
Pro Java EE 5
Performance
Management and
Optimization

■ ■ ■

Steven Haines

Haines_6102FRONT.fm Page i Friday, April 14, 2006 7:51 AM

Pro Java EE 5 Performance Management and Optimization

Copyright © 2006 by Steven Haines

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 1-59059-610-2

ISBN-10: 978-1-59059-610-4

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewers: Mark Gowdy, Dilip Thomas
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editors: Heather Lang, Nicole LeClerc
Assistant Production Director: Kari Brooks-Copony
Production Editor: Laura Cheu
Compositor: Susan Glinert
Proofreader: Liz Welch
Indexer: Broccoli Information Management
Artist: Kinetic Publishing Services, LLC
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski
Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.

Haines_6102FRONT.fm Page ii Friday, April 14, 2006 7:51 AM

223

■ ■ ■

C H A P T E R 9

Performance and
Scalability Testing

“I sent my architect on a tuning mission following the wait-based tuning approach that you
showed us. We decided to scale both vertically and horizontally inside a cluster, carefully
choosing our replication strategy. So now how do I set my expectations for the environment?”

John took a step that I was hoping that he would. He recognized that, while tuning efforts
and deployment planning exercises improve the performance of your applications, they do
nothing to instill you with confidence until after you have run performance and scalability tests
and can support the effectiveness of your efforts with hard numbers.

“That is a very good question. Remember when we talked about the behavior of an appli-
cation when it is exposed to an increasing user load?”

“Do you mean the response time, utilization, and throughput graph?” John asked.
“Exactly,” I replied. “As user load increases, the system is required to do more, so resource

utilizations increase; the application performs more work, so throughput increases; and thread
contexts switch, so response time is marginally affected. But there is a point where resources
saturate, causing the system overhead to hinder application performance, reduce throughput,
and finally increase the response time exponentially.” Whenever I describe this graph (see
Figure 9-2) without any props, my arms move in upward curves and crosses, which are mean-
ingless to anyone who has not seen the graph before. Luckily John knew exactly what I was
talking about and tolerated my flapping arms.

“Yes, that graph scares me, because when things start going bad, they go bad very quickly!”
“Yes, so the key to attaining confidence in your tuning efforts and deployment planning

exercises is to run performance and scalability tests. And the final goal in running these tests is
overlaying your performance metrics on top of such a graph. In the end, you can state with
confidence the number of users your application can support while meeting SLAs and how it
behaves afterward. Let me show you the strategies I employ to perform these tests.”

Performance and scalability testing are crucial to the successful deployment of your appli-
cations. You can design solid applications, test each component individually, test the integrated
solution, and even test your applications in a production staging environment, but until you
discover the limits of your environment, you will never attain sufficient confidence that your
application can meet the changing needs and expectations of your users.

Haines_6102.book Page 223 Thursday, April 13, 2006 6:57 AM

224 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

Here’s a coarse comparison: back in 1997, I bought a 1995 Mazda RX7 (the Batmobile-
looking car). It is a high-performance sports car boasting acceleration from 0 to 60 mph in less
than five seconds and a top speed of over 160 mph. It corners fast and handles incredibly, but
it has a limitation referred to as “unpredictable oversteer”—it can take corners very fast, but
once you pass a certain threshold, the car’s behavior is unpredictable. Shortly after buying the
car, I took my friend Chris for a ride, and we discovered that threshold. I approached a tight
corner, and instead of letting off the gas, I accelerated. The car performed two 360-degree spins
before coming to a (thankfully) safe stop. Needless to say, Chris and I needed to take another
short trip around the neighborhood to restart our hearts, but I never pushed the car past the
limit that I discovered.

Let’s bring this back to performance and scalability testing: you may be comfortable with
the performance of your application in general and even with its performance at your current
or projected usage, but until you discover its breaking point, you will always experience uncer-
tainty every time marketing runs another promotion or a new, high-profile customer endorses
your application. The key to attaining this confidence is to perform the following tasks:

• Assess the performance of your application at expected load.

• Determine the load that causes your application to exceed its SLAs.

• Determine the load that causes your application to reach its saturation point and enter
the buckle zone.

• Construct a performance degradation model from expected usage to exceeded SLAs to
saturation point.

With this information in hand, you will be well equipped to project the effects of changes
in usage patterns on your environment and intelligently recommend environment changes to
your CIO.

Performance vs. Scalability
The terms “performance” and “scalability” are commonly used interchangeably, but the two
are distinct: performance measures the speed with which a single request can be executed,
while scalability measures the ability of a request to maintain its performance under increasing
load. For example, the performance of a request may be reported as generating a valid response
within three seconds, but the scalability of the request measures the request’s ability to maintain
that three-second response time as the user load increases.

Scalability asks the following questions about the request:

• At the expected usage, does the request still respond within three seconds?

• For what percentage of requests does it respond in less than three seconds?

• What is the response time distribution for requests that do not respond within
three seconds?

Haines_6102.book Page 224 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 225

If you recall from Chapter 5, an SLA is defined by the following three key criteria:

• It is specific.

• It is flexible.

• It is reasonable.

The “specific” value measures the performance of a single request: the request must
respond within three seconds. The “flexibility” value, however, measures the scalability of the
request: the request must respond within three seconds for 95 percent of requests and may
fluctuate, at most, one standard deviation from the mean.

