
Pro Jakarta Velocity:

From Professional to Expert

Rob Harrop

ISBN: 1-59059-410-X

Available September 2004

Chapter 1: Introducing Velocity*

Chapter 2: Getting Started with Velocity*

Chapter 3: Using the Velocity Template Language

Chapter 4: Introducing Patters and Best Practices

Chapter 5: Creating Stand-Alone Applications with Velocity*

Chapter 6: Creating Web Applications with Velocity

Chapter 7: Using Velocity with Anakia

Chapter 8: Using Additional Velocity Tools

Chapter 9: Going Inside Velocity

Chapter 10: Extending Velocity

Appendix: Velocity Reference

*These chapters are included in the reader

Please note that the chapters included here are in their “beta” form, and are subject to

modification and correction before the final book ships.

About the Author

Rob Harrop is Lead Software Architect of UK-based development house, Cake Solutions

Limited. At Cake, Rob leads a team of six developers working on enterprise solutions for a

variety of clients including the Department of Trade and Industry, the Metropolitan Police and

NUS Services Limited. Rob, and Cake, specialises in both .NET and J2EE-based development,

with Rob having been involved with .NET since the alpha stages.

Rob is the author of Pro Jakarta Velocity (Apress, Not Yet Published) as well as co-author of

Pro Jakarta Struts (Apress, 2004), Pro Visual Studio .NET (Apress, Not Yet Published) and

Oracle Application Server 10g: J2EE Deployment and Administration (Apress, Not Yet

Published).

In his limited spare time, Rob enjoys playing about with different technologies, his current

favourites being Groovy and AOP. Rob is a committer on the open source Spring project

(www.springframework.org), a Java and .NET application framework built around the principle

of Dependency Injection. When not sat in front of the computer Rob usually has his head buried

in a book and prefers the fantasy parodies of Terry Pratchett’s Discworld.

About the Technical Reviewer

Jan Machacek is lead programmer of UK-based software company Cake Solutions

Limited(http://www.cakesolutions.net), where he has helped design and implement enterprise-

level applications for a variety of UK and US based clients. In his spare time he enjoys

discovering new software and hardware technologies. Apart from Java, Jan is interested in the

.NET framework and non-procedural and AI programming.As a proper computer geek, Jan loves

the Star Wars and The Lord of the Rings. Jan lives in Manchester, UK, and can be reached at

jan@cakesolutions.net.

Introduction

As Java programmers we should consider ourselves lucky. We have a vast range open source

tools available to us. For almost any problem you can conceive there are numerous open source

tools that can be used to solve that problem. This is especially evident in the glut of MVC

frameworks available for building Java-based web applications. It was while I was working on a

book for one of these frameworks, Struts, that I realised, that although the ability for Struts to use

different technologies for the View layer of the MVC triad was much lauded, these View

technologies suffered from a lack of exposure and documentation. During the course of writing

the Struts book I worked on a single chapter to demonstrate Velocity integration but it quickly

became apparent that much more could, and should, be written about Velocity.

I am a great fan of Velocity mainly due to its simplicity and fantastic performance. Wherever

possible I prefer to use Velocity in preference to JSP, as the View technology in my web

applications. More than that, I find Velocity is the ideal tool for a myriad of tasks that go well

beyond the web and well beyond the capabilities of JSP.

What shocks me most is that Velocity does not have the same level of exposure and

widespread acceptance as Struts. In my eyes there is a much clearer benefit, namely in

performance, to using Velocity rather than JSP that Velocity should be the natural choice for

developers in many cases. Add to this the ability to use Velocity in applications that run outside

of the web context, and you have a powerful tool ready to exploit. I was surprised during a

conversation with several developers at a conference how many were unaware of Velocity and

how many were aware of Velocity but had never used it. For this reason I felt the time was right

for a book on Velocity to cover all aspects of the technology and to act as an instructive guide to

correct use of all things Velocity-related.

My overriding aim with this book is to help other developers enjoy the same success with

Velocity that my team and I enjoy. I believe that I have achieved this aim and I hope that in this

book you will find all the information necessary to make use of Velocity in your projects.

1

CHAPTER 1

Introducing
Velocity

I’M GUESSING that since you’ve picked up this book, you already have more than
a passing familiarity with Java. You may have noticed over the past few years that
text-based output formats have been at the forefront of the Java world. Certainly
XML is perhaps the most talked about output format, and HTML is definitely the
most widely used. Whilst these formats are fantastic in terms of ease of creation
when dealing with simple, static content, creating complex output from dynamic
data can prove to be much trickier, and maintaining that content is even harder.
Some of you may be thinking that the problem is solved, in part, by JSP.

Sure, JSP makes creating text-based output to send to Web clients easier, but
it’s by no means the simplest solution, and it doesn’t solve the problem of creat-
ing text-based output for use in other areas, such as e-mail messaging or desktop
applications. The common solution in those areas is to assemble the text con-
tent manually, intermixing static content with dynamic data in a mish-mash of
hideous Java code. Creating code in this way is error-prone and difficult to main-
tain, especially if it has to be maintained by someone other than the original
developer. This is where Velocity comes in. Simply put, Velocity takes the pain out
of creating complex text output and makes creating simple text output even sim-
pler. Velocity isn’t perfect, however; it lacks in one important area—documentation.
Whilst the documentation is not particularly bad for an open-source project, it
leaves a lot of things uncovered and doesn’t cover other features in enough detail.
That’s where this book can help. During the course of the book, I’ll take you
through all aspects of Velocity, from downloading and getting started to dissect-
ing the code that goes into making Velocity work.

What Is Velocity?

The Jakarta Velocity project is a Java implementation of a template engine. The
term template engine is quite broad, but in the context of Velocity and the like, it
means a piece of software that takes as input a template or templates and couples
this with variable data to produce some form of output. In the case of Velocity,
your template is simply plain text containing Velocity Template Language (VTL)
directives, coupled with static content. The VTL directives tell Velocity how to

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 1

2

combine the static content in the template file with the variable data from your
Java application to provide the desired output. The variable data can come from
anywhere within your Java applications; as you’ll see in Chapter 2, the mecha-
nism for transferring data between your application and Velocity is flexible,
allowing you to work with all kinds of Java Objects, including Collections and
Arrays. Output from Velocity is always text-based, but the format of the text you
generate isn’t constrained. This means you can use Velocity to create HTML or
XML output as well as plain-text output.

Although what Velocity does is simple and using it is easy, the Velocity engine
is sophisticated and offers a quick, robust parser, template caching, and plug-
gable introspection. Many other tools have been built on top of Velocity, and
some of these, such as Anakia, which is covered in Chapter 8, come in the stan-
dard Velocity distribution. For the most part, these tools make it simpler to use
Velocity in a specific context. Chapters 7–8 cover a choice selection of these
add-on tools.

Introducing Java Template Engines

Of course, Velocity isn’t the only template engine available for you to use. In keep-
ing with most open-source projects, you have plenty of alternatives to Velocity.
Since this book focuses on Velocity, I won’t cover these other tools in too much
detail; I’ll leave the exploration of these topics to you, but the following list describes
them briefly:

WebMacro: The WebMacro template engine is kind of the precursor to
Velocity. In fact, the reason Velocity was originally created was because
of the then-restrictive licensing of WebMacro. Velocity and WebMacro
share similar syntax, making it quite simple to move templates between
the two systems. You can find more details at http://www.webmacro.org.

StringTemplate: This is one system to look at if you require inheritance
in your templates. StringTemplate was created by Terrence Parr of ANTLR
fame. You can find more details on StringTemplate at http://www.antlr
.org/stringtemplate/index.html.

Jamon: Jamon is quite a complex and involved template engine. It dif-
fers greatly from Velocity in that it compiles your template files into Java
classes, which you can then use within your application just like normal
classes. Jamon resides at http://www.jamon.org.

JBYTE: The JavaBY Template Engine (JBYTE) is a simplistic, lightweight
template engine that can generate any kind of text-based output. You
can find more information on JBYTE at http://javaby.sourceforge.net/.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Introducing Velocity

3

Enhydra XMLC: Like Jamon, XMLC creates compiled templates that can
then be accessed directly from your code. XMLC is quite tightly coupled
to produce output for Web applications, so it may not be ideal if you want
to produce a desktop application. You can find the XMLC Web site at
http://xmlc.objectweb.org/.

So, Why Use Velocity?

With so many choices, you may be wondering why you should use Velocity and
not one of the other solutions. Well, obviously the choice is yours; however, I rec-
ommend Velocity for the following four main reasons:

Simplicity: A template engine should be lightweight and unobtrusive.
In other words, you don’t want a template engine that reduces your
application to a crawl, and you certainly don’t want to have your appli-
cation constrained by a restrictive API. In addition, you don’t want a
template engine that’s bogged down by unnecessary features that deter
from the main aim of generating content. Velocity satisfies the need for
a simple, capable template engine. The Velocity API places no specific
requirements on the architecture of your application, allowing you total
control, and Velocity does nothing other than templating.

Integration: As part of the Apache Jakarta project, Velocity is in the
company of many other excellent projects. Wherever possible, you’ll
find that Velocity is well integrated with other Jakarta projects such as
Struts, Torque, and Tapestry. Chapter 6 covers integration with Struts
in more detail.

Proven success: As you’ll see in the “Seeing Velocity in Action” section,
Velocity is already in use in many different areas, including some com-
mercial desktop applications. Many developers, myself included, have
successfully used Velocity in a wide range of applications. Velocity has
been through many revisions and is now a highly robust, mature tech-
nology.

Supporting documentation: None of the other projects has such a fan-
tastic book to accompany them! On a serious note, Velocity has at least
one other book written about it, but the other engines have none. Velocity
is established enough as a technology to warrant books being written
about it, which means you have access to useful documentation.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 1

4

The Benefits of Templating with Velocity

Depending on the type of applications you create, using a template engine has
many benefits. For applications where you have to produce the output manually,
such as a desktop application or an e-mail newsletter service, the following core
benefits make using Velocity a sensible decision:

Code separate from content: By using a template engine, you can factor
all the static content into template files so that it isn’t intermixed with
your Java code. By using this approach, you’ll find that obtaining correct
output is far easier and also that you can make most modifications with-
out having to touch your Java code.

Simple syntax: Nondevelopers can understand the simple syntax
employed by Velocity. In the case of the e-mail newsletter service, this
means that the marketing people could change the content of the
newsletter without having to get the development team involved.

Performance: For the most part, generating output using Velocity will be
quicker than manually constructing the text. Also bear in mind that Velocity
is in constant development, so the performance will continue to improve.

In the case of Web-based applications, you get all the same benefits, but you
get the most important benefit of all: complete separation of the logic of your
application from the presentation. With JSP, you can quite easily perform a bunch
of business logic using JSP scriptlets, but with Velocity, the language constructs
are limited to allowing you to perform the simple decisions and looping neces-
sary to produce your output—you can’t, for instance, modify a database from
a Velocity template.

CAUTION What I’ve said here is only partially true. Velocity itself
doesn’t provide support for any kind of business logic or data access.
However, as you’ll come to see, you can make any object accessible
to a template, and you can access any of the methods on that object
from within that template. So, if you really go out of your way to
do so, you can perform data access from a template; it’s just not as
simple as with JSP scriptlets where you can directly instantiate an
instance of any object.

Understanding the Uses of Velocity

I’ve included this section in the hope of debunking a common misconception
about Velocity. Velocity isn’t just a tool for building Web applications. Velocity is

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Introducing Velocity

5

an excellent tool for this purpose, but that’s just a small part of what it’s all
about. If you were expecting to see me jump straight into MVC-based Web appli-
cations and how Velocity can help you to build this kind of application, then
don’t worry—that’s all covered; it’s just later in the book than you may have
expected.

NOTE If you aren’t familiar with the term MVC, don’t worry too
much; it’s explained in much more detail in later chapters.

The focus of this book isn’t on building Web applications but on improving
all kinds of applications using Velocity. Web applications are just a one part of
this. Velocity has many uses, and during the course of this book I’ll explore the
most common types of application including Web applications, e-mail applica-
tions, console applications, and desktop GUI applications.

Seeing Velocity in Detail

Now that you’re familiar with the concept of what Velocity and template engines
are in general, the following provides a more detailed look at the features of
Velocity:

Flexible template mechanism: Whilst the easiest method of generating
output is to use templates that are stored as files, Velocity is just as com-
fortable working with templates that are dynamically generated or that
are loaded from a database. If you find that you can’t load templates from
your desired source, then you can easily extend Velocity to provide this
functionality, as detailed in Chapter 10.

Servlet integration: As part of the standard distribution, Velocity
includes the VelocityServlet, which eases the use of Velocity in a servlet
environment. You need to create your own servlet derived from this class to
process the Velocity content.

Simple syntax: The template language used by Velocity, VTL, is simple
enough to be understood by nonprogrammers, making Velocity an ideal
solution for use in Web development where designers need to modify
page layout.

Texen: Texen is a text-generation tool, built on top of Velocity and inte-
grated with Ant. You can use Texen to generate any kind of text-based
output, and it’s used to great effect in the Jakarta Torque project for gen-
erating SQL scripts. Texen is included as part of the standard Velocity
download and is covered in much more detail in Chapter 8.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 1

6

Anakia: Using Anakia, you can transform XML documents into any
other text-based format. Anakia uses Velocity and JDOM internally and,
like Texen, is integrated with Ant. Also like Texen, you’ll find Anakia in
the standard Velocity distribution. I cover Anakia in more detail in
Chapter 7.

VelocityTools: This is a subproject of the main Velocity project and as
such has to be downloaded separately. The VelocityTools project is a col-
lection of plug-ins for Velocity that overcomes some of the shortcomings
of the standard engine. Specifically, the VelocityTools project makes it much
easier to get desirable output from your templates by providing a range
of math and formatting functions. You’ll also find that building Web appli-
cations with Velocity is much easier using VelocityTools because of the
extra support for servlets and for Struts. VelocityTools is covered in more
detail throughout the book.

Seeing Velocity in Action

As I mentioned earlier, Velocity is in use in a wide range of applications, both on
the Web and on the desktop. It’s worthwhile to take a few minutes to check out
a couple of these projects to see how other people are putting Velocity to use—
who knows, you may be inspired.

Velocity on the Web

The most common use for Velocity is in Web applications, and because of this,
many Web-based tools run on Velocity. I’ve included two I think are quite cool.
Download them and give them a go, and then you can dissect the code to see
how Velocity is employed.

Scarab

Scarab is an open-source issue and project artifact–tracking application, which
has been built using Velocity and Apache Turbine. You should download this
application anyway—it’s really quite handy for use in your projects, and it has
some good Velocity code to explore. You can obtain the latest version of Scarab
from http://scarab.tigris.org/.

