change the location of the Velocity template.

Now, when a new page is created, the Velocity Demo template will show up in the template selection list. Selecting it will apply the Velocity template.

Navigate to the root directory and create a new page.

[image: image2.png]
Once the page is created, edit the file. Select the Velocity template from the Template drop down list, type in some text in the WYSIWYG editor, and save the file. When you view the file, the contents will be displayed inside the Velocity template:
[image: image3.png]
Summary
That's all there is to it! In the course of this article we created a fairly major extension to OpenCms – with around 100 lines of code and a few auxiliary files.

This module dealt exclusively with OpenCms' templating mechanism, but the module mechanism is not limited only to this sort of extension. Modules can be used to integrate custom UI components to the front end, change the behaviour of the OpenCms workplace, or add new data sources, administration icons, and forms to the back end. In short, modules can be used to customize almost any aspect of OpenCms, fitting the CMS to the needs of the enterprise, and not the other way around.

�ADD LINK TO THE CODE

The filename is OpenCmsVelocitySourceAndModule.zip