The strategy is to first ensure the performance of a request or of a component and then test
the request or component for scalability. Ensuring the performance of a request or of a compo-
nent depends on where your application is in the development life cycle. Optimally, you want
to implement proactive performance testing in the development phase of your application,
which includes developing unit tests using a unit testing framework, like JUnit, and imple-
menting code profiling, memory profiling, and coverage profiling against those unit tests.

From code profiling, you want to watch for the following three key things:

• Poorly performing methods

• Methods invoked a significant number of times

• Classes and methods that allocate an excessive number of objects

The purpose of code profiling is to identify any egregiously slow algorithms or methods
that are creating a surplus of objects; for example, trying to sort 1 million items using a bubble
sort algorithm can result in up to 1012 object comparisons, which could take minutes or hours
to execute.

When implementing memory profiling, you look for the following two things:

• Loitering objects

• Object cycling

Loitering objects, also referred to as lingering object references, are unwanted objects that
stay in the heap after the end of a use case. They reduce the amount of available heap memory
and typically are tied to one or more requests, so they are leading the heap down a path to its
ultimate demise. Another side of memory mismanagement is object cycling, or the rapid creation
and destruction of objects in the heap. While these objects do not linger in the heap and consume
permanent resources, they force the garbage collector to run more frequently and hence hinder
performance.

Finally, coverage profiling establishes the level of confidence you have in your unit tests.
The coverage profiler tells you each condition that was and was not executed for every line of
code. If you test the functionality and performance of your code in unit tests, and your coverage
is high, then you can feel comfortable that your code is solid. On the other hand, if your coverage is
low, then you can have very little confidence in your test results.

Haines_6102.book Page 225 Thursday, April 13, 2006 6:57 AM

226 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

Chapter 5 details how to use each of these performance profiling tools and how to inter-
pret the results. If you jumped right to this chapter, I suggest you review the material in Chapter 5
before investigating performance problems.

Thus far we have been looking at the bottom-up approach to performance tuning from an
application’s inception. This approach is great in theory, and you can definitely apply it in the
next project, but what do you do today? Luckily, we can apply similar principles with a top-down
approach. I hope that you have a production staging environment that you can test against, but
if not, you can capture performance data from a running production environment.

■Note Configuring a diagnostic tool to run in a production environment can be a tricky task, but depending
on the tool itself, its impact on the environment can be mitigated. The core factors that can help you mitigate
the impact of such a tool in production are configuring filters, increasing aggregate sampling intervals, and
bundling components. Filters allow you to capture only the requests you are interested in (in some cases, you
may need to record several iterations of data with different filters to capture all interesting data). Call traces
are aggregated at a specific interval, and increasing this interval reduces the workload on the data correlator
(for example, aggregate data every 1 or 2 minutes, rather than every 10 or 30 seconds). To isolate poorly
performing components, sometimes bundling related code packages together into individual components and
returning a single value, rather than reporting method-by-method data, can provide valuable information at
lesser overhead. You will need to spend significant time with your performance diagnostic tools and tool
vendors to determine the best approach to recording detailed information in a live production environment.

The process is to record detailed, method-level performance information against your
environment while it is subjected to load. From this data, you want to extract the following
information:

• What are the slowest running requests?

• What are the most frequently executed requests?

• From these requests, what are the hot paths through the requests?

• What are the hot points in those hot paths?

• Are the performance problems code issues, configuration issues, or external
dependency issues?

Examine each slow request and determine why it is slow: is it a slow method, a slow data-
base call, or an environment threading or memory issue? If you can identify the problem as
being code related, then examine the offending methods. If the performance issues still evade
you, then examine the offending methods inside a code profiler by replaying the problematic
requests against your profiled environment and examining the offending methods line by line.
Continue this process until all major code bottlenecks have been resolved.

To fine-tune your application, identify requests and/or methods that are executed frequently.
Try to find methods that you have a chance of tuning; for example, your application may call
StringBuffer.append() millions of times, but you cannot improve its performance. (Actually, in
this case, you want to find out why the method is being called so many times and substantially

Haines_6102.book Page 226 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 227

reduce that if possible.) Shaving a few milliseconds off of a frequently executed method can
yield dramatic improvements in application performance.

All performance issues not related to your code need to be investigated on their own;
for example, database issues need to be evaluated in a database diagnostic tool. Your Java EE
information should provide you with problematic contexts such as SQL statements and the call
path that generated the undesirable behavior.

The goal is to resolve as many performance bottlenecks as possible prior to performing a
capacity assessment. While a capacity assessment can help you tune your environment, tuning
is only the secondary goal—the primary goal is to determine the maximum load you can support
while meeting your SLAs and establish a degradation model for your application once SLAs are
violated.

Capacity Assessment
The purpose of a capacity assessment is to identify the following key data points:

• The response time of your requests at expected usage

• The usage when the first request exceeds its SLA

• The usage when the application reaches its saturation point

• The degradation model from the first missed SLA to the application’s saturation point

A capacity assessment should be performed against your production staging environment,
but only after you have verified that your application can sustain expected usage through a
performance load test. The capacity assessment is the last test performed at the end of an iter-
ation or prior to moving the application to production. Your production staging environment
should mirror your production environment, if possible, or be a scaled-down version of it;
otherwise, the results of the capacity assessment are of little value.