Roller Weblogger

Weblogging is the current craze, and a whole host of open-source Weblogging
tools have popped up, built not just in Java but also in PHP, Python, and Perl.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Introducing Velocity

7

Roller is one of the better Webloggers and is a great example of how to use Struts
and Velocity to put together a robust Web application. Velocity is used as an
alternative to JSP to allow end users to customize their own pages on a Roller-
based Weblog. The Roller project is hosted at http://www.rollerweblogger.org/.
If you’re going to download this application, you should definitely refer to the
article at http://www.onjava.com/pub/a/onjava/2002/04/17/wblogosj2ee.html,
which includes one of the developers of Roller talking about the development
of Roller using various open-source technologies including Velocity.

Velocity on the Desktop

As I mentioned before (and no doubt will mention again), Velocity is much more
than just a tool for building Web applications. Many quality desktop applications
use Velocity to produce their text-based output.

IntelliJ IDEA

A very well-known project, IDEA is one of the best Java IDEs on the market. IDEA
uses Velocity for code generation, reducing the amount of repetitive code that
you as a developer need to write. If you want to see this generation process in
action, you can download a 30-day trial of IDEA from the IntelliJ Web site at
http://www.intellij.com/. Unfortunately, the source code for IntelliJ isn’t avail-
able, so you can’t see how it was done, but by the end of the book you’ll be able
to reproduce the behavior anyway.

Gentleware Poseidon

Gentleware Poseidon is one of my favorite UML tools, which will transform my
UML model directly into Java code. Can you guess which tool they use to do this?
That’s right, Velocity! You can try out the Java code generation capability by down-
loading the free community edition at http://www.gentleware.com/products/
descriptions/ce.php4.

Generic Velocity Tools

Of course, Velocity isn’t limited to use in a desktop or Web application. Many of
the best applications are cool little utilities or plug-ins that make life that little
bit easier. Here again, Velocity makes creating text-based output simple and fast.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 1

8

Middlegen

Middlegen is a nifty little tool for anyone who has to write data access code. Using
Middlegen, you can automatically generate the code required to access a database
using EJB 2.0, JDO, Hibernate, or JSP/Struts. Velocity is used as a means to gener-
ate the code necessary to access the database. Middlegen is all open source, so
you can delve into the code to see how Velocity is used. The code is available for
download along with a binary at http://boss.bekk.no/boss/middlegen/index.html.

Luxor

Luxor is a Java XML User Interface Language (XUL) toolkit. Using Luxor, you can
build cross-platform rich-client applications without having to get your hands
dirty with Swing. As part of the toolkit, Luxor includes a templating engine, which
is, of course, Velocity. Luxor is an interesting project even without the Velocity
connection, so you should download the code and have look around—you’ll find
it useful for a variety of reasons. Just visit http://luxor-xul.sourceforge.net/.

NOTE I found all these projects when looking for Velocity samples
on the Velocity Web site. You can find a much more comprehensive
list of projects on the Powered by Velocity page at http://jakarta
.apache.org/velocity/powered.html.

Summary

By now you should be more than familiar with the concept of a template engine
and also with the specific uses of a template engine. I’ve given you a whirlwind
rundown on the basics of Velocity’s feature set. No doubt you can see from the
simple descriptions that Velocity is quite a simple, lightweight technology, but
you may not yet appreciate the flexibility it offers. In next chapter, I’ll take you
through the basics of getting Velocity installed, writing some templates, and cre-
ating some output. After that, I’ll move on and give you a fuller look at VTL and
some advanced features of the Velocity engine, and then it’s onto the good stuff
when I start to show you how to put Velocity to good use. If you’re already famil-
iar with how to install Velocity and VTL, you can skip the next two chapters and
move straight onto the specific discussions of how to use Velocity. For those of
you who are completely unfamiliar with Velocity, I recommend you look at some
of the applications mentioned previously to get some idea of what Velocity can
do and how it works and then move onto the next chapter.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

9

CHAPTER 2

Getting Started
with Velocity

NOW THAT YOU’RE FAMILIAR with what Velocity is all about, it’s time to get on with
the show. In this chapter, I’ll discuss how to obtain both Velocity and VelocityTools
and how to configure the tools within your environment. Once you have Velocity
up and running, I’ll show some simple examples to demonstrate how to use Velocity.

Installing Velocity

Before you can start with any of the examples, you’ll need to install Velocity on
your machine. You can download the latest version of Velocity from the Web site
at http://jakarta.apache.org/velocity. The download comes in two versions: the
precompiled binary version and the source code version. I prefer to get the source
code version and build from there, as it means that I have the source code if I need
to do any debugging. You’ll need the source code for some of the discussions in
later chapters, but if you choose to download the binary version instead, you can
skip to the “Creating Hello World” section. The version of Velocity I’ve used in this
book is 1.4.

Building from Source Code

The first thing to do is obtain the correct source package for your platform. Since
Velocity is 100 percent Java, there are no actual differences in the contents of the
package; they’re just compressed differently to suit both Windows and Unix users.
Once you’ve downloaded the source archive, extract it to somewhere on your
machine. I recommend you don’t include any spaces in the path, since some
machines may experience problems.

Before you proceed, make sure that the JAVA_HOME environment variable
on your machine is pointing to the directory containing your Java SDK.

Installing Ant

The next step is to install Apache Ant. If you already have Apache Ant on your
machine, make sure it’s at least version 1.3; otherwise, you’ll need to download

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

10

a later version. You can obtain the current version of Ant from http://ant.apache
.org; for this example, I used version 1.5.4. For this part, I recommend you down-
load the binary package unless you’re familiar with Ant, since building Ant from
the source is a little more complicated than building Velocity.

Once you’ve downloaded Ant, you need to extract the archive to a directory
on your machine, again avoiding spaces in the path. Next, you need to set the
ANT_HOME environment variable on your machine to point to the directory to
which you extracted the Ant files. You should also add the Ant bin directory to
your PATH environment variable so that you can run Ant easily from other
directories. If you’re unsure on how to set environment variables, you can find
a sample in the Ant user manual at http://ant.apache.org/manual/index.html.

Verifying Ant

Once you’ve done that, you can verify that Ant is installed by typing ant -help at
the command prompt. If Ant is installed correctly, you’ll receive a message from
Ant informing you of the command-line options available. If you don’t get this
message, then you should verify that you’ve completed the previous steps cor-
rectly. Failing that, check the Ant Web site for troubleshooting tips.

Building the Velocity Source Code

Once Ant is installed, building Velocity is a simple job. At the command prompt,
switch to the directory where you extracted the Velocity source package, and from
there switch into the build directory. Now simply type the following command:

ant

You should see a mass of Ant build messages scroll by until you get the BUILD
SUCCESSFUL message. If you don’t see any messages, make sure the ant command
is accessible from your path. If you get a BUILD FAILED message, check that you’re
using an Ant version greater than 1.3. This will build the standard Velocity JAR
file without any of the dependencies; you can build a JAR file with the depen-
dencies included using the command ant jar-dep.

Once the build is complete, you’ll find the Velocity JAR file in the Velocity
home directory. You’ll also find that all the JavaDoc documentation has been gen-
erated for the code as well, which you’ll no doubt find useful as you use Velocity.

Building with J2EE Support

Velocity includes one class, DataSourceResourceLoader, which provides additional
support in a J2EE environment. Chapter 10 covers using DataSourceResourceLoader
in more detail. However, if you want to take advantage of this feature, you must

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

11

build Velocity with this class included. To do this, you need to copy the JAR file
from your J2EE application server that contains the javax.sql.DataSource class into
the build/lib directory inside your Velocity directory. Then you can build with
Velocity with the DataSourceResourceLocator class using either ant jar-J2EE or ant
jar-J2EE-dep to build without dependencies and with dependencies, respectively.

Testing the Velocity Build

Before moving on, it’d be wise to check that Velocity did indeed build correctly
and that the build is functioning as the developers intended. Fortunately, the
developers took the time to package the JUnit unit tests with the Velocity down-
load. To run these tests, simply run the following command from the Velocity
build directory:

ant test

Ant will now run your Velocity through a series of tests, which should result
in a nice BUILD SUCCESSFUL message. If you get BUILD FAILED, this means one of
your tests failed. You should try building the source again and running the tests
again. If the problem still exists, try to build and test against the latest nightly
build of Velocity available from the Web site. If still you have problems, it’s most
likely a configuration issue on your machine. Check the Velocity Web site for
assistance.

Which JAR File?

As I mentioned previously, you can build two types of JAR files containing Velocity.
One of the JAR files contains just the Velocity classes and nothing else; if you want
to use Velocity, you’ll have to add all the appropriate dependencies to your class-
path as appropriate. The second JAR file, which has the word dep in the filename,
contains all the dependencies that are needed by Velocity, so you can avoid having
to find and download the correct versions yourself. For the most part, it’s easier to
use the JAR file containing all the dependencies, but if you want to use the version
without the dependencies, then you’ll need to download Jakarta Commons
Collections and Jakarta ORO from http://jakarta.apache.org. You’ll also need to
have a logging tool; the “Configuring Velocity Logging” section covers this in more
detail.

Building VelocityTools from Source Code

For many of the examples in this book that you’ll build with Velocity, and indeed
for most if not all of the applications, you’ll need VelocityTools. As I mentioned

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

12

previously, the VelocityTools project overcomes some of the shortcomings in the
Velocity runtime and makes your life that little bit easier. Rather than address all
the features of VelocityTools here, I’ll cover them as they become required by the
examples.

Building VelocityTools isn’t much different from building Velocity, given
that it uses Ant to control the build. The main differences lie in the way the
project is structured. To start with, you need to download the source code from
the VelocityTools site at http://jakarta.apache.org/velocity/tools/index.html.
The examples in this book are written from VelocityTools version 1.2.

Once you’ve downloaded the source code, extract it from the archive and
put the resulting folder in an accessible location on your machine. From the
command line, change to the directory where you placed the VelocityTools
files. Unlike Velocity, there’s no build directory, and the Ant build file resides
in the main VelocityTools directory. To build the VelocityTools JAR files, simply
run this command:

ant

Note that you don’t need to specify a build target, since the default target
will build the appropriate JAR files. By default, the build produces two JAR files:
one containing all the tools and another containing everything but the Struts
integration tools. You can also build a smaller JAR containing none of the Struts
or servlet tools. To do this, simply run the following command from the com-
mand line:

ant jar.generic

Now you’re ready to get started with Velocity.

About the Examples

Before I start with the examples, I’ll add this a quick note about compiling and
running the examples. As you’re aware, compiling even a simple application
with javac can be a nightmare, with many issues related to classpaths and JAR
locations. I wrote all the examples using Eclipse, but I used Ant to build them
all because it’s so simple. If you’re experiencing problems building any of the
examples, you can download all the code and the Ant build script from the
Downloads section of the Apress Web site (http://www.apress.com).

When you’re running the examples, you need to make sure you have all the
correct libraries on your classpath. If you’re having problems running the
examples, then it’s most likely because of issues with the classpath.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

13

Creating Hello World

It would be almost sacrilegious if I neglected the traditional Hello World example
with Velocity. Getting Velocity to say “hello” to the world is quite simple. First,
you need a template. A template is just a plain-text file containing VTL markup
and static content. In this case, you have no dynamic content, so you just want
to include static content, like so:

Hello World!

Save this file to a location that will be accessible from your code. I suggest
you follow a directory structure similar to the sample code so the examples are
easier to follow. With the template in place, you can move onto the Java code
(see Listing 2-1).

Listing 2-1. The Hello World App

package com.apress.pjv.ch2;

import java.io.StringWriter;

import java.io.Writer;

import org.apache.velocity.Template;

import org.apache.velocity.VelocityContext;

import org.apache.velocity.app.Velocity;

public class HelloWorld {

public static void main(String[] args) throws Exception {

// initialize Velocity

Velocity.init();

// get the template

Template template =

Velocity.getTemplate("src/templates/ch2/HelloWorld.vm");

// create a context for Velocity

VelocityContext context = new VelocityContext();

// create the output

Writer writer = new StringWriter();

template.merge(context, writer);

// write out

System.out.println(writer.toString());

}

}

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

14

Once you’ve completed the code, compile it and then run it. You’ll see the
following familiar message:

Hello World!

Now, you’re probably thinking that Listing 2-1 contained an awful lot of code
just to write “Hello World” to the console, and you’d be right. However, this is just
a simplified example; as you move onto some more examples, you’ll see how this
code doesn’t change much, but the amount of output can greatly increase.

Dissecting Hello World

So now that you’ve seen Velocity in action, you’ll look at what you just wrote.
First, you created the template. The Hello World template was basic and con-
tained absolutely no VTL content whatsoever; it was simply the content you
wanted to display on the screen. Next came the Java class, which was a little
more complicated; you’ll now look at it bit by bit:

// initialize Velocity

Velocity.init();

The first line of code initializes the Velocity runtime with the default set of
parameters. The init() method can be passed as either a Properties argument
containing configuration properties for the Velocity runtime or a String argu-
ment that indicates the path to a file containing the configuration properties.
The “Configuring the Velocity Runtime” section discusses the available configu-
ration properties in more detail.

The next step is to obtain a reference to the actual template. Velocity has
the following Template class to refer to templates:

// get the template

Template template =

Velocity.getTemplate("src/templates/ch2/HelloWorld.vm");

In this case, the template is loaded from the file system using
Velocity.getTemplate(). With the template now loaded, the code now creates
the following instance of the VelocityContext class:

// create a context for Velocity

VelocityContext context = new VelocityContext();

The VelocityContext class is pivotal to making your Velocity-based applica-
tions do anything useful. Using VelocityContext, you can pass data from your

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

15

Java program into the Velocity runtime when rendering output from your tem-
plates. You can see this in action in the next example:

// create the output

Writer writer = new StringWriter();

template.merge(context, writer);

// write out

System.out.println(writer.toString());

In the last step of this example, the code creates the output and writes it to
the console. The mergeTemplate method will merge the data in the VelocityContext
object, with the static content and VTL markup in the template, and write the
result to the Writer instance provided by the code. In this case, the template con-
tains no VTL markup, and the VelocityContext contains no data, so the output is
simply the static content from the template file.

Improving Hello World

In the previous example, the code really did nothing spectacular. In other words,
there was nothing dynamic about the output at all; all the code in the main()
method could have been replaced with a single line, and the output wouldn’t
have been different.

The real power of Velocity comes when combining the static content in
a template with some VTL constructs and some dynamic data from your Java
application. Quite surprisingly, it takes hardly any extra code to give the Hello
World application some dynamic behavior. First, you need to modify the tem-
plate, adding some VTL markup, like so:

Hello $who!