Graduated Load Tester
The key tool that empowers you to perform a capacity assessment is a graduated load tester.
A graduated load tester is configured to climb to your expected usage in a regular and predefined
pattern and then increase load in graduated steps. The purpose behind this configuration is to
allow you to capture and analyze performance metrics at discrete units of load. The behavior
of graduated load generation is illustrated in Figure 9-1.

Graduated step sizes need to be thoughtfully chosen: the finer their granularity, the better
your assessment will be, but the longer the test will take to run. You can usually find a good
compromise between the test run time, the analysis time, and the granularity of the steps; it
varies from application to application, but as a general rule, I configure these steps to be about
5 percent of the expected load. For example, if you need to support 500 simultaneous users,
then your graduated step might start at 25 users. Graduated steps are required because of the
nature of enterprise applications, as Figure 9-2 illustrates.

Haines_6102.book Page 227 Thursday, April 13, 2006 6:57 AM

228 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

Figure 9-1. A graduated load test

Figure 9-2. A loaded enterprise application follows this typical pattern.

As the number of users (load) increases, the system utilization naturally increases, because
you need more resources to do more work. Likewise the throughput increases, because as you
are sending more work to the application, it is performing more work. When the load becomes
too heavy for the environment to support, then resources become saturated, which manifests
in excessive CPU context switching, garbage collections, disk I/O, network activity, and so on.

Haines_6102.book Page 228 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 229

These manifestations result in a decline in request throughput, which means that requests are
left pending and response time increases. If the load continues to increase when the system is in
this state, then the response time performance degrades exponentially. The point at which perfor-
mance time degrades is referred to as the saturation point, or, more colorfully, the buckle zone.

Capacity Assessment Usage Mappings
The capacity assessment attempts to map the behavior of your environment to the graph
shown in Figure 9-2. Therefore, at the end of the capacity assessment, you should be able to
construct a graph similar to Figure 9-3.

Figure 9-3. In this test, we successfully satisfied our expected users, and we have a buffer before we
start exceeding SLAs.

Figure 9-3 illustrates that the application is successfully satisfying its 500 expected users,
but at 550 users the application starts exceeding its SLAs, showing that we have a 10 percent
user buffer that can be supported. The buffer percentage represents your comfort zone for
your application—if your load never moves outside of your buffer, even during peaks, then you
can sleep well at night. You should strive to maintain approximately a 25 percent buffer to
allow for marketing promotions or any other significant increase in traffic. A buffer greater
than 40 percent is typically too large, because it means that you are maintaining additional
hardware and software licenses that really are not needed.

■Note Although a 25–40 percent buffer is generally ideal, you need to analyze your usage patterns to
determine what is best for your environment. If your usage patterns are very volatile, then you might want a
larger buffer, but if you are running an intranet application with a fixed maximum load, a smaller buffer may
be sufficient.

Haines_6102.book Page 229 Thursday, April 13, 2006 6:57 AM

230 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

The environment’s resources start to become saturated at 600 users, and by 650 users the
request throughput degrades substantially. User requests begin backing up in thread pools
and finally at the socket level, and by 700 users, the application has entered the buckle zone.
Once the application is in the buckle zone, the only option is to stop accepting requests and
allow the application to process all pending requests. But in reality, at this point, the only
feasible answer is to begin restarting application servers to manually flush out user requests.

The user response time, resource utilizations, and the request throughput between the
expected usage point and the buckle zone can be used to construct a degradation model. The
degradation model explicitly identifies the support buffer and response time patterns. The
purpose of constructing a degradation model is to allow your CIO to determine when to acquire
additional hardware and software resources. For example, if usage patterns are increasing
month-over-month in an identified trend, and a degradation model identifies that within 12 weeks
end-user SLAs will be violated, then a strong case is presented for acquiring additional resources.

Measurements
Before configuring your graduated load tester and firing load at your environment, you need to
put the tools in place to gather the appropriate measurements to assess the various states of
your environment. In the previous section, we identified three categories of metrics:

• Resource utilization

• Throughput

• Response time

The executive summary of your capacity assessment may state simply that at 600 users
resources became saturated, but the detailed resource analysis is going to report far more than
a simple saturation point metric. We look at a variety of resources in a capacity assessment and
identifying the limiting resources is important. For example, if the application is CPU-bound,
meaning that the core resource that becomes saturated and brings down the application is the
CPU, then adding additional RAM may not be very helpful. You need to configure each relevant
resource with monitoring tools and record its behavior during the capacity assessment.

Throughput, the second category of metrics, is defined simply as work performed over a
period of time. In a transactional application, requests committed per second is a common
measure of throughput, and in some environments, I have used the load tester’s recording of
successful requests processed per second as a measure of throughput. Your choice of measure-
ment is not as important as the fact that throughput is recorded consistently.

Finally, response time can be measured in terms of single requests, business transactions
that are a composite of requests, or a combination of the two. The most effective measure of
response time that I have observed has been a high-level recording of business transactions
with the ability to drill deeper into the individual requests that comprise the business transaction.
But in the end, you are measuring your response times against your use case SLAs, so be sure
that your measurements are consistent.