Don’t worry too much about the syntax just yet; Chapter 3 explains VTL in
full, so the behavior of this particular piece of code will become apparent soon.
Although I’ve created a separate class, the changes to the code are minimal (see
Listing 2-2).

Listing 2-2. The Improved Hello World App

package com.apress.pjv.ch2;

import java.io.StringWriter;

import java.io.Writer;

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

16

import org.apache.velocity.Template;

import org.apache.velocity.VelocityContext;

import org.apache.velocity.app.Velocity;

public class HelloWorldImproved {

public static void main(String[] args) throws Exception{

//initialize Velocity

Velocity.init();

// get the template

Template template =

Velocity.getTemplate("src/templates/ch2/HelloWorldImproved.vm");

// create a context for Velocity

VelocityContext context = new VelocityContext();

// set the who variable

context.put("who", "Gandalf");

// create the output

Writer writer = new StringWriter();

template.merge(context, writer);

// write out

System.out.println(writer.toString());

}

}

Notice that the only differences are the name of the template file and the
addition of this extra line:

// set the who variable

context.put("who", "Gandalf");

The VelocityContext class allows you to pass data from your application into
the Velocity runtime. VelocityContext works on a name/value basis, with the
name you provide when adding data to the VelocityContext class being used to
refer to that data from within your template. If you recall the change I made to
the template, I replaced the word World with the VTL variable $who. Then in the
code I set the value of the $who variable to Gandalf. When you run the example
now, you’ll get the following output:

Hello Gandalf!

Try changing the value of the $who variable from within your Java code, and
verify that the output changes appropriately.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

17

Using Context Chaining

With Velocity it’s possible for multiple contexts to be merged and passed to the
runtime as a single context. This can help when many components are inter-
acting to produce the context; rather than pass a single context from component
to component, which will have performance implications if the context is partic-
ularly large and it’s being passed across the network and back, each component
can create its own context, and then the main application can chain the contexts
together. To see this in action, you’ll now build a simple example. First, create
a new template with the following code:

This is my first name $firstName

This is my last name $lastName

Second, create a Java class to create some output from this template.
Listing 2-3 shows the code in full; the lines of interest are explained afterward.

Listing 2-3. Context Chaining

package com.apress.pjv.ch2;

import java.io.StringWriter;

import java.io.Writer;

import org.apache.velocity.Template;

import org.apache.velocity.VelocityContext;

import org.apache.velocity.app.Velocity;

public class ContextChaining {

public static void main(String[] args) throws Exception {

// initialize Velocity

Velocity.init();

// get the template

Template template =

Velocity.getTemplate("src/templates/ch2/ContextChaining.vm");

// create two separate contexts

VelocityContext context1 = new VelocityContext();

VelocityContext context2 = new VelocityContext(context1);

// set the firstName variable

context1.put("firstName", "Rob");

context2.put("lastName", "Harrop");

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

18

// create the output

Writer writer = new StringWriter();

template.merge(context2, writer);

// write out

System.out.println(writer.toString());

}

}

Notice that when you’re creating the context2 object, you pass the context1
object as an argument as the constructor, like so:

// create two separate contexts

VelocityContext context1 = new VelocityContext();

VelocityContext context2 = new VelocityContext(context1);

This will place the data in context1 inside context2. Note, however, that the
data isn’t simply copied from one context to the other; the second context, con-
text2, maintains a reference to context1 and will check this context when trying
to resolve references within a template. For this reason, you’re able to add data to
context1 after the constructor on context2 has finished executing and still have
the data accessible via context1. Running this code will yield the following output:

This is my first name Rob

This is my last name Harrop

As you can see, both variables are resolved correctly, and the correct data is
rendered, even though only the context2 object was passed to the Velocity runtime
directly. When trying to resolve the $firstName reference, the context2 object has
delegated to the chained context1, once it determined that it didn’t contain the
data. For the most part, you won’t use this feature in your day-to-day program-
ming—you’ll simply create a context, populate it, and then generate content from
it. However, it can be useful if you’re building complex applications with many dif-
ferent components because it helps decouple the components from each other.
Context chaining also becomes useful when you build framework services for your
own application—perhaps you want guarantee that a certain piece of data always
exists in the context—and then use context chaining to allow your application to
provide its own context and have the framework chain the extra data on top.

Configuring the Velocity Runtime

The Velocity runtime is highly configurable and has a large selection of configu-
ration properties that you can use to customize the behavior of the runtime.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

19

Understanding how to configure the Velocity runtime correctly will help when
building more complex applications.

Setting Configuration Parameters

You have two ways to set the Velocity configuration parameters when first initial-
izing the Velocity runtime. The first way is simply to create a Properties instance
from within your code and then pass this instance to the Velocity.init() method
(see Listing 2-4).

Listing 2-4. Configuration Using the Properties Class

public class HelloWorldProperties {

public static void main(String[] args) throws Exception {

// set some properties

Properties props = new Properties();

props.put("input.encoding", "utf-8");

// initialize Velocity

Velocity.init(props);

// get the template

Template template =

Velocity.getTemplate("src/templates/ch2/HelloWorld.vm");

// create a context for Velocity

VelocityContext context = new VelocityContext();

// create the output

Writer writer = new StringWriter();

template.merge(context, writer);

// write out

System.out.println(writer.toString());

}

}

The main drawback of this method is obvious; any changes to the configuration
require a change to your Java code, which in a large application means a recompile
and no doubt a bunch of testing to make sure something didn’t go wrong in the
process. A better solution to this is to use an external properties file and pass the
name of the properties file to the Velocity runtime when you call init(). I’m sure
most of you are familiar with the format of Java property files, but just in case, you
can achieve the same behavior as the previous example with this property file:

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

20

set the input encoding

input.encoding=utf-8

Then, to use this property file to configure the Velocity runtime, you just
pass the filename to the Velocity.init() method (see Listing 2-5).

Listing 2-5. Configuration Using a Properties File

public class HelloWorldExternalProperties {

public static void main(String[] args) throws Exception{

// initialize Velocity

Velocity.init("src/velocity.properties");

// get the template

Template template =

Velocity.getTemplate("src/templates/ch2/HelloWorld.vm");

// create a context for Velocity

VelocityContext context = new VelocityContext();

// create the output

Writer writer = new StringWriter();

template.merge(context, writer);

// write out

System.out.println(writer.toString());

}

}

Unless you plan to have some kind of dynamic configuration for the Velocity
runtime that can be modified through some user interface in your application,
I recommend you use an external properties file for configuration. That way, you
can make any changes to the configuration quickly and without touching your
application code.

Introducing General Configuration Parameters

You can use some general configuration parameters to configure the behavior of
the Velocity runtime (see Table 2-1).

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

21

Table 2-1. General Velocity Configuration Parameters

Parameter Name Description

input.encoding This allows you to specify the encoding of your input data.

By default, this is set to ISO-8859-1. Change this only if you

have templates that aren’t ISO-8859-1 encoded.

output.encoding This property is used by the VelocityServlet to set the

response encoding, and by Anakia when writing output

files. The default is ISO-8859-1.

parser.pool.size The Velocity runtime maintains a pool of parsers that parse

your templates. If you have enough memory available on

your machine and your application is parsing a lot of tem-

plates concurrently, you should consider increasing the size

of the pool. By default, the pool size is set to 20.

runtime.interpolate.literals The value of this property determines whether the Velocity

runtime will interpolate string literals that are contained

within a template. Chapter 3 includes a more detailed dis-

cussion of the effect of this parameter.

runtime.introspector.uberspect Velocity heavily uses introspection, mainly to provide a sim-

ple, JavaBeans-based syntax for accessing properties on

your Java objects. The actual introspection is pluggable, so

you can replace the default implementation with one of

your own. Bear in mind that Velocity already has an excel-

lent implementation that has been improved even more in

version 1.4. You should use this only in special cases. The

value of this property should be set to the fully qualified

class name of the introspector; the default is org.apache

.velocity.util.introspection.UberspectImpl.

Configuring Velocity Logging

As you start to build more complex applications using Velocity, you’re bound to
come across the need to debug your templates. Often you’ll find that the output
isn’t as you expected or that output isn’t generated at all and you get an excep-
tion. The logging mechanism is useful when you’re experiencing problems with
Velocity locating templates, which becomes even more complicated when you
start to use multiple resource loaders. Thankfully, Velocity has quite a good log-
ging system, which outputs some detailed information about the parsing and
execution of your template. The information in the logs is often sufficient for you
to find out what’s wrong with your templates and fix it.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

22

If you’ve been running the examples up to this point, you may have noticed
the log. By default, Velocity will look for the Avalon LogKit on your classpath and
use this if it’s found. If Avalon LogKit isn’t found, then Velocity will look for log4j
and use that. You’ll find that Avalon LogKit is included in the dependencies JAR
file that’s created when you build Velocity, so if, like me, you’ve used this depen-
dency JAR to build the examples, your logs will have been written using Avalon
LogKit. The default output path for the log is from the root of your execution
path to a file named velocity.log.

Introducing Velocity LogSystem

At the core of the Velocity logging system is the LogSystem interface. All log mes-
sages from the Velocity runtime are written to an object that implements this
interface. The standard distribution of Velocity contains implementations of
LogSystem for Avalon LogKit and Apache log4j, along with an implementation to
ignore all log messages. As well as these implementations, you’ll also find an imple-
mentation of LogSystem that will write log messages using the Jakarta Common
Logging system included in the VelocityTools project. If you don’t see your fa-
vorite logging tool listed here, don’t worry; it’s a trivial job to create a custom
implementation of LogSystem and have Velocity use that as its logger. Chapter 10
covers this topic in more detail.

Configuring Velocity to Use log4j

As I mentioned earlier, the Velocity runtime will, by default, use Avalon LogKit as
the logging implementation when writing any log messages. If Avalon LogKit
isn’t found on the classpath, Velocity will then look for log4j and use that, if
found. This is all well and good when you’re using the simple Velocity JAR file
without all the dependencies, as you can choose to have just log4j on classpath.
However, when using the JAR file containing the dependencies, Avalon LogKit is
included in that JAR so Velocity will always pick it up before log4j. Fortunately, you
can tell Velocity to ignore that Avalon LogKit is available and use the log4j logger
by setting the runtime.log.logsystem.class configuration parameter to the class
name of the log4j LogSystem implementation (in this case, org.apache.velocity
.runtime.log.SimpleLog4JLogSystem). You can set this parameter either by passing
it to Velocity.init() method as described earlier or by placing it in an external
properties file as described in the previous example.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

23

NOTE Another implementation of LogSystem for log4j is included
with the Velocity distribution: Log4JLogSystem. This class has been
deprecated since version 1.3 of Velocity and shouldn’t be used. You
should also be aware that the current log4j support in Velocity uses
the older concept of a Category, which has been replaced in log4j
by the Logger class. The Category class still works in log4j, and ver-
sion 1.5 of Velocity uses the log4j LogSystem implementation with
Logger instead of Category.

So, you’ll now try it out. Using the previous example, when you first run it
without any special configuration parameters, the first line of the log file reads
as follows:

Fri Feb 13 10:43:10 GMT 2004 [debug] AvalonLogSystem initialized using logfile

'velocity.log'

As you can see, Velocity is clearly using Avalon LogKit as the logging imple-
mentation. Now to switch to log4j, you simply add the following line of code to
the configuration file and run this:

runtime.log.logsystem.class=org.apache.velocity.runtime.log.SimpleLog4JLogSystem

Now when you look into the log file, you’ll see that the first line of log mes-
sages written is this:

2004-02-13 10:45:21,125 - SimpleLog4JLogSystem initialized using logfile ➥

'velocity.log'

Now you can see that log4j log system is being used to write the log messages.
By default the SimpleLog4JLogSystem will use its own class name as the name of the
log4j Category. However, you can change this by setting the runtime.log.logsystem
.log4j.category property to the name of the category you want to use. Once you’re
using log4j to log the Velocity messages, you can configure the output of the mes-
sages just as you would with any log4j application. For instance, to output all the
Velocity messages to the console, create a simple log4j.properties file with the
following code and place it in the root of your classpath:

log4j.rootLogger=DEBUG, stdout

log4j.appender.stdout=org.apache.log4j.ConsoleAppender

log4j.appender.stdout.layout=org.apache.log4j.PatternLayout

Pattern to output the caller's filename and line number.

log4j.appender.stdout.layout.ConversionPattern=%p [%t] [%c] %C{1}.%M(%L) | %m%n

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

24

Be aware that it seems that the configuration file will be picked up by log4j
and Velocity only if you set your own Category name as described. I found that
when I had this configuration file in the classpath and I passed Velocity a specific
Category name to use, the log message went to the console as desired. However,
when I didn’t pass Velocity the Category name, no log messages were written to
the console. For more information on log4j configuration, read Logging in Java
with the JDK 1.4 Logging API and Apache log4j (Apress, 2003).

Using Commons Logging with Velocity

As part of the VelocityTools project, a LogSystem implementation will allow you to
write all log output via the Commons Logging tool. If you intend to use log4j as
the actual logging implementation, I advise that you use the SimpleLog4JLogSystem
and resist the temptation to pass log messages from Velocity to Commons
Logging and then onto log4j. However, if you want to use a logging provider
that has no LogSystem implementation and you don’t fancy writing your own,
then Commons Logging may well have an adapter. A good example of this
would be if you wanted to use Java 1.4 Logging as the mechanism for writing
your log messages.

For this example, I used the code from the HelloWorldExternalProperties
example. No modifications to the Java code were needed; only the configuration
file was changed. To use Commons Logging, first you need to download it from
the Jakarta Commons Web site at http://jakarta.apache.org/commons. Once you’ve
downloaded it, include the JAR file in the classpath of your application. You’ll
also need to include the VelocityTools JAR file, as this contains the LogSystem
implementation for Commons Logging. Once that’s done, you need to set the
runtime.log.logsystem.class property to org.apache.velocity.tools.generic.log
.CommonsLogLogSystem. If you still have log4j in your classpath and configured cor-
rectly, then you can run the example now, but you’ll still be using log4j as the
underlying logging provider. To switch to the JDK 1.4 Logging API as the logging
mechanism, simply remove log4j from the classpath and, of course, make sure
you’re running on a 1.4 JVM. Now run the example. You’ll see that the Velocity
log file shows that CommonsLogLogSystem is being used to write the log messages,
and you should also see that the log messages are written to the console. This is
the default JDK 1.4 logging setup provided to Velocity via Commons Logging.
Phew! So many different adapters—it can get quite complicated. For the most
part, I recommend you stick with log4j as your logger and that you use
SimpleLog4JLogSystem to interface it with Velocity. Log4j is a powerful logging
tool, and using SimpleLog4JLogSystem provides the simplest and best-performing
mechanism to link it with Velocity. For most applications, I recommend you use
Commons Logging at code level but use log4j as the actual logging tool. This
way, you can easily replace log4j with another logging tool for both your applica-
tion and Velocity log messages without having to rework your code. For a more

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

25

in-depth discussion of using Commons Logging, you should check out the Jakarta
Web site and also read my discussion of Commons Logging in Pro Jakarta Struts,
Second Edition (Apress, 2004).