Resource Utilization

The most common resource measured is CPU utilization, because it always increases in direct
proportion to the user load: more requests made against the system require more CPU resources to
process them. But you need to capture other important metrics, namely the following:

Haines_6102.book Page 230 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 231

• Physical memory utilization

• Operating system disk I/O rates

• Operating system thread/process utilization

• Application server thread pool utilization

• Application server connection pool utilization

• Application server heap utilization and garbage collection rates (frequency and duration)

• Application server cache and pool utilizations

• Messaging system utilizations

• External dependency profiles (databases, legacy systems, Web services, and so forth)

• Network traffic sent between application nodes

The analysis of CPU utilization is pretty straightforward: under 80 percent utilization
means that the CPU is not under serious duress, but as it increases from 80–95 percent, the
entire system begins to suffer. If the CPU becomes pinned at 95–100 percent utilization, then it
is going to have difficulties processing anything in a timely manner.

The key to physical memory analysis is identifying anything that is being swapped out to
disk. Virtual memory and swapping are manageable on your desktop client, but you know that
as soon as your operating system’s memory requirements exceed the amount of physical memory
that you have, your computer becomes less and less responsive. The same thing happens on
a server, only the manifestations of the conditions are much more severe for your end users.
Throughout the capacity assessment, you need to record physical and virtual memory usage as
well as paging rates: high physical and virtual memory usages combined with increased paging
rates signify physical memory saturation.

Disk I/O rates represent how much data is being read from and written to the hard disk.
Disk reads and writes are expensive relative to reading and writing to physical memory, and
typically, high disk I/O rates mean that caching has not been configured optimally. For example,
when you make a request from a database, its data resides on the file system, but it maintains
frequently accessed data in memory caches. If the database is properly tuned, it should be
serving the majority of its requests from a cache, rather than having to read from the file system
to satisfy every request.

Different operating systems define their threading strategies differently, but regardless of
the implementation, the operating system controls its applications’ access to the CPU. The
operating system’s ability to maximize the use of its CPUs needs to be analyzed: if the threading
configuration prohibits the maximum use of its CPUs, then the environment can be thread or
process bound. For example, in older Linux threading models, each thread was represented by
a new process, so the Linux maximum process configuration limited the maximum number of
threads an application server could use. On the other hand, Solaris allows a single process to
maintain its own internal threads, but only through the configuration of multiple processes
can the operating system’s CPUs be fully utilized. Tracking application server thread utilization
is not sufficient for a capacity assessment; you need to track the operating system’s threads as well.

Haines_6102.book Page 231 Thursday, April 13, 2006 6:57 AM

232 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

When a request is received by an application server, it is placed into an execution queue
that is processed by a thread from the designated application server’s thread pool. If the appli-
cation server is out of threads, then the request will sit waiting in the execution queue for a
thread to process it. If the application server thread utilization approaches 100 percent and
pending requests are waiting in the execution queue, then the environment is bound by the
number of application server threads. Of course, this value must be evaluated in the context of
the entire system. For example, if the application server thread pool utilization is at 100 percent
with pending requests, and the operating system CPU is at 40 percent, then the thread pool
size should be increased. But if the application server thread pool is at 100 percent, and the
CPU became pinned at 100 percent 30 seconds earlier, then the CPU bottleneck caused the
request backup. All of these components are tightly integrated, and your job is to uncover the
root cause of bottlenecks.

Most applications access a database or some other external dependency, such as a legacy
system. Rather than establishing a new connection to the external dependency each time that
the application needs to interact with it, the preferred implementation is to create a pool of
connections to it (either a JDBC or JCA connection pool). If your application server is
processing a request that depends on a connection from a connection pool, and no connection
is available, then the processing thread must wait for a connection to become available. If you
recall Chapter 6, where we explored the concept of wait-based tuning, application server wait
points represent application server metrics that you need to monitor and analyze during a
capacity assessment—the same principles established in Chapter 6 apply here as well.

The application server heap can significantly degrade performance as load increases if it is
not configured properly. While performing the capacity assessment, you want to observe the
heap utilization and the garbage collection rate. As load increases, the rate of temporary object
creation and destruction increases, which adds additional burdens on the garbage collector.
If these objects are created and destroyed faster than the garbage collector can reclaim them,
then the garbage collector will have to freeze all threads in the JVM while it performs a full mark
and sweep (and optionally compact) garbage collection. During this time, nothing is processing,
and all of your SLAs may be compromised.

Session storage requirements also can affect heap performance under load. If each session
requires 1MB of memory, then each additional user will consume an additional 1MB of memory—
700 users require 700MB of memory. These storage requirements are a strong reason to keep
sessions light, but depending on your business requirements, doing so may not be an option.
Therefore, you need to monitor the heap growth throughout the capacity assessment and
potentially increase the heap size to meet the application requirements.

Application server caches and pools can become wait points in your application call stacks,
because as requests obtain objects from caches and pools, they may have to wait for the objects
to be returned. The wait time can be mitigated by proper sizing and management algorithms
(such as using a least-recently-used caching algorithm), and your capacity assessment will
identify if these caches or pools are causing your waits. Look for cache thrashing (high passivation
rates) and threads waiting on pools to detect this condition.

Many applications make significant use of messaging, either for asynchronous processing
or as a communication mechanism between Java EE and legacy systems (IBM shops tend to do
this a lot). You need to ensure that messages are passing through the messaging server quickly
and efficiently without being rejected. The configuration parameters for tuning a message
server will differ from vendor to vendor, but some common things to look at are message and/or
byte utilizations and message throughput. If the messaging server resides on its own physical

Haines_6102.book Page 232 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 233

machine, then you need to watch all operating system statistics and internal messaging
thread pools.