Additional Logging Configuration

Besides just configuring which tool is going to perform the actual logging, you
can use a few additional configuration parameters to customize the logging
behavior (see Table 2-2).

Table 2-2. Additional Logging Configuration Parameters

Parameter Description

runtime.log Using this parameter, you can specify the name of the log

file created by Velocity. By default, this parameter is set to

velocity.log, and the file is created in the root of the

execution path.

runtime.log.logsystem You can use this parameter only from code; you can’t use it

from the configuration file. Using this parameter, you can

pass an instance of a class that implements LogSystem to

Velocity and have it use that class to write the log messages.

This can be quite useful if you want to be able to build the

logging configuration dynamically in your code.

runtime.log.xxx.stacktrace Using this parameter, you can specify whether Velocity

should output stack traces in the log files for the error,

warn, and info message levels. By default, this option is

set to false for each level. To turn stack traces on, set this

parameter to true, replacing xxx with the level name.

runtime.log.invalid.references By default, Velocity will write a log message each time it

finds a reference in one of your templates that isn’t valid.

This is one of my main uses of the log file when I’m debug-

ging my applications, but it’s useful to turn this off in

a production. Set this option to false to disable invalid

reference logging.

Understanding Resource Loaders

In each of the previous examples, the templates have been loaded from a file, and
you’d be forgiven for thinking this is the only way to load a template for Velocity.
This is, however, not the case. Velocity has a flexible resource management system

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

26

that allows for resources to be retrieved from a wide variety of sources. Templates
are the most common resource loaded by Velocity, but as you’ll see when you
look at the #include directive in Chapter 3, they aren’t the only resources loaded
by Velocity.

Central to the resource management system in Velocity are resource loaders.
Resource loaders are responsible for retrieving the resource from a specific loca-
tion and passing the contents to the Velocity runtime. Consider the examples
you’ve seen. All of them include a call to Velocity.getTemplate(), which loads
a template resource into the Velocity runtime. At first glance, you’d think that the
String argument the getTemplate() method takes is actually the path to the tem-
plate, but in fact it’s just an identifier that’s used by the resource loader to retrieve
a particular resource. In some cases, this resource can be a filename; in others, it
may just be a designated identifier for your templates. The Velocity distribution
comes complete with four resource loaders for loading resources: from the file
system directly, from a JAR file, from the classpath, and from a J2EE DataSource.
In the next section, I’ll demonstrate how to use the first three and also show
configuration options available for the fourth.

Using Multiple Resource Loaders

For this section, I’ve built an example to test three of the four supplied resource
loaders. Rather than talk you through entering the code bit by bit, I’ll include it
all here and then show the relevant bits for each resource loader.

The Java code for this example should seem quite familiar; I’ve just refac-
tored it a little to make it simpler (see Listing 2-6).

Listing 2-6. Using Resource Loaders

package com.apress.pjv.ch2;

import java.io.StringWriter;

import java.io.Writer;

import org.apache.velocity.Template;

import org.apache.velocity.VelocityContext;

import org.apache.velocity.app.Velocity;

public class ResourceLoaders {

private static final String FILE_RESOURCE_LOADER_TEMPLATE =

"ResourceLoader1.vm";

private static final String JAR_RESOURCE_LOADER_TEMPLATE =

"ResourceLoader2.vm";

private static final String CLASSPATH_RESOURCE_LOADER_TEMPLATE =

"ResourceLoader3.vm";

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

27

public static void main(String[] args) throws Exception {

processTemplate(FILE_RESOURCE_LOADER_TEMPLATE);

processTemplate(JAR_RESOURCE_LOADER_TEMPLATE);

processTemplate(CLASSPATH_RESOURCE_LOADER_TEMPLATE);

}

private static void processTemplate(String templateName) throws Exception {

// initialize Velocity

Velocity.init("src/velocity.properties");

// get the template

Template template = Velocity.getTemplate(templateName);

// create a context for Velocity

VelocityContext context = new VelocityContext();

// create the output

Writer writer = new StringWriter();

template.merge(context, writer);

// write out

System.out.println(writer.toString());

}

}

I’ve created three templates: ResourceLoader1.vm, ResourceLoader2.vm, and
ResouceLoader3.vm, each with a single line of static text. I’ve placed the first tem-
plate, ResourceLoader1.vm, in the same directory as all the templates from the
previous examples. I’ve packaged the second template, ResourceLoader2.vm,
inside a JAR file and then placed it in the same directory as ResourceLoader1.vm.
I’ve stored the third template, ResourceLoader3.vm, in the root of the classpath.
The placement of these files is important; if you place all the templates in the
same directory as ResourceLoader1.vm, they will be picked up by the same resource
loader, and you won’t be able to see the others in action.

Testing FileResourceLoader

The first resource loader to test is the file resource loader, which is implemented
by the FileResourceLoader class in the org.apache.velocity.runtime.resource
.loader package. By default, Velocity will use an instance of FileResourceLoader
configured to look in the current directory when searching for resources. So, in

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

28

all the previous examples, the FileResourceLoader has been used to load the tem-
plates based on the path specified in the call to Velocity.getTemplate(). If you look
closely at the current example, you’ll notice that I’ve specified just the filename
for ResourceLoader1.vm, not the whole path. If you ran the example without any
further configuration, Velocity would be unable to find this template because it
doesn’t reside in the current directory. However, you can configure a different
resource loader than the default and have Velocity look for my resources there.
To do this, first you need to tell Velocity the name of my resource loader and
then, using this name, configure the options for it. You can do this with a few
lines in the velocity.properties file:

resource.loader=file

File Resource Loader

file.resource.loader.class= ➥

org.apache.velocity.runtime.resource.loader.FileResourceLoader

file.resource.loader.path=./src/templates/ch2

file.resource.loader.cache=true

file.resource.loader.modificationCheckInterval=2

Note that you can also pass these options to Velocity inside an instance of the
Properties class. The resource.loader option specifies the name of the resource
loader that Velocity should find. By default, Velocity will look for a resource loader
named file, but I prefer to define the name explicitly—if only because it makes my
intentions clearer. To configure a particular resource loader, you need to include the
configuration options prefixed by the name given to the resource.loader option. As
you can see from the previous code, the four configuration parameters after the
resource.loader parameter are prefixed with the name file. This means that these
parameters are being set for just the resource loader named file. This is useful
when you have more than one resource loader working in your application.

If you run the example now, you’ll see output for the first template, but you
should get an error for the second template, as Velocity won’t be able to find the
appropriate resource until you configure the JAR resource loader. It’s useful to
check the Velocity log file, as it will tell what resource loaders it’s using and which
one was used when a particular resource was loaded.

Table 2-3 describes the configuration options for the FileResourceLoader.

Table 2-3. FileResourceLoader Configuration Parameters

Parameter Description

<name>.resource.loader.class This specifies the name of the implementation class of the

resource loader. For the FileResourceLoader, this will be org

.apache.velocity.runtime.resource.loader.FileResourceLoa

der. This parameter is always required.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

29

Table 2-3. FileResourceLoader Configuration Parameters (continued)

Parameter Description

<name>.resource.loader.path Use this parameter to specify the path in which the

FileResourceLoader should look for resources. You can spec-

ify more than one path, each one separated by a comma.

<name>.resource.loader.cache By default, this parameter is set to false, which means each

time you want a resource from this resource loader, it will

be reloaded from the filesystem. This is quite useful when

debugging, since you’re likely to change your templates quite

a bit. However, in a production environment, you can really

improve performance by setting this parameter to true, in

which case the resource loader will place resources in a cache

once they’ve been loaded and then retrieve them from the

cache for subsequent requests.

<name>.resource.loader This parameter is used only if you turn on caching. Use this

.modificationCheckInterval parameter to specify the interval, in seconds, between checks

to see if a cache resource has been modified. If you’re in a

production environment and want the performance benefit

of caching but don’t want the hassle of having to restart your

application every time you change a resource, then set this

parameter to the highest interval you can manage.

Testing JarResourceLoader

If you ran the example after the previous step, you’ll no doubt have received an
error message telling you that Velocity couldn’t find ResourceLoader2.vm. This is
no wonder, really, when you consider that this resource is actually packaged
inside a JAR file. For this you need to use the JarResourceLoader, which will load
resources that are packaged within a JAR file.

Configuring the JarResourceLoader isn’t much different from configuring the
FileResourceLoader. First, you have to add another resource loader name to the
resource.loader parameter; second, you declare the configuration parameters
for this resource loader, like so:

resource.loader= file, jar

File Resource Loader

...

JAR Resource Loader

jar.resource.loader.class = ➥

org.apache.velocity.runtime.resource.loader.JarResourceLoader

jar.resource.loader.path = jar:file:/tmp/ResourceLoader2.jar

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

30

Notice that I’ve specified only two parameters for this resource loader; Table
2-4 describes the full list of parameters recognized by the JarResourceLoader. Run
the example again, and this time you should get output from both the first and
second templates, with only the third throwing up an error.

Table 2-4. JarResourceLoader Configuration Parameters

Parameter Description

<name>.resource.loader.class This parameter has the same meaning as for the

FileResourceLoader and is always required. For the

JarResourceLoader, this will be org.apache.velocity

.runtime.resource.loader.JarResourceLoader.

<name>.resource.loader.path Use this parameter to specify the paths to the JAR files that

the JarResourceLoader will look in for resources. As with

FileResourceLoader, you can specify more than one path

using commas to separate each path. The syntax of the

paths should correspond with that defined by the java.net

.JarURLConnection class. See the JavaDoc for that class for

more details.

<name>.resource.loader.cache Although you can turn on caching for the JarResourceLoader,

support for caching in this loader isn’t yet fully implemented.

The JarResourceLoader will always inform the runtime that

a particular resource has changed, regardless of whether

this is the case. You should note, however, that the resource

loader will have the opportunity only to notify the runtime

that the resource has been modified after the amount of

seconds set in modificationCheckInterval has elapsed.

For instance, consider an application where you’ve set

modificationCheckInterval to 20 seconds. You run the

application and the template is processed once, being

loaded from the JAR file. Then, 19 seconds later the template

is processed again, being retrieved from the cache since the

modificationCheckInterval hasn’t yet elapsed. Then the tem-

plate is processed again in 30 seconds. This time, the runtime

will check to see if the resource has been modified since the

amount of time specified by modificationCheckInterval has

elapsed. Now, regardless of whether the resource has been

modified, it will be reloaded.

<name>.resource.loader As with FileResourceLoader, this is the amount of time, in

.modificationCheckInterval seconds, that the runtime will wait before checking to see if

the resource has changed. See the previous discussion of

the cache parameter for more details.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

31

Testing ClasspathResourceLoader

All that’s left is to configure Velocity to find the third template. As you may have
noticed, I got you to place this template in the root of the classpath. The reason
for this is so that I can highlight the use of the ClasspathResourceLoader. This
resource loader is the easiest to configure and is perhaps the most useful in a
Web-based environment, as you have no issues with paths; all the resources are
simply included in the classpath. You should note that you don’t have to place
your resources loose at the root of your classpath; you can put them in a JAR file
and place the JAR file in your classpath. This is useful in a servlet environment
since you can place all your resources in a JAR file and pop that in the /WEB-INF/
lib directory, and your resources are all available through the classpath.

I mentioned that the ClasspathResourceLoader was easy to configure, and it
is. You don’t have any paths to worry about, just the following class name:

resource.loader= file, jar, class

File Resource Loader

...

JAR Resource Loader

...

Classpath Resource Loader

class.resource.loader.class =

org.apache.velocity.runtime.resource.loader.ClasspathResourceLoader

Now, run the example again, and you should get output from all three tem-
plates, with no errors at all. Table 2-5 describes the configuration parameters for
this resource loader.

Table 2-5. ClasspathResourceLoader Configuration Parameters

Parameter Description

<name>.resource.loader.class This parameter has the same meaning as for the

FileResourceLoader and is always required. For the

ClasspathResourceLoader, this will be org.apache.velocity

.runtime.resource.loader.ClasspathResourceLoader.

<name>.resource.loader.cache As with FileResourceLoader, you can enable caching for

resources loaded by the ClasspathResourceLoader by setting

this parameter to true. You should note that this resource

loader doesn’t support modification detection; it will always

inform the runtime that the resource hasn’t been changed,

even if you change it. This can be quite infuriating during

debugging, since you need to restart your application just to

check for changes in your template.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

32

Table 2-5. ClasspathResourceLoader Configuration Parameters (continued)

Parameter Description

<name>.resource.loader This parameter, although supported for this resource loader,

.modificationCheckInterval is kind of pointless, since if you have caching enabled, the

resource will never be reloaded despite any modifications

you may make to it.

Configuring DataSourceResourceLoader

Before proceeding with this section, you should refer to the earlier “Building
with J2EE Support” section, which discusses building Velocity with support for
the DataSourceResourceLoader class.

Using DataSourceResourceLoader, you can store your Velocity resources in any
data store that can be accessed via a javax.sql.DataSource instance. Using this
resource loader is restricted to J2EE environment. I’ve purposely avoided going
over the details of configuring a DataSource in your application server, since I think
that if you want to use this feature, then you’re already more than familiar with
that process. I will, however, show you how to set up Velocity so that you can use
the DataSourceResourceLoader in your J2EE applications.

The first step is to create a table in your data store that will store the Velocity
resources. This table must include at least three columns: one to store the resource
name, one to store the resource content, and one to act as a time stamp. You’ll find
a sample SQL script included in the JavaDoc for the DataSourceResourceLoader class.

Next, you need to configure the resource loader in Velocity. You do this just
like any other resource loader; however, you have to specify many more param-
eters. This is a sample configuration for the DataSourceResourceLoader:

ds.resource.loader.class

org.apache.velocity.runtime.resource.loader.DataSourceResourceLoader

ds.resource.loader.resource.datasource = java:comp/env/jdbc/Velocity

ds.resource.loader.resource.table = velocityResources

ds.resource.loader.resource.keycolumn = resourceKey

ds.resource.loader.resource.templatecolumn = resourceDef

ds.resource.loader.resource.timestampcolumn = resourceTimestamp

ds.resource.loader.cache=true

ds.resource.loader.modificationCheckInterval = 60

Table 2-6 gives a full description of each parameter.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

33

Table 2-6. DataSourceResourceLoader Configuration Parameters

Parameter Description

<name>.resource.loader.class As with all the previous resource loaders, you should set this

to the name of the resource loader class (in this case,

DataSourceResourceLoader).

<name>.resource.loader This is the full JNDI name of the data source. You must con-

.resource.datasource figure the data source separately within your application server.

<name>.resource.loader This is the name of the table in the data store that contains

.resource.table your resources.

<name>.resource.loader This is the name of the column in your table that contains the

.resource.keycolumn resource name. This is the argument you pass to Velocity

.getTemplate() when you want to load a template.

<name>.resource.loader This is the name of the column that contains the actual

.resource.templatecolumn resource contents.

<name>.resource.loader This is the name of the column containing a time stamp. This

.resource.timestampcolumn is used for caching purposes.

<name>.resource.loader.cache This resource loader fully supports caching, using a time

stamp stored alongside a resource in the data store. Set this

parameter to true to enable caching.

<name>.resource.loader This one should be familiar—it’s the amount of time the

.modificationCheckInterval Velocity runtime will wait before checking to see if a resource

has been modified. Bear in mind that this will involve queries

being run against the data store.

Configuring the Resource Manager

You can use three parameters to control the overall behavior of the Velocity
resource manager (see Table 2-7).

Table 2-7. Resource Manager Configuration Parameters

Parameter Description

resource.manager.logwhenfound By default, this parameter is set to true, which causes the

resource manager to write a log message the first time it finds

a resource. You can set this to false in a production environ-

ment, but it’s useful in a debugging environment.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

34

Table 2-7. Resource Manager Configuration Parameters (continued)

Parameter Description

resource.manager.cache.class Using this parameter, you can specify the name of class that

will be used to cache resources once they’re loaded. Chapter

10 covers how to create a custom cache implementation. The

default for this parameter is org.apache.velocity.runtime

.resource.ResourceCacheImpl. This class uses a least recently

used caching algorithm to remove old items from memory,

keeping memory consumption at a sensible level.

resource.manager.cache.size Use this parameter to set the default cache size. When using

the default cache, this parameter is set to 89.

Choosing a Resource Loader

You have quite a few choices available for resource loaders; as you’ll see in Chapter
10, you can even implement your own resource loaders. However, for the most
part you should stick with either FileResourceLoader or ClasspathResourceLoader
because that way you can easily modify the template contents; when you have
your templates packaged away in a JAR file or stored in a database, editing the
template isn’t as easy as just modifying a file in the file system. This is especially
true if the templates are used for output created by nonprogrammers. Non-
programmers already have to learn the Velocity syntax; you don’t really want to
start having to show them how to create and extract JAR files or interact with your
RDBMS.

The lack of caching on the JarResourceLoader makes it a bad choice for produc-
tion environments, as you can get quite a performance boost from the effective use
of caching. I imagine that caching will eventually be added to the JarResourceLoader,
but my guess is that it will detect only when the entire JAR file has changed, which
means that changing one template in the file will invalidate the cached versions of
any other templates in the JAR file, whether or not they’ve changed.

In a Web environment, I almost certainly recommend you use the
ClasspathResourceLoader; it’ll remove the need to worry about paths and will
ensure that your application will still function when deployed as a WAR file in
containers such as JBoss, which run the application directly from the WAR with-
out extracting the files. One thing to be aware of in ClasspathResourceLoader is
that if you have caching enabled, once a template has been loaded and placed
in the cache, it’ll always be retrieved from the cache, irrespective of whether the
resource has changed. This is different from JarResourceLoader, which will always
tell the runtime that the resource has been modified; ClasspathResourceLoader
always tells the runtime that the resource has not been modified.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

35

Configuring VTL

Using configuration, it’s possible to modify the way in which certain VTL constructs
work. I’ve saved the discussion of these configuration options until Chapter 3 where
they’re discussed in the context of the corresponding VTL constructs.

Configuring Velocimacro Libraries

Velocimacros are an advanced feature of VTL that are discussed in full in Chapter
3. Essentially, Velocimacros allow you to build reusable snippets of VTL code that
you can use multiple times throughout a template. Velocity allows Velocimacros
to be grouped together and stored globally in a library—Chapter 4 covers this
topic in more detail.

Using VelocityEngine

In the previous examples, all interaction with the Velocity runtime has been through
the Velocity helper class. Using this class, you’re accessing a single instance of
the Velocity runtime, which in most cases is perfectly adequate. However, as the
needs of your applications increase, you may find that you need to use two
instances of the Velocity runtime that are configured differently, within the same
JVM. Fortunately, this capability has been present in Velocity since version 1.2, in
the VelocityEngine class.

Using the VelocityEngine class is very much like using the Velocity class,
except you’re dealing with methods on a specific instance rather than static meth-
ods on a class. You still initialize the runtime with a call to the init() method, still
get an instance of a template using the getTemplate() method, and still generate
the final output with a call to mergeTemplate(). So, what’s the point? Well, as I men-
tioned previously, you may want to have multiple instances of the runtime within
your application, each with its own configuration. You may not have many uses for
this in a generic Web application, but what if you’re building a framework or a tool
that may be embedded inside an application that’s using Velocity? If your tool uses
the Velocity helper class, it’ll be sharing its configuration with the containing
application, and nothing is stopping that application from modifying the configu-
ration to such an extent that your tool will stop functioning. By using the VelocityEngine
class, your tool can have its own isolated instance of the Velocity runtime that will
not be affected by the configuration of any other Velocity runtimes in the contain-
ing application.

So, that’s the theory; you’ll now see this in action. In this example, I have two
instances of the Velocity runtime that generate output from a template. Both
instances use the same template name when obtaining an instance of the Template
class, but they both have differently configured resource loaders, which will load
the templates from different locations.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

36

The first thing to do is to create two templates with the same name, but in
different directories. Give each template different content so you’ll be able iden-
tify the output from each template. My first template looks like this:

template 1

This is template number 1

And the second one looks like this:

template 2

This is template number 2

Next is the Java code to create the output from these templates. I want to cre-
ate two instances of the Velocity runtime, each with a different resource loader
configured. In this way, I can point each resource loader at one of the directories
containing the templates, so even though the two instances will be looking for
a template with same name, they’ll be looking in different directories and thus
retrieve different templates. Listing 2-7 shows the code in full; I’ll explain each
part in detail afterward.

Listing 2-7. Using VelocityEngine

package com.apress.pjv.ch2;

import java.io.StringWriter;

import java.io.Writer;

import java.util.Properties;

import org.apache.velocity.Template;

import org.apache.velocity.VelocityContext;

import org.apache.velocity.app.VelocityEngine;

public class VelocityEngineTest {

private static final String TEMPLATE_NAME = "VelocityEngineTest.vm";

public static void main(String[] args) throws Exception {

// create the properties for each engine

Properties p1 = new Properties();

p1.put("resource.loader", "file");

p1.put(

"file.resource.loader.class",

"org.apache.velocity.runtime.resource.loader.FileResourceLoader");

p1.put("file.resource.loader.path", "src/templates/ch2/ve1");

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

37

Properties p2 = new Properties();

p2.put("resource.loader", "file");

p2.put(

"file.resource.loader.class",

"org.apache.velocity.runtime.resource.loader.FileResourceLoader");

p2.put("file.resource.loader.path", "src/templates/ch2/ve2");

//now create the engines

VelocityEngine ve1 = new VelocityEngine();

ve1.init(p1);

VelocityEngine ve2 = new VelocityEngine();

ve2.init(p2);

// now get the output for each engine

writeTemplateOutput(ve1);

writeTemplateOutput(ve2);

}

public static void writeTemplateOutput(VelocityEngine ve) throws Exception {

Template t = ve.getTemplate(TEMPLATE_NAME);

Writer writer = new StringWriter();

t.merge(new VelocityContext(), writer);

System.out.println(writer.toString());

}

}

The first part of the code is building the different configurations for the two
runtime instances. Here, I’ve created the configuration in code rather than using
property files so that the example is a bit simpler:

// create the properties for each engine

Properties p1 = new Properties();

p1.put("resource.loader", "file");

p1.put(

"file.resource.loader.class",

"org.apache.velocity.runtime.resource.loader.FileResourceLoader");

p1.put("file.resource.loader.path", "src/templates/ch2/ve1");

Properties p2 = new Properties();

p2.put("resource.loader", "file");

p2.put(

"file.resource.loader.class",

"org.apache.velocity.runtime.resource.loader.FileResourceLoader");

p2.put("file.resource.loader.path", "src/templates/ch2/ve2");

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 2

38

Notice that the only difference is the path in which the resource loader will
search for resources. The names of the resource loaders are the same, since these
two resource loaders won’t exist in the same runtime instance. Next, I create the
two runtime instances using the VelocityEngine class, like so:

//now create the engines

VelocityEngine ve1 = new VelocityEngine();

ve1.init(p1);

VelocityEngine ve2 = new VelocityEngine();

ve2.init(p2);

Notice that the configuration is applied using the init() method, just as
with the Velocity class. Finally, the output for the templates is generated and
written to the console, like so:

// now get the output for each engine

writeTemplateOutput(ve1);

writeTemplateOutput(ve2);

The writeTemplateOutput() method should look quite familiar; the
mergeTemplate() and getTemplate() methods of the Velocity class have been
used in all the previous examples. In the following code, they’re used on the
VelocityEngine instances but to the same effect:

public static void writeTemplateOutput(VelocityEngine ve) throws Exception {

Template t = ve.getTemplate(TEMPLATE_NAME);

Writer writer = new StringWriter();

t.merge(new VelocityContext(), writer);

System.out.println(writer.toString());

}

Running this example gives the following output:

This is template number 1

This is template number 2

Even though each runtime instance is looking for a template with the same
name, their resource loaders are configured differently, so they’re looking in dif-
ferent directories and will therefore find the different templates.

Use VelocityEngine wherever you want an isolated runtime with its own con-
figuration. You should consider creating your own singleton wrapper around the
VelocityEngine if you need to use it so you can take advantage of the caching

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Getting Started with Velocity

39

functionality. Consider a Web application where you create a new instance of
VelocityEngine for each request. Doing this will prevent resources from being
cached between the different requests, as each request will have its own short-
lived instance of the Velocity runtime.

Summary

This chapter introduced many new concepts that are core to the way the Velocity
runtime works. It started by showing how to build the different Velocity JAR files
and what differences these JAR files have. You’ll now be able to decide which JAR
file is suitable for you and build it from the source code. You’ve seen both the
Velocity and VelocityEngine classes in action and taken an in-depth look at the
similarities and differences between the two. A big part of this chapter focused on
configuring the Velocity runtime to your liking. You looked at logging and the var-
ious different logging implementations Velocity can use, and you took a detailed
look at the concept of resource loaders, how to configure them, and which ones
are most suited to normal application development.

In the next chapter, you’ll look at the templating language used by Velocity,
VTL. The chapter will take you through every VTL construct included in the stan-
dard Velocity download and will also introduce some of the extra constructs in
the VelocityTools project.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

117

CHAPTER 5

Creating Stand-Alone
Applications with

Velocity

BY NOW YOU should have a good grasp of how the underlying Velocity system
functions and how you can best utilize Velocity in your applications. However,
the examples I’ve presented so far have been trivial at best, so in this chapter
and the next I’ll show you how to build full applications with Velocity—for both
the desktop and for the Web. In this chapter I’ll focus on building an application
with Swing and Velocity, and then in the next chapter I’ll demonstrate how to use
Velocity when building Web applications.

During this chapter I’ll build a simple e-mail newsletter application that can
be used to send out customized information to Apress customers. Using this
application, a member of the marketing team at Apress could keep customers
informed of the latest book releases, any new offers, or any upcoming seminars
or conferences that Apress may be offering. I’ll write the user interface of the
application in Swing, and I’ll use Velocity to generate the customized e-mail
message for each subscriber.

You need to be aware of two main features of the e-mail generations.

First, subscribers can choose whether they want to receive the e-mail in
plain text or HTML format. It’s also conceivable that in the future Apress
may want to offer newsletters that contain embedded Macromedia Flash
content, so the software must be able to handle this gracefully.

Second, a subscriber will typically want to receive news on only certain
categories of books. For instance, a Java programmer is likely to want to
receive updates on Java books as well as books on databases and open
source—that Java programmer is unlikely to want to receive updates on
books about .NET or Visual Basic. So, the software must be able to gen-
erate customized e-mails that go beyond just putting the subscriber’s
name at the top.

It’s important to note that the example in this chapter isn’t a complete exam-
ple of how to create an e-mail marketing tool. For instance, the example in this
chapter uses a fixed list of subscribers whereas a real-life solution would most

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

118

Figure 5-1. The finished application

likely load the subscriber list from a database. In addition, the application pro-
vides only rudimentary text editing for the e-mail content whereas a real-world
solution would likely offer some kind of HTML-based editor and then derive the
plain-text content from the HTML, perhaps using regular expressions to strip
out the HTML tags. Of course, all these things are possible, and you could cer-
tainly extend the application in this chapter if you wanted to add any of these
features.

Application Overview

Before starting to look at the code, you’ll take a quick look at how the finished
application looks (see Figure 5-1).

At the top of screen, the user can specify what text should appear in the
subject of the message and what the sender address should be. These values
default to Apress Newsletter and newsletter@apress.com, respectively.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

119

Underneath this, you have the list of categories. Clicking a category will load the
content for that category into the large text area underneath the list box. When
the user moves from one category to another, the current content is stored for
the category that the user is deselecting, and the stored content for the newly
selected category is displayed. Finally, the progress bar and the send button are
at the bottom of the screen.

Building the Application

So now that you’ve seen how the application works, you’ll take a look under the
hood and examine how it’s built. I’ll cover the following topics:

Understanding the Domain Object Model: The application needs an
object model to represent the data it’s manipulating, such as subscriber
details and preferences and newsletter content.

Creating the user interface: You’ll take a detailed look at how the Swing
user interface is assembled and how events in the user interface are
linked to actions in the code.

Sending mail with JavaMail: I’ll demonstrate how to use the JavaMail
API to create and send e-mails.

Interacting with Velocity: You’ll see how to use the framework devel-
oped in Chapter 4 in the context of a nontrivial example.

Using the VTL templates: To finish the application code, I’ll show you
the VTL templates used to generate the e-mail content.

Testing the application: Finally, I’ll talk you through running the appli-
cation and taking it for a test drive.

Domain Object Model

The application functions by sending e-mails to subscribers based on their con-
tent preferences. Subscribers specify which category or categories of books they’re
interested in and in what format they want to receive the newsletter. The user of
the application can specify content to be included with each category in the news-
letter. The combination of the category data, which is fixed between newsletters,
and the content for that category, which changes each time a newsletter is sent,
forms one section of the newsletter. Depending on their preferences, subscribers
will receive one or more of these sections in their preferred format.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

120

The Subscriber Class

In the application, a Subscriber object represents each subscriber. The
Subscriber class has no functionality; it’s a simple domain object holding data
about each subscriber (see Listing 5-1).