The same operating system– and domain-specific metrics need to be observed for all
external systems that your application interacts with, such as databases, legacy systems, and
internal Web service providers. Consider that each technology your application interacts with
is built on top of a technology stack that has the potential to cripple the capacity of your appli-
cation. Your goal is to identify the potential wait points in those various technology stacks,
capture relevant metrics during a capacity assessment, and analyze their behavior as it relates
to your application.

Finally, one of the most important metrics that can yield significant insight into the capacity
of your environment is network traffic, including communication and latency. Every remote
call that you make has the potential to disrupt the performance of your application, and the
impact increases in proportion to your load. And depending on the number of network hops
that a request makes, the impact may not compare one to one with the user load. For example,
if the majority of requests pass from a load balancer, to a Web server, to an application server
Web tier, to an application server business tier, and finally to a database, then a single request
to the Web server resolves to three additional network hops. Therefore 500 simultaneous
requests resolve to 1,500 network calls, which can dramatically affect the performance of your
environment.

In order to perform a valid capacity assessment, you need to capture metrics on each
machine in your environment related to the application servers, operating system, external
dependencies, messaging, and network communications, as Figure 9-4 illustrates.

Figure 9-4. Some of the key metrics that you need to capture on each machine during the
capacity assessment

Haines_6102.book Page 233 Thursday, April 13, 2006 6:57 AM

234 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

Building a Capacity Assessment Report
The capacity assessment report serves the following two purposes:

• The communication mechanism to express the capacity of an environment

• A historical marker to assess the impact of application changes

First and foremost, the capacity assessment identifies the capacity of a given environment.
It must clearly state the performance of the environment under expected or projected usage
and the maximum capacity of the environment while maintaining SLAs. For example, it might
summarize performance information by stating that at the expected 500 users, the average
response time is 20 percent below defined SLAs, and the environment can support a maximum
of 550 users before violating SLAs. Furthermore, the capacity analysis provides models from
which hardware and software forecasts can be constructed.

The secondary purpose of the capacity assessment is to establish historical performance
markers against which future application releases can be compared. Quantifying the impact of
software enhancements against a known baseline is important, so that as your applications
evolve, you know what features helped and hindered performance. At the end of each capacity
assessment, you should compare the results to previous capacity assessments and add them to
your Capacity Assessment Report.

The Capacity Assessment Report is composed of the following components:

• Executive summary

• Test profile

• Capacity analysis

• Degradation model

• Impact analysis

• Final analysis and recommendations

This section reviews each component of a Capacity Assessment Report and defines the
articles that should be included in each.

Executive Summary
The executive summary is the overview of the capacity assessment, suitable to be presented to
an IT manager or CIO. The executive summary should convey the pertinent results with minor
substantiation, but not with the same level of detail the capacity analysis will provide. In general,
your CIO will be very interested in the results themselves, but much less interested in many of
the details that informed your conclusions. And those details are examined elsewhere in the
report for review by any interested party.

Haines_6102.book Page 234 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 235

Specifically, the executive summary needs to include the following information:

• Performance of the environment at the expected usage: This should be presented by stating
the expected usage along with the average difference, minimum difference, and maximum
difference (as percentages) between the use case SLAs and observed response times at
the expected load.

• Load at the time that the first use case SLA was violated: Note that use cases are defined
in terms of a specific value, a measure of flexibility, and a hard upper limit, which is
usually defined in terms of standard deviations from the mean. This definition means
that your results do not report that the SLA has been violated on a single incidence but
rather when the violation exceeds the level of flexibility.

• The resource saturation point, including the resources being saturated: Rather than reporting
that resources are saturated at 600 users, reporting that at 600 users the environment
became CPU-bound as the Web tier CPU became saturated is more valuable.

• The end user experience fail point: This point is where the request response time begins
increasing at an exponential rate, and it highlights the point of no return that can only be
resolved by an application server restart.

• A graph: The graph, similar to Figure 9-3, visually summarizes the preceding four bullet
points.

• An overview of the impact analysis results: The overview primarily focuses on capacity
differences, either as improvements or degradations of supported load.

As with the executive summary of any report, the emphasis should be on the results of the
analysis with minimal supporting evidence; the body of the document provides all necessary
supporting evidence. The goal is for you to quickly convey your results to the reader.

Test Profile
The test profile describes the load test scripts and load tester configurations used to perform
the capacity assessment. This description is valuable, because it establishes the context for
which the capacity assessment is valid. If product management provides you with a collection
of usage profiles and asks you to first tune the environment and then perform a capacity assess-
ment against the environment, your ability to successfully perform these tasks is only as valid
as the usage profiles. By adding a detailed test profile, you gain the benefit of a peer review
process—the production management team, as well as your peers, can analyze the nature of
your capacity assessment and provide feedback as to why the test may or may not necessarily
yield valid results.

Specifically, the test profile should answer the following questions:

• What use cases were executed?

• What was the balance between use cases?

Haines_6102.book Page 235 Thursday, April 13, 2006 6:57 AM

236 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

• What was the frequency of each use case?

• What was the specific configuration for each use case, such as think-time settings, image
downloads, and so on?

• What was the load testing profile, such as the ramp-up period and pattern, graduated
step sizes, load duration, and so forth?

• How were the physical and logical servers configured in the test environment?

• What was the monitoring profile? For example, what was monitored and at what level?

The test profile serves both as a historical marker for the test context and as a point for later
validation against actual production usage. After the application is running in production, vali-
dating user patterns against the test profile and the observed behavior against expected
behavior makes a very good exercise. This exercise can help you refine your future estimates.

Capacity Analysis
The capacity analysis presents your findings, with all of the details to support your conclusions.
This section supplies all supporting evidence in graphs and detailed textual analysis of the
graphs. It should begin by presenting the same graph displayed in the executive summary and
providing a more detailed overview of your conclusions. The sections following the initial
graph detail the behavior of the environment at each critical point in the graph, including
sections for the environment behavior at the following times:

• Expected load

• The SLA violation point

• The saturation point

• The buckle zone

Each section should include a table presenting a summary of the behavior of each use case
at the expected load. A sample is presented in Table 9-1. Your assessment might introduce the
table by explaining, “At the expected load of 500 users, the following behavior was observed.”

Table 9-1. Sample Use Case Summary

Use Case SLA
Ave

SLA
Dist

SLA
Max

Actual
Ave

Actual
Dist

Actual
Max

Actual
SD

Actual
2xSD

Delta Resp
Time Buffer

Login 4 sec. 95% 6 sec. 3.2 sec. 97% 4.7 sec. 1.2 sec. 2.0 sec. 20%

Search 3 sec. 95% 5 sec. 2.6 sec. 96% 4.0 sec. 0.6 sec. 1.0 sec. 13.3%

Input
Claim

7 sec. 95% 10 sec. 5.5 sec. 98% 9 sec. 2.0 sec. 3.0 sec. 21.4%

Summary 18.2%

Haines_6102.book Page 236 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 237

The Use Case Summary columns are defined in Table 9-2.

In addition to providing information about the use cases, these sections should also
present summary information about pertinent resources. From a Java EE perspective, this
information is going to include CPU utilization, heap utilization, garbage collection rates,
thread pool utilization, pending requests, connection pools, caches, and request throughput.

These four sections present a snapshot of the state of use case response times, resource
utilization, and throughput. The conclusion of each section should include an analysis of the
raw data, including articles required to substantiate your conclusions. For example, you can
include charts and graphs, numerical analysis of the presented data, historical capacity assess-
ment data, and so on.

Degradation Model
While the capacity analysis sections provide detailed information with snapshots captured
at specific points in the assessment, the degradation model reports the entire assessment in
a timeline. It identifies trends in response time and resource utilization data throughout the
assessment, but its primary focus is on the segment between the expected load and the
buckle zone.

The degradation model contains a considerable number of graphs, illustrating the
following information:

Table 9-2. Use Case Summary Column Definitions

Column Description

Use Case The use case name or number being presented.

SLA Ave The SLA’s “specific” value, or the average maximum value for the
defined distribution.

SLA Dist The SLA’s “flexibility” value, or the percentage of requests that must
fall below the average in order for the use case to uphold its SLA.

SLA Max The maximum value permissible for any request, the hard limit (or
relative limit if working in standard deviations) that if exceeded
immediately causes an SLA violation.

Actual Ave The average observed response time for the use case.

Actual Dist The observed percentage of requests below the average SLA value.

Actual Max The maximum observed response time for the use case.

Actual SD The standard deviation of observed response times.

Actual 2xSD Two standard deviations of the observed response times.

Delta Resp Time Buffer The response time buffer percentage. This is a measure of the buffer
that the use case has between the observed average response time
and the SLA average response time. It roughly identifies the amount
that the use case can grow before it is in danger of violating its SLA.

Haines_6102.book Page 237 Thursday, April 13, 2006 6:57 AM

238 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

• Use case response times

• Utilization of each relevant resource

• Application throughput

Each of these graphs should be overlaid with the following identified performance zones:

• Expected usage to SLA violation point

• SLA violation point to resource saturation point

• Resource saturation point to buckle zone

The purpose of this section is to identify not only the behavior of use cases at various user
loads, but also why performance issues arise. For example, if the Login use case degrades at
550 users and exceeds its SLA, is it because of an external dependency, the application server
CPU utilization, a database connection pool, a database call, or an application server thread
pool? Domain knowledge of your environment and your applications empowers you to be able
to correlate metrics and derive accurate conclusions in this section of the Capacity Assessment
Report. When I am on-site with customers, I spend a considerable amount of time interviewing
them to learn the following:

• What technologies are they using (for example, servlets, JSP, stateless session beans,
entity beans, JMS)?

• What design patterns have they employed and where?

• What does a whiteboard sketch of the path of a typical request through the application
look like?

• What objects are cached, and what are those objects used for?

• What objects are pooled?

• How is the environment configured (for example, thread pools, the heap, and
connection pools)?

• What is their network topology?

• What external systems are their applications interacting with and through what commu-
nication mechanisms?

Through this interview process I “cheat”: I anticipate where performance problems might
occur, so that when I analyze the customer’s environment and see them occur in the capacity
assessment, I have a strong idea about what metrics to check for relevant correlations. Without
this information, constructing an accurate degradation model is difficult at best.

Impact Analysis
Once a capacity assessment has been performed against a Java EE environment, it should be
saved for future comparisons; these performance comparisons are explored in the impact analysis.
The impact analysis identifies the differences between two or more capacity assessments with
the primary intent of quantifying the impact of code changes against system capacity.