Listing 5-1. The Subscriber Class

package com.apress.pjv.ch5;

public class Subscriber {

private String firstName = null;

private String lastName = null;

private String emailAddress = null;

private Format preferredFormat = Format.PLAIN_TEXT;

private Category[] subscribedCategories = null;

public Subscriber(String firstName, String lastName, String emailAddress,

Category[] subscribedCategories, Format preferredFormat) {

this.firstName = firstName;

this.lastName = lastName;

this.emailAddress = emailAddress;

this.subscribedCategories = subscribedCategories;

this.preferredFormat = preferredFormat;

}

public String getEmailAddress() {

return emailAddress;

}

public void setEmailAddress(String emailAddress) {

this.emailAddress = emailAddress;

}

public String getFirstName() {

return firstName;

}

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

121

public void setFirstName(String firstName) {

this.firstName = firstName;

}

public String getLastName() {

return lastName;

}

public void setLastName(String lastName) {

this.lastName = lastName;

}

public Format getPreferredFormat() {

return preferredFormat;

}

public void setPreferredFormat(Format preferredFormat) {

this.preferredFormat = preferredFormat;

}

public Category[] getSubscribedCategories() {

return subscribedCategories;

}

public void setSubscribedCategories(Category[] subscribedCategories) {

this.subscribedCategories = subscribedCategories;

}

}

As you can see from Listing 5-1, I’ve declared five JavaBeans properties for
the Subscriber class: FirstName, LastName, EmailAddress, PreferredFormat, and
SubscribedCategories. The first three should be fairly self-explanatory, but the
other two use classes you haven’t seen before, so a little more explanation is
required.

The PreferredFormat property represents the format in which subscribers would
prefer to receive their e-mail newsletter. As defined in the requirements, this can be
either HTML or plain text, but you can add new formats later. It would’ve been sim-
pler to use an int for each particular format and then use public static final fields to
store the possible value. However, a problem arises with this, in that you need to
know the MIME type for each format so that the e-mail message can be constructed
appropriately. It’d be possible for the code sending the e-mail to decode each int

value into the appropriate MIME type. Using this approach has a drawback, in that
adding a new format would require changes to the class defining the constant int
values and a change to the class that sends the e-mail message. A better approach is
to create a Format class and to add a property, ContentType, to the class that returns

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

122

the appropriate MIME type for a particular format. Listing 5-2 shows the approach
I used in the example.

Listing 5-2. The Format Class

package com.apress.pjv.ch5;

public class Format {

public static final Format PLAIN_TEXT = new Format("text/plain");

public static final Format HTML = new Format("text/html");

private String contentType = null;

private Format(String contentType) {

this.contentType = contentType;

}

public String getContentType() {

return contentType;

}

}

You’ll notice that the Format class has a private constructor and that the two
available formats, HTML and plain text, are declared as static constants. The rea-
son for this is twofold. First, it reduces the chance that the MIME type for one of
the formats could be incorrectly specified because of a typing error. Second, this
approach will be more efficient than allowing client code to create instance of
the Format class. This approach prevents multiple instances of the Format object
being created to represent the same actual format—since there are only two actual
formats, there should only ever be two Format objects in the JVM (depending on
classloader behavior).

The SubscribedCategories property returns an array of Category objects, each
of which represents one of the categories about which the subscriber wants to
receive information.

The Category Class

Listing 5-3 shows the code for the Category class.

Listing 5-3. The Category Class

package com.apress.pjv.ch5;

public class Category {

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

123

public static final Category JAVA = new Category("Java",

"http://www.apress.com/category.html?nID=32");

public static final Category OPEN_SOURCE = new Category("Open Source",

"http://www.apress.com/category.html?nID=28");

public static final Category DATABASE_SQL = new Category("Database/SQL",

"http://www.apress.com/category.html?nID=42");

public static final Category LEGO_MINDSTORMS = new Category(

"Lego Mindstorms", "http://www.apress.com/category.html?nID=46");

private String name = null;

private String webLink = null;

private Category(String name, String webLink) {

this.name = name;

this.webLink = webLink;

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

public String getWebLink() {

return webLink;

}

public void setWebLink(String webLink) {

this.webLink = webLink;

}

public String toString() {

return name;

}

public static Category[] getAllCategories() {

return new Category[]{Category.DATABASE_SQL, Category.JAVA,

Category.LEGO_MINDSTORMS, Category.OPEN_SOURCE};

}

}

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

124

The Category class has two properties: Name and WebLink. The WebLink property
provides a hyperlink to that category on the Apress Web site. As with the Format
class, Category has a private constructor, and individual instances of Category are
declared as static constants. The static method getCategoryList() returns an array
of Category objects, one for each category available. Since Apress has a small well-
defined list of categories, this approach is acceptable. However, if the list of
categories were larger or liable to change often, then it’d be wise to load the cate-
gories from a database or some other form of external storage and to use some
form of object caching to ensure that only one instance existed for each category.

The SubscriberManager Class

Together the Subscriber, Category, and Format classes effectively describe subscriber
and their preferences. However, none of those classes provides a way of getting
access to the actual list of subscribers. For this I created the SubscriberManager class
(see Listing 5-4).

Listing 5-4. The SubscriberManager Class

package com.apress.pjv.ch5;

import java.util.ArrayList;

import java.util.List;

public class SubscriberManager {

public List getSubscribers() {

List subscribers = new ArrayList();

subscribers.add(new Subscriber("Rob", "Harrop",

"rob@cakesolutions.net", new Category[] { Category.JAVA,

Category.DATABASE_SQL, Category.LEGO_MINDSTORMS},

Format.HTML));

subscribers.add(new Subscriber("Rob", "Harrop", "rob@cakesolutions.net",

new Category[] { Category.JAVA, Category.DATABASE_SQL,

Category.OPEN_SOURCE}, Format.HTML));

subscribers.add(new Subscriber("Rob", "Harrop", "robh@robharrop.com",

new Category[] { Category.JAVA}, Format.PLAIN_TEXT));

return subscribers;

}

}

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

125

The implementation of SubscriberManager shown in Listing 5-4 is unrealistic,
representing a finite list of subscribers. A more realistic implementation would
load the subscribers from some kind of external storage, such as a database. How-
ever, for the sake of this example, that would be overly complex, so the simple
implementation shown will suffice.

The NewsletterSection Class

The data represented by the Category class is persistent and will rarely change.
Certainly you’d expect to see this data included in many different newsletters.
However, if this were the only data included in the newsletter, then each one
would be the same. The whole purpose of the example application is to commu-
nicate new information about the categories to the subscriber. Each newsletter
is split into sections, with one section per category. These sections will contain
persistent information about the category, such as its name and Web link, but
will also contain information about the category that’s specific to the particular
newsletter. For this purpose, I created the NewsletterSection class, which repre-
sents a particular section in a newsletter (see Listing 5-5).

Listing 5-5. The NewsletterSection Class

package com.apress.pjv.ch5;

public class NewsletterSection {

private Category category = null;

private String content = null;

public NewsletterSection(Category category, String content) {

this.category = category;

this.content = content;

}

public Category getCategory() {

return category;

}

public void setCategory(Category category) {

this.category = category;

}

public String getContent() {

return content;

}

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

126

public void setContent(String content) {

this.content = content;

}

}

Each NewsletterSection class has a corresponding Category instance and
a String instance containing the content for that Category.

With the code shown in this section, the application can now represent each
subscriber and preferences within the JVM and get access to the list of categories
and subscribers. The application also has an effective way of mapping the persis-
tent category data to the transient category content that makes up the individual
sections of a newsletter.

User Interface

So far, the application does little; after all, it has no entry point for the JVM to load
the code, and it has no way for the user to interact with the application. In the ear-
lier “Application Overview” section, I demonstrated the mailer application working
and showed you the user interface. In this section, I’ll show you the code behind
the user interface.

NOTE As you can no doubt tell by now, I’m not a user interface
designer. A real-world application would probably have an inter-
face designed by someone with a shred of graphic design skill and
some understanding of what makes an application easy to use—
and surprisingly that isn’t a command-line interface!

The main entry point to the application is the Mailer class (see Listing 5-6).

Listing 5-6. The Mailer Class

package com.apress.pjv.ch5;

import javax.swing.JFrame;

import javax.swing.SwingUtilities;

public class Mailer {

public static void main(String[] args) {

SwingUtilities.invokeLater(new Runnable() {

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

127

public void run() {

createAndShowGUI();

}

});

}

private static void createAndShowGUI() {

//Make sure we have nice window decorations.

JFrame.setDefaultLookAndFeelDecorated(true);

//Create and set up the window.

JFrame frame = new JFrame("Apress Mailer");

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

frame.setContentPane(new MailerPanel());

//Display the window.

frame.pack();

frame.setVisible(true);

}

}

The first point of note in this class is the main() method itself. Rather than
call createAndShowGUI() directly, the main method creates an anonymous class
that implements the Runnable interface, implementing the run() method to call
createAndShowGUI(). This anonymous class is then passed as an argument to the
SwingUtilities.invokeLater() method. For those of you who aren’t familiar with
Swing, the reason for this is that all Swing applications have to be inherently thread
safe. This means that the interface should be assembled on the same thread that
dispatches the Swing events. The SwingUtilities.invokeLater() method provides
a simple way of running a task on the Swing event dispatch thread.

TIP Swing is a huge topic and is something that not all Java
programmers have used. If you want to learn more about Swing,
I recommend the fantastic Java Swing, Second Edition (O’Reilly,
2002).

The createAndShowGUI() method creates a JFrame instance, sets the title and
content pane, and then makes the JFrame visible. Most of the actual user interface
is created by the MailerPanel class, an instance of which is set as the content pane
for the main application window. The MailerPanel class contains a lot of code, so
I’ll show it piece by piece. To start with, the MailerPanel class imports all the Swing
classes required to build the user interface (see Listing 5-7).

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

128

Listing 5-7. The First Part of the MailerPanel Class

package com.apress.pjv.ch5;

import java.awt.Cursor;

import java.awt.GridBagConstraints;

import java.awt.GridBagLayout;

import java.awt.Insets;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.util.Iterator;

import java.util.List;

import javax.swing.JButton;

import javax.swing.JLabel;

import javax.swing.JList;

import javax.swing.JPanel;

import javax.swing.JProgressBar;

import javax.swing.JScrollPane;

import javax.swing.JTextArea;

import javax.swing.JTextField;

import javax.swing.event.ListSelectionEvent;

import javax.swing.event.ListSelectionListener;

public class MailerPanel extends JPanel implements ActionListener {

private JTextField subjectField = null;

private JTextField fromAddressField = null;

private JTextArea categoryContentField = null;

private JList categoryList = null;

private JButton sendButton = null;

private JProgressBar progressBar = null;

private int selectedCategory = -1;

private Category[] categories = null;

private String[] content = null;

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

129

Notice also that MailerPanel class extends the JPanel class and implements the
ActionListener interface. The JPanel class is a container for Swing components; by
extending this class, you can use the MailerPanel class as the main content pane of
a JFrame, and you can take advantage of the basic implementation provided by
JPanel. By implementing the ActionListener interface, the MailerPanel can receive
notification of actions from different components—this is useful when you want
to detect when the user clicks the send button.

The MailerPanel declares nine different private fields. The fields that store
Swing components give the MailerPanel simple access to the components once
they’ve been added to the content pane. The three remaining fields store the cat-
egories and their content and manage the category that the user has selected in
the category list.

The actual user interface is assembled when the MailerPanel constructor is
called (see Listing 5-8).

Listing 5-8. The MailerPanel Constructor

public MailerPanel() {

super(new GridBagLayout());

loadData();

GridBagConstraints c = new GridBagConstraints();

c.fill = GridBagConstraints.HORIZONTAL;

c.weightx = 0.5;

c.weighty = 0.5;

c.insets = new Insets(5, 5, 5, 5);

addFieldLabels(c);

addSubjectField(c);

addFromAddressField(c);

addCategoryList(c);

addCategoryContentsLabel(c);

addCategoryContentsTextBox(c);

addProgessBar(c);

addSendButton(c);

}

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

130

The first line in the constructor invokes the constructor on the superclass,
JPanel, passing as an argument a new instance of GridBagLayout. This will set the
layout of the MailerPanel to the GridBagLayout, which allows for precise, grid-based
layout of components.

Next, the category list is loaded with a call to loadData():

private void loadData() {

categories = Category.getCategoryList();

content = new String[categories.length];

}

The loadData() method stores the result of the call to Category.getCategoryList()
in the categories field and also initializes the content field to a String[] of the same
size as the categories field. Back in the constructor, an instance of GridBagConstraints
is created, like so:

GridBagConstraints c = new GridBagConstraints();

c.fill = GridBagConstraints.HORIZONTAL;

c.weightx = 0.5;

c.weighty = 0.5;

c.insets = new Insets(5, 5, 5, 5);

The GridBagConstraints class specifies the location and layout of components
when adding them to the GridBagLayout. Now the constructor creates the user
interface with calls to private methods, each of which configures a different piece
of the user interface. Each of these methods is passed the GridBagConstraints
instance. This allows the constructor to provide default settings, such as the insets
and fill for the GridBagConstraints, but it also allows each method to supply the
layout parameters for each component.

The first method called is the addFieldLabels() method, as follows:

private void addFieldLabels(GridBagConstraints c) {

// labels

c.gridx = 0;

c.gridy = 0;

add(new JLabel("Subject: "), c);

c.gridx = 0;

c.gridy = 1;

add(new JLabel("From Address: "), c);

}

This method adds the Subject and From Address labels to the top of the
MailerPanel. Notice the use of the gridx and gridy fields of the GridBagConstraints

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

131

class. By setting these values and then passing the GridBagConstraints instance
to the add() method along with each JLabel, I can specify which cell in the grid
I want the component to reside. In this case, I’m saying that I want the Subject
label to appear in the first row (0) and the first column (0) and that I want the
Address label to appear in the second row (1) and the first column (0).

The next call from the constructor is to the addSubjectField() method, like so:

private void addSubjectField(GridBagConstraints c) {

// text fields

c.gridx = 1;

c.gridy = 0;

subjectField = new JTextField();

subjectField.setText("Apress Newsletter");

c.ipadx = 150;

add(subjectField, c);

}

This method adds the text field used to enter the message subject to the
MailerPanel. Notice that the instance of JTextField created is assigned to the
subjectField field. This will give me easy access to the text field and its value
later in the code.

Next up is the following call to addFromAddressField():

private void addFromAddressField(GridBagConstraints c) {

c.gridx = 1;

c.gridy = 1;

fromAddressField = new JTextField();

fromAddressField.setText("newsletter@apress.com");

c.ipadx = 150;

add(fromAddressField, c);

}

This method is similar to the addSubjectField() method, so there’s no
need for any extra explanation. The next call the constructor makes is to the
addCategoryList() method, like so:

private void addCategoryList(GridBagConstraints c) {

c.gridx = 0;

c.gridy = 2;

c.gridwidth = 2;

categoryList = new JList();

categoryList.setListData(categories);

categoryList.addListSelectionListener(new ListSelectionListener() {

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

132

public void valueChanged(ListSelectionEvent event) {

if (event.getValueIsAdjusting() == false) {

updateCategoryContents();

}

}

});

categoryList.setSelectedIndex(0);

add(categoryList, c);

}

Most of the code in this method will be familiar to you by now. It configures
GridBagConstraints, creates an instance of JList, and assigns that instance to the
categoryList field. However, before the JList is added to the MailerPanel, the
categories array is set as the source data for the list using the JList.setListData()
method. In addition, an anonymous class is created that implements the
ListSelectionListener interface, and the valueChanged method is implemented to
call the updateCategoryContents() method whenever the value of the list is actually
changing, not just when the user is manipulating the list. Finally, before adding
the JList to the MailerPanel, the first item is list is selected, providing a default
selection when the user interface is displayed.

Next, the constructor calls addCategoryContentsLabel() and
addCategoryContentsTextBox(), like so:

private void addCategoryContentsLabel(GridBagConstraints c) {

// Category Contents Label

c.gridx = 0;

c.gridy = 3;

add(new JLabel("Category Content:"), c);

}

private void addCategoryContentsTextBox(GridBagConstraints c) {

c.gridx = 0;

c.gridy = 4;

c.ipadx = 250;

c.ipady = 100;

categoryContentField = new JTextArea();

categoryContentField.setLineWrap(true);

categoryContentField.setWrapStyleWord(true);

JScrollPane scroller = new JScrollPane(categoryContentField);

add(scroller, c);

}

Both of these methods should look pretty familiar; the only points you
should note are the call to JTextArea.setWrapStyleWord(true) and the use of

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

133

JScrollPane. Without setting the line wrap style to word wrapping, the JTextArea
will wrap a line in the middle of a word, which isn’t very user-friendly. You proba-
bly noticed the JTextArea instance itself isn’t added to the MailerPanel class; instead,
an instance of JScrollPane is created with the JTextArea as the inner component
and the JScrollPane instance is added to the MailerPanel. This prevents the JTextArea
from expanding to take up the whole pane when the text inside it increases.

The final calls of the constructor are to addProgressBar() and
addSendButton(), as follows:

private void addProgessBar(GridBagConstraints c) {

c.gridx = 0;

c.gridy = 5;

c.ipady = 40;

progressBar = new JProgressBar();

add(progressBar, c);

}

private void addSendButton(GridBagConstraints c) {

c.gridx = 0;

c.gridy = 6;

c.ipady = 30;

c.ipadx = 100;

sendButton = new JButton("Send Newsletters");

sendButton.setActionCommand("send");

sendButton.addActionListener(this);

add(sendButton, c);

}

Both of these methods should be familiar to you by now; the only point of
note is these two lines from addSendButton():

sendButton.setActionCommand("send");

sendButton.addActionListener(this);

The call setActionCommand() gives the button a command name, and the call
to addActionListener() sets the current MailerPanel instance as the object that
will receive notifications when the button is clicked. Using the command name
is especially useful when the same ActionListener is used for multiple buttons,
as it provides a way to differentiate between the buttons.

The remaining methods in the MailerPanel class handle events from the user
interface components. The updateCategoryContents() method is called whenever
the value of the category list changes, as follows:

private void updateCategoryContents() {

if (selectedCategory == -1) {

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

134

// this is the first-time selection

selectedCategory = categoryList.getSelectedIndex();

return;

}

saveCurrentContent();

// display the content for the newly selected category

categoryContentField.setText(content[categoryList.getSelectedIndex()]);

// store the new selection

selectedCategory = categoryList.getSelectedIndex();

}

private void saveCurrentContent() {

// store the content for the previously selected category

content[selectedCategory] = categoryContentField.getText();

}

The first time the updateCategoryContents() is called, the value of
selectedCategory will be -1, so the method simply stores the newly selected
index and returns control to the caller. However, after that, the value of
selectedCategory will be greater than -1, so the rest of the method is executed.
It’s important to understand that this method is executed after the value. there-
fore, the selected index of the list has changed, and the value of the
selectedCategory field will be the previously selected index. Using this value as
the array index, the saveCurrentContent() method will store the current text
from the categoryContentField JTextArea in the content array. In other words, if
the Category object for Java is stored at index 1 in the categories array, then the
content for the Java category will be stored at index 1 in the content array. Once
the saveCurrentCategory() method has executed, the updateCategoryContents()
method will get the text for the newly selected category from the content array
and set that as the value for the categoryContentField JTextArea. Finally, the new
index is stored in the selectedCategory field so that the next time this method is
called, the correct category is flagged as the previously selected one.

To receive notifications when the send button is clicked, the MailerPanel
class implements the ActionListener interface and is registered as an action lis-
tener for the send button. The ActionListener interface has one method, which is
actionPerformed(), as follows:

public void actionPerformed(ActionEvent event) {

if (event.getActionCommand().equals("send")) {

new Thread(new Runnable() {

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

135

public void run() {

sendNewsletters();

}

}).start();

}

}

The actionPerformed() method is passed an instance of the ActionEvent
class by the Swing framework. Using this instance, the MailerPanel can deter-
mine which action is being performed by checking the value of the
ActionEvent.getActionCommand() method. In this case, you’re looking for the
command send, which you’ll remember was set as the action command for the
send button. The actionPerformed() method is called from the Swing event dis-
patch thread, which means that any long-running tasks will interfere with the
event processing in the application. To prevent this, I created a new thread to
call the sendNewsletters() method.

The sendNewsletters() method handles the user interface updates before,
during, and after the sending process, as well as controlling the sending process
for each individual newsletter. The code for sendNewsletters() is quite long, so
I’ll present it in chunks:

private synchronized void sendNewsletters() {

//disable controls

switchControlState();

To start with, sendNewsletters() calls the switchControlState() method,
which disables the send button and the category list if they’re enabled and
enables them if they’re disabled.

private void switchControlState() {

categoryList.setEnabled(!categoryList.isEnabled());

sendButton.setEnabled(!sendButton.isEnabled());

}

Next, the sendNewsletters() method sets the cursor to the wait cursor and
calls saveCurrentContent() to save any content changes for the currently selected
category.

// show busy cursor

setCursor(new Cursor(Cursor.WAIT_CURSOR));

saveCurrentContent();

Next, the sendNewsletters() method gets the List of subscribers from the
SubscriberManager. Using this List, the maximum and minimum values of the

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

136

progress bar are configured and then the message subject and from address are
retrieved from the corresponding text fields.

List subscribers = (new SubscriberManager()).getSubscribers();

progressBar.setMinimum(1);

progressBar.setMaximum(subscribers.size());

String subject = subjectField.getText();

String fromAddress = fromAddressField.getText();

The next step in the process is to create an array of NewsletterSection
objects, one for each Category object in the category list, like so:

NewsletterSection[] sections = new NewsletterSection[categories.length];

for (int x = 0; x < sections.length; x++) {

sections[x] = new NewsletterSection(categories[x], content[x]);

}

Notice how the category and the corresponding content are loaded from the
categories and content arrays using the same index. The next-to-last step for the
sendNewsletters() method is to iterate over the List of Subscriber objects
retrieved from the SubscriberManager and send a newsletter to each one using the
NewsletterManager class, like so:

Iterator itr = subscribers.iterator();

NewsletterManager manager = new NewsletterManager(fromAddress, subject);

int count = 1;

while (itr.hasNext()) {

Subscriber s = (Subscriber) itr.next();

manager.sendNewsletter(sections, s);

progressBar.setValue(count++);

}

Notice that each time a newsletter is sent, the progress bar value is incre-
mented to give the user some visual feedback as to the progress of the sending
process. The next section covers the NewsletterManager class in detail; for now,
it’s enough to know that the NewsletterManager will create the appropriate
newsletter content for each subscriber and send it to each subscriber’s e-mail
address. The final part of the sendNewsletters() method restores the cursor to
the default and switches the state of the send button and the category list back
to enabled, like so:

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

137

// restore cursor

setCursor(new Cursor(Cursor.DEFAULT_CURSOR));

// reactivate controls

switchControlState();

}

At this point, the application won’t actually compile, because there’s no imple-
mentation for the NewsletterManager class. However, you could provide a stub
implementation of this class and run the example. If you do this, you should find
that the user interface is fully operational—save for the fact that clicking the send
button won’t actually do anything—but you should be able to add content for each
category and switch back and forth between the categories to ensure that the con-
tent for each category is being stored appropriately.

Sending the Newsletters

As you saw from the previous section, the logic for actually sending the newsletter
resides in the NewsletterManager.sendNewsletter() method. The NewsletterManager
class uses the JavaMail API to construct and send the e-mail message, so you’ll
need to download it before you can continue with the code. You can download
the latest version of JavaMail from http://java.sun.com/products/javamail/; I used
version 1.3.1 for this book. In addition to JavaMail, you need to download the
JavaBeans Activation Framework (JAF), which is used by JavaMail to construct the
mail messages. You contain obtain JAF from http://java.sun.com/products/
javabeans/jaf/.

The NewsletterManager class declares three instance fields and one constant
field (see Listing 5-9).

Listing 5-9. The NewsletterManager Class

package com.apress.pjv.ch5;

import java.util.Properties;

import javax.mail.Address;

import javax.mail.Message;

import javax.mail.MessagingException;

import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.internet.AddressException;

import javax.mail.internet.InternetAddress;

import javax.mail.internet.MimeMessage;

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

138

public class NewsletterManager {

private static final String SMTP_SERVER = "localhost";

private Session session = null;

private Address fromAddress = null;

private String subject = null;

The SMTP_SERVER constant holds the address of the SMTP server used to
send e-mails. It’s likely that this would be a configurable parameter in a real-
world application; however, for the sake of this example, a constant will suffice.
The subject field will store the subject of the message, which, as you saw in
MailerPanel.sendNewsletters(), is passed to the NewsletterManager in the con-
structor. The session field holds an instance of javax.mail.Session, which
represents a communication session with the mail server. The fromAddress field
stores the address to be used as the sender address on the newsletter e-mails.

The NewsletterManager constructor requires two arguments: the subject of
the message and the sender address (see Listing 5-10).

Listing 5-10. The NewsletterManager Constructor

public NewsletterManager(String fromAddress, String subject)

throws NewsletterException {

try {

this.fromAddress = new InternetAddress(fromAddress);

} catch (AddressException ex) {

throw new NewsletterException("Invalid from address", ex);

}

this.subject = subject;

}

You’ll notice that although the fromAddress field is declared as type
javax.mail.Address, it’s instantiated at type javax.mail.internet.InternetAddress.
The reason for this is that the Address class is abstract and serves as the common
base class for different kinds of addresses. The Address class has two concrete
subclasses: InternetAddress and NewsAddress, used for e-mails and newsgroup
addresses, respectively. You should also notice that the constructor for
InternetAddress throws an AddressException if you supply an incorrectly format-
ted e-mail address. The NewsletterManager class catches this exception and wraps
it in the NewsletterException class (see Listing 5-11).

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

139

Listing 5-11. The NewsletterException Class

package com.apress.pjv.ch5;

public class NewsletterException extends RuntimeException {

public NewsletterException() {

super();

}

public NewsletterException(String msg) {

super(msg);

}

public NewsletterException(String msg, Throwable rootCause) {

super(msg, rootCause);

}

public NewsletterException(Throwable rootCause) {

super(rootCause);

}

}

The sendNewsletter() method is where it all happens! In this method, the
mail message is constructed, the recipients are configured, and the message is
sent. The sendNewsletter() method is quite long, so I’ll explain it in chunks. You’ll
recall from the previous section that the MailerPanel.sendNewsletters() method
iterates over the list of subscribers and calls sendNewsletter() once for each sub-
scriber, passing in the Subscriber object and an array of NewsletterSection object
representing the newsletter content, like so:

public boolean sendNewsletter(NewsletterSection[] sections,

Subscriber subscriber) throws NewsletterException {

The first step taken by the sendNewsletter() method is to create the actual
newsletter content:

NewsletterTemplate template = NewsletterTemplateFactory.getInstance()

.getNewsletterTemplate(subscriber.getPreferredFormat());

template.setSections(sections);

template.setSubscriber(subscriber);

This is where Velocity enters the equation. The sendNewsletter() method
doesn’t interact with Velocity directly; instead, it follows the pattern discussed in
Chapter 4. It retrieves a template object, in this case an object that implements

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

140

the NewsletterTemplate interface, from the NewsletterTemplateFactory and appro-
priate properties on the NewsletterTemplate instance. The next section discusses
these classes and interfaces in more detail.

Next up comes the code that sends the actual message. The JavaMail API throws
quite a few different exceptions, so this block is wrapped in a try/catch block so that
any JavaMail-specific exceptions can be wrapped in a NewsletterException. I start by
creating an instance of MimeMessage and setting the content of the message, like so:

try {

Message msg = new MimeMessage(getMailSession());

msg.setContent(template.generate(), subscriber.getPreferredFormat()

.getContentType());

The MimeMessage constructor is passed an instance of javax.mail.Session,
which is obtained from the getMailSession() method. The code for
getMailSession() is shown at the end of this section, but it simply ensures that
the Session object is correctly configured and that all calls to sendNewsletter()
on the same NewsletterManager instance use the same Session object. An im-
portant call in this block of code is the call to Message.setContent(). Here I use
the generate() method of the template object to provide the content for the
message, and I use the getContentType() method of the subscribers preferred
Format object to set the content type.

The remaining code in the sendNewsletter() method simply configures the
subject, from the address and recipient address of the mail message, and then
sends it with a call to Transport.send(), as follows:

msg.setSubject(subject);

msg.setFrom(fromAddress);

msg.addRecipient(Message.RecipientType.TO, new InternetAddress(

subscriber.getEmailAddress()));

Transport.send(msg);

return true;

} catch (AddressException e) {

// invalid address - ignore

e.printStackTrace();

return false;

} catch (MessagingException e) {

e.printStackTrace();

throw new NewsletterException("Unable to send newsletter", e);

}

}

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

141

Notice that the catch block for the AddressException doesn’t rethrow an
exception; instead, it simply returns false, indicating that the message wasn’t
sent. The reason for this is that I don’t want an invalid address to stop the entire
process. Imagine what would happen if the user left the software to send 1,000
e-mails overnight, only for it to error out on the third one because of an invalid
e-mail address. In a real-world application, it’d be likely that some kind of log of
invalid addresses would be used so that the user could correct the invalid
addresses and attempt to resend the newsletter to those addresses.