Haines_6102.book Page 238 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 239

If your organization is mature enough to routinely perform capacity assessments throughout
the development of an application, then the impact analysis can be mostly automated, because it
tracks performance differences between response times and resource utilizations for the same
use cases and very similar, if not identical, test scripts. But if you are like most companies for
whom performing a formal capacity assessment on each significant iteration is not feasible
and who reserve capacity assessments for released code, then the task is a little more daunting
and requires deep, domain-specific analysis. In this case, the summary of the impact analysis
should be performed using response time buffer percentages. Recall that the response time
buffers measure the percentage difference between the observed performance at a specific
user load and the SLA. With this measurement, you can assess the performance of application
functionality at specific user loads and determine whether a particular functional element
degraded or improved in a subsequent release; you measure the degradation or improvement
against the SLA defined for that functionality. If the SLA is renegotiated as a result of new or
changed functionality, then an altered response time will not skew the impact analysis.

The purpose of the impact analysis is to identify the following:

• General capacity impact of code changes, including the performance at the expected
load, the SLA violation point, the resource saturation point, and the buckle zones

• Specific degradations and improvements of use cases

• Specific degradations and improvements in resource utilizations

The sample Capacity Assessment Report later in this chapter provides additional details
about the impact analysis.

Analysis and Recommendations
The analysis and recommendations section provides a conclusion to the Capacity Assessment
Report. As such, it summarizes the findings again, but includes information about the impact
of the findings on the business process and provides recommendations. It attempts to answer
the following questions:

• What is the performance at the current or expected load?

• What load can the environment support and still satisfy SLAs?

• At what point does the environment need to be upgraded?

• What is the nature of that upgrade? Should it add more application server instances, or
modify application server configurations (heap size, thread pools, connection pools,
and so on)?

• At what point does the environment require additional hardware?

If you have any insight into seasonal patterns, marketing promotions, or any other trending
information that will affect user load, this information should be summarized or referenced
here to justify your recommendations with forecasted behavior.

Haines_6102.book Page 239 Thursday, April 13, 2006 6:57 AM

240 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

Sample Capacity Assessment Report
Excerpts from the various sections of a Capacity Assessment Report follow. An actual Capacity
Assessment Report may be 20 to 50 pages or more in length, so this sample attempts to repro-
duce each major section and include at least one major item in each section. You can fill in the
remaining components with performance observations relevant to your environment.

Executive Summary
In this capacity assessment, the Acme Buy High, Sell Low stock application was evaluated in a
mirrored production environment for performance. The expected user load for this application
is 500 users, and the observations extracted from the test are illustrated in Figure 9-5.

Figure 9-5. The Buy High, Sell Low environment’s behavior as load increases

Figure 9-5 can be summarized by the following observations:

• At the expected user load of 500, all use cases satisfy their SLAs.

• The first SLA violation is observed at 550 users.

• The environment’s saturation point occurs at 600 users.

• The environment enters the buckle zone at 700 users.

Use cases currently maintain an average response time buffer of 19.24 percent and based
upon current trend analysis, this will dissipate rapidly over the next three months. My estimates
suggest that the current environment will be in violation of its SLAs within five months. The
test results indicate that the environment is CPU-bound and requires additional application
server hardware to mitigate the five-month degradation point.

Haines_6102.book Page 240 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 241

The performance of the Buy High, Sell Low application has degraded with the release of
version 2.0. The average response time degradation is 12 percent, and the average resource
utilization at expected load has increased by 7 percent. Throughput at expected usage has likewise
degraded by 10 percent. The maximum capacity has decreased from 650 users to 550 users,
a degradation of 15.3 percent.

I recommend additional hardware resources for addition to the environment while the
source code is examined to identify the root of the performance degradation.

Test Profile
The capacity assessment was implemented using in-house load testing technology exercising
the use cases shown in Table 9-3.

The load test was configured to ramp up linearly over 30 minutes to the expected user load
of 500 users. The test then implemented a graduated step sized at 25 users to ramp up over 5
minutes and hold for 5 minutes before initiating the next step.

Test Script Configurations

The following section summarizes the test script configurations. It includes detailed informa-
tion about the primary use case scenario and summarizes the scenario distributions.

Login

The primary scenario for this use case is the successful login of a user with a valid username
and a valid password. The steps for this scenario are summarized as follows:

Table 9-3. Test Profile

Use Case Distribution Weight

Login 0.1

Add Stock 0.1

Historical Query 0.2

Historical Graphing 0.2

Stock Discovery 0.2

Profile Management 0.2

Request Think Time SLA Ave SLA
Flexibility

SLA
Maximum

GET /stock/index.html 10 sec. 3 sec. 95% 5 sec.

POST /stock/login.do End 5 sec. 95% 8 sec.

Haines_6102.book Page 241 Thursday, April 13, 2006 6:57 AM

242 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

with the following scenario distribution:

Test Platform Topology

The test platform consisted of six physical machines:

• Two Web servers

• Two application servers

• Two database servers

Two application server instances run on each physical application server, totaling four
application server instances. Figure 9-6 illustrates this topology.

Figure 9-6. The test environment topology

Scenario Distribution

Successful Login 94.5%

Valid username, invalid password 5%

Invalid username 0.5%

Haines_6102.book Page 242 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 243

The test environment includes clustering with AppServer1 using AppServer3 as its secondary
server, AppServer2 using AppServer4 as its secondary server, and vice versa. In this way, the
environment is resilient not only to application server instance failure, but also to hardware
failure. This configuration adds additional performance overhead, but it meets the predefined
availability and failover requirements.