For completeness, the following is the code for the getMailSession() method:

private Session getMailSession() {

if (session == null) {

Properties props = new Properties();

props.put("mail.smtp.host", SMTP_SERVER);

session = Session.getDefaultInstance(props);

}

return session;

}

The code for sending the e-mail messages is relatively short, but the mes-
sages are quite basic and don’t involve any complex assembly, such as would be
required for HTML messages with embedded images or messages with two alter-
native versions of the content. In the next section I’ll show you last part of the
puzzle: content generation using Velocity.

Generating the Newsletter Content

At this point you may be wondering if I’ve forgotten about Velocity completely. Well,
the answer is certainly not. However, I did want to illustrate a point by leaving
Velocity until the end of the chapter—the application I’ve built is completely decou-
pled from Velocity. I could provide any implementation of the NewsletterTemplate
interface used by the sendNewsletter() method; I’m not just limited to using Velocity.
This is good application design and doesn’t add any additional complexity to the
application. However, you aren’t interested in another implementation; you’re inter-
ested in Velocity, so you’ll now see how you can provide an implementation of the
NewsletterTemplate interface using the framework classes discussed in Chapter 4.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

142

Template Object Model

Listing 5-12 shows the NewsletterTemplate interface.

Listing 5-12. The NewsletterTemplate Interface

package com.apress.pjv.ch5;

import com.apress.pjv.ch4.ContentTemplate;

public interface NewsletterTemplate extends ContentTemplate {

public NewsletterSection[] getSections();

public void setSections(NewsletterSection[] sections);

public Subscriber getSubscriber();

public void setSubscriber(Subscriber subscriber);

}

As you can see, the NewsletterTemplate interface is pretty basic, but it does
inherit some methods from the ContentTemplate interface that were discussed in
Chapter 4 (see Listing 5-13).

Listing 5-13. The ContentTemplate Interface

package com.apress.pjv.ch4;

import java.io.Writer;

public interface ContentTemplate {

public String generate() throws TemplateException;

public void generate(Writer writer) throws TemplateException;

}

If you recall the example from Chapter 4, it’s a trivial job to implement the
NewsletterTemplate to use Velocity using the AbstractVelocityContentTemplate
class, which provides implementations of the generate() methods that use the
Velocity template engine (see Listing 5-14).

Listing 5-14. The AbstractVelocityContentTemplate Class

package com.apress.pjv.ch4;

import java.io.StringWriter;

import java.io.Writer;

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

143

import org.apache.velocity.Template;

import org.apache.velocity.context.Context;

public abstract class AbstractVelocityContentTemplate {

public void generate(Writer writer) throws TemplateException {

try {

VelocityManager.init("src/velocity.properties");

Template t = VelocityManager.getTemplate(getResourceName());

// create the context

Context ctx = ContextFactory.getInstance();

// populate with model data

ModelBean model = getModel();

ctx.put(model.getModelName(), model);

t.merge(ctx, writer);

} catch(Exception ex) {

throw new TemplateException("Unable to generate output", ex);

}

}

public String generate() throws TemplateException {

Writer w = new StringWriter();

generate(w);

return w.toString();

}

protected abstract ModelBean getModel();

protected abstract String getResourceName();

}

However, the difference between this example and the one from Chapter 4 is
that I actually need two implementations of the NewsletterTemplate interface: one
for the HTML newsletter and one for the plain-text newsletter. Both of these classes
are going to share almost identical implementations—in fact, they only differ in
their implementation of AbstractVelocityContentTemplate.getResourceName(). To
save duplicating a bunch of code, I created the AbstractNewsletterTemplate class,
which provides an implementation of the NewsletterTemplate interface and an
implementation of AbstractVelocityContentTemplate.getModel() (see Listing 5-15).

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

144

Listing 5-15. The AbstractNewsletterTemplate Class

package com.apress.pjv.ch5;

import com.apress.pjv.ch4.AbstractVelocityContentTemplate;

import com.apress.pjv.ch4.ModelBean;

public abstract class AbstractNewsletterTemplate

extends AbstractVelocityContentTemplate

implements NewsletterTemplate {

private NewsletterSection[] sections;

private Subscriber subscriber;

public NewsletterSection[] getSections() {

return sections;

}

public void setSections(NewsletterSection[] sections) {

this.sections = sections;

}

public Subscriber getSubscriber() {

return subscriber;

}

public void setSubscriber(Subscriber subscriber) {

this.subscriber = subscriber;

}

protected ModelBean getModel() {

return new NewsletterModelBean(sections, subscriber);

}

}

The getModel() method returns an implementation of the following
ModelBean interface shown in Chapter 4:

package com.apress.pjv.ch4;

public interface ModelBean {

public String getModelName();

}

Here, this implementation is given by the NewsletterModelBean class (see
Listing 5-16).

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

145

Listing 5-16. The NewsletterModelBean Class

package com.apress.pjv.ch5;

import com.apress.pjv.ch4.ModelBean;

public class NewsletterModelBean implements ModelBean {

private NewsletterSection[] sections = null;

private Subscriber subscriber = null;

public NewsletterModelBean(NewsletterSection[] sections,

Subscriber subscriber) {

this.sections = sections;

this.subscriber = subscriber;

}

public String getModelName() {

return "newsletter";

}

public NewsletterSection[] getSections() {

return sections;

}

public void setSections(NewsletterSection[] sections) {

this.sections = sections;

}

public Subscriber getSubscriber() {

return subscriber;

}

public void setSubscriber(Subscriber subscriber) {

this.subscriber = subscriber;

}

}

The next step is to provide two subclasses of AbstractNewsletterTemplate:
one for the HTML template and one for the plain-text template. The imple-
mentation for these classes is trivial, since most of the code is in the
AbstractNewsletterTemplate and AbstractVelocityContentTemplate classes (see
Listing 5-17).

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

146

Listing 5-17. AbstractNewsletterTemplate and AbstractVelocityContentTemplate

package com.apress.pjv.ch5;

public class HtmlNewsletterTemplate extends AbstractNewsletterTemplate {

protected String getResourceName() {

return "html/newsletter.vm";

}

}

package com.apress.pjv.ch5;

public class PlainTextNewsletterTemplate extends AbstractNewsletterTemplate {

protected String getResourceName() {

return "plainText/newsletter.vm";

}

}

If you recall, the NewsletterManager.sendNewsletter() method obtains an
implementation of the NewsletterTemplate from the NewsletterTemplateFactory
class (see Listing 5-18).

Listing 5-18. The NewsletterTemplateFactory Class

package com.apress.pjv.ch5;

public class NewsletterTemplateFactory {

private static NewsletterTemplateFactory instance;

static {

instance = new NewsletterTemplateFactory();

}

private NewsletterTemplateFactory() {

// no-op

}

public static NewsletterTemplateFactory getInstance() {

return instance;

}

public NewsletterTemplate getNewsletterTemplate(Format format) {

if (format == Format.HTML) {

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

147

return new HtmlNewsletterTemplate();

} else {

return new PlainTextNewsletterTemplate();

}

}

}

Notice that the getNewsletterTemplate() method returns an appropriate imple-
mentation based on the Format object supplied as the method argument. The
NewsletterTemplateFactory class is the last class needed for the application. The
class model that’s in place for the template generation provides a model that’s sim-
ple to code against but is also easy to extend. For instance, you’ll remember that at
the beginning of the chapter I talked about extending the application so that sub-
scribers could receive mailings in Macromedia Flash format. Adding this support
to the template generation would be easy; all it requires is a small change to the
NewsletterTemplateFactory and a new class, FlashNewsletterTemplate, as follows:

public class FlashNewsletterTemplate extends AbstractNewsletterTemplate {

protected String getResourceName() {

return "flash/newsletter.vm";

}

}

Of course, I could quite easily rip out the Velocity support altogether and pro-
vide completely different implementations of the NewsletterTemplate interface.

Velocity Templates

With all the Java code complete, all that’s left is to create the Velocity templates
and run the software. The plain-text template is the simplest, so I will start with
that one (see Listing 5-19).

Listing 5-19. The Plain-Text Template

Hi, $newsletter.Subscriber.FirstName $newsletter.Subscriber.LastName, ➥

and welcome to the

Apress Monthly Newsletter!

We have a great selection of new books for you this week:

#foreach($section in $newsletter.Sections)

#set($include = false)

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

148

#foreach($cat in $newsletter.Subscriber.SubscribedCategories)

#if($cat == $section.Category)

#set($include = true)

#end

#end

#if($include)

--

$section.Category.Name

--

$section.Content

View more details about $section.Category.Name at: $section.Category.WebLink.

#end

#end

--

To unsubscribe from this newsletter, visit: http://www.apress.com/unsubscribe/ ➥

$newsletter.Subscriber.EmailAddress

Most of this code will look familiar; the only part that may throw you is this:

#set($include = false)

#foreach($cat in $newsletter.Subscriber.SubscribedCategories)

#if($cat == $section.Category)

#set($include = true)

#end

#end

This code will run for each NewsletterSection object in the model and will
check to see if the subscriber is subscribed to the category represented by the
NewsletterSection. If so, the $include variable is set to true, and the content will be
included; otherwise, $include is false and the content will be excluded. Another
way of achieving this would have been to add an isSubscribedToCategory(Category)
method to the Subscriber object and have Velocity call that—either way the out-
come is the same.

For the most part, the HTML template is similar; the only real difference is
the obvious one—layout is achieved using HTML tags (see Listing 5-20).

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

149

Listing 5-20. The HTML Template

<html>

<head>

<title>A P R E S S . C O M | Books for Professionals, by Professionals

...</title>

<base href="http://www.apress.com">

</head>

<body text="#000000" vLink="#333399" link="#333399" leftmargin="0"

background="/img/v1/bkgd.gif" topmargin="0"

marginheight="0" marginwidth="0">

<table cellspacing="0" cellpadding="0" width="780" border="0">

<tbody>

<tr valign="top" align="left">

<td> <table cellspacing="0" cellpadding="0" width="166" border="0">

<tbody>

<tr valign="top" align="left">

<td valign="top" align="left" width="166" height="109">

<img src="/img/v1/aMod.gif" height="118"

width="166" border="0">

</td>

</tr>

</tbody>

</table></td>

<td> <table cellspacing="0" cellpadding="0" width="614" border="0">

<tbody>

<tr valign="top" align="left">

<td valign="top" align="left" width="614" height="40">

<img height="40" src="/img/v1/top.gif" alt=""

width="614" border="0">

</td>

</tr>

</tbody>

</table>

<table cellspacing="0" cellpadding="0" width="614" border="0">

<tbody>

<tr valign="top" align="left">

<td valign=top align=left width="614" height="45">

<img height="45" src="/img/v1/mid.gif" alt=""

width="614" border="0">

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

150

</td>

</tr>

</tbody>

</table>

<table cellspacing="0" cellpadding="0" width="614" border="0">

<tbody>

<tr valign="top" align="left">

<td valign="top" align="left" width="614" height="24">

<img height="24" src="/img/v1/bot.gif" alt=""

width="614" border="0">
 </td>

</tr>

</tbody>

</table>

<!-- Start of Newsletter Content -->

<h1>Hi, $newsletter.Subscriber.FirstName

$newsletter.Subscriber.LastName,

and welcome to the Apress Monthly Newsletter!</h1>

<h2>We have a great selection of new books for you this week:</h2>

<table border="0">

#foreach($section in $newsletter.Sections)

#set($include = false)

#foreach($cat in $newsletter.Subscriber.SubscribedCategories)

#if($cat == $section.Category)

#set($include = true)

#end

#end

#if($include)

<tr>

<td style="text-weight:bold; text-decoration:underline" bgcolor>

$section.Category.Name

</td>

</tr>

<tr>

<td>$section.Content</td>

</tr>

<tr>

<td>

View more details about $section.Category.Name, click

here.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

151

<hr>

</tr>

#end #end

</table>

<h3>To unsubscribe from this newsletter, click

here</h3>.

<!-- End of Newsletter Content --> </td>

</tr>

</tbody>

</table>

</body>

</html>

Most of the HTML code has been taken from the Apress Web site; the only frag-
ment of real interest is the bit between the <!-- Start of Newsletter Content-->
and <!-- End of Newsletter Content--> comments.

That’s all the code required for the application completed. Now all that remains
is to test the application.

Running the Example

Now that you have all the code, you can test the application. Make sure that the
SMTP server specified in NewsletterManager and the e-mail addresses specified in
SubscriberManager are valid for your environment.

To run the application, Unix users should execute the following command:

java -cp "lib/mail.jar:lib/activation.jar:lib/velocity-dep-1.4.jar:build/." ➥

com.apress.pjv.ch5.Mailer

If you’re using a Windows operating system, you should swap the colons
separating the paths for semicolons.

When the application first loads, you get the main screen with Database/
SQL option preselected in the category list, as shown in Figure 5-2.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

152

Enter some text in the text area, and then swap to another category. You
should repeat this process until all the categories have some content, as shown
in Figure 5-3.

Figure 5-2. Application at startup

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

153

Figure 5-3. Adding category content

Now all that remains to do is click send and watch the progress bar as the
mails are sent. When you receive the mail, you should see something like what’s
shown in Figure 5-4 for the plain-text mails.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

154

Figure 5-4. Plain-text e-mail

HTML mails look a bit more enticing, as shown in Figure 5-5.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Creating Stand-Alone Applications with Velocity

155

Figure 5-5. HTML e-mail

Summary

In this chapter you saw how you can use Velocity when building nontrivial appli-
cations. You haven’t seen, however, a vast amount of Velocity code—this is mainly
because of the framework discussed in Chapter 4. You saw how easy it is to
extend the templating capabilities of the application to include new message
formats and how it’s possible to replace the templating implementation com-
pletely without affecting the application itself.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

Chapter 5

156

Applications that are built on top of Velocity should have little Velocity-specific
code, reducing the application’s dependency on the Velocity engine. In the exam-
ple shown in this chapter, only one class, AbstractVelocityContentTemplate,
contains Velocity-specific code. Even though the example application has only two
templates, the benefits of this abstraction are clear—consider the benefits for an
application with many more templates.

In the next chapter, you’ll see how you can use Velocity to build Web-based
applications both on its own and in conjunction with frameworks such as Struts
and Spring.

Please note that the chapters included here are in their "beta" form, and are subject to modification and correction before the final book ships