Monitoring Configuration

The monitoring employed during this capacity assessment was configured to poll operating
system, database, Web server, and application server statistics after every minute. The load
tester was responsible for recording the overall request response times, while light bytecode
instrumentation was employed to report tier-level response times. The bytecode instrumenta-
tion was not configured to record method-level statistics.

Capacity Analysis
This section presents the observations and conclusions derived in this capacity assessment.

Expected Usage

The expected usage for the Buy High, Sell Low application is 500 users. Table 9-4 reports a
summary of the use case behavior at the expected load.

Table 9-4. Use Case Summary at Expected Usage

Use
Case

SLA
Ave

SLA
Dist

SLA
Max

Actual
Ave

Actual
Dist

Actual
Max

Actual
SD

Actual
2xSD

Delta Resp
Time Buffer

Login 8 sec. 95% 13 sec. 6.2 sec. 97% 9.7 sec. 1.2 sec. 2.0 sec. 22.5%

Add
Stock

10 sec. 95% 14 sec. 8.5 sec. 97% 12 sec. 2.0 sec. 3.2 sec. 15%

Hist
Query

10 sec. 95% 14 sec. 8.2 sec. 96% 12 sec. 2.2 sec. 3.5 sec. 18%

Hist
Graph

12 sec. 95% 16 sec. 10.1 sec. 98% 14.2 sec. 1.8 sec. 2.2 sec. 15.8%

Stock
Disc

8 sec. 95% 12 sec. 6 sec. 99% 8.2 sec. 1.5 sec. 2.0 sec. 25%

Profile
Mgmt

12 sec. 95% 16 sec. 9.7 sec. 95.5% 15 sec. 2.5 sec. 5 sec. 19.16%

Summary 19.24%

Haines_6102.book Page 243 Thursday, April 13, 2006 6:57 AM

244 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

The SLA Violation Point

The SLA violation point for the Buy High, Sell Low application occurred at 550 users. Table 9-5
reports a summary of the use case behavior at the SLA violation point.

The Saturation Point

The saturation point for the Buy High, Sell Low application occurred at 600 users. Table 9-6
reports a summary of the use case behavior at the saturation point.

Table 9-5. Use Case Summary at the SLA Violation Point

Use
Case

SLA
Ave

SLA
Dist

SLA
Max

Actual
Ave

Actual
Dist

Actual
Max

Actual
SD

Actual
2xSD

Delta Resp
Time Buffer

Login 8 sec. 95% 13 sec. 7.8 sec. 92% 12 sec. 2.2 sec. 4.0 sec. Violation

Add
Stock

10 sec. 95% 14 sec. 9.5 sec. 95% 13.7 sec. 2.0 sec. 3.9 sec. 5%

Hist
Query

10 sec. 95% 14 sec. 8.9 sec. 96% 13 sec. 2.9 sec. 3.9 sec. 11%

Hist
Graph

12 sec. 95% 16 sec. 11.1 sec. 91% 15.8 sec. 2.8 sec. 3.2 sec. Violation

Stock
Disc

8 sec. 95% 12 sec. 7.4 sec. 95% 10 sec. 2.5 sec. 3.0 sec. 7.5%

Profile
Mgmt

12 sec. 95% 16 sec. 10.2 sec. 94% 15.7 sec. 2.5 sec. 5 sec. Violation

Summary 50% Violation

Table 9-6. Use Case Summary at the Saturation Point

Use
Case

SLA
Ave

SLA
Dist

SLA
Max

Actual
Ave

Actual
Dist

Actual
Max

Actual
SD

Actual
2xSD

Delta Resp
Time Buffer

Login 8 sec. 95% 13 sec. 12.8 sec. 22% 37 sec. 6.2 sec. 12.0 sec. Violation

Add
Stock

10 sec. 95% 14 sec. 19.5 sec. 14% 32.7 sec. 8.0 sec. 12.9 sec. Violation

Hist
Query

10 sec. 95% 14 sec. 18.9 sec. 34% 23 sec. 3.9 sec. 4.9 sec. Violation

Hist
Graph

12 sec. 95% 16 sec. 17.1 sec. 33% 25.8 sec. 4.8 sec. 3.2 sec. Violation

Stock
Disc

8 sec. 95% 12 sec. 15.4 sec. 27% 18 sec. 6.5 sec. 3.0 sec. Violation

Profile
Mgmt

12 sec. 95% 16 sec. 20.2 sec. 42% 27.7 sec. 5.5 sec. 5 sec. Violation

Summary 100%
Violation

Haines_6102.book Page 244 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 245

The Buckle Zone

The buckle zone for the Buy High, Sell Low application occurred at 700 users. At this point,
all use cases exceeded their SLA average values for greater than 80 percent of requests.

Degradation Model
The aggregate use case response time degradation model is shown in Figure 9-7. The aggregate
response time degradation model plots the average response time buffer percentage against
the user load.

Figure 9-7. The aggregate response time degradation model plots the average response time buffer
against user load. In this case, the average response time buffer percentage hits zero at a user load
of 550 users.

The response time buffer follows nearly an exponential pattern and crosses SLA boundaries at
550 users, so once the SLA is violated, the system can only sustain 100 to 125 users until the appli-
cation is deemed completely unusable by the users. “Unusable” is defined as response times
that exceed their buffer by more than 50 percent.

The environment is primarily bound by CPU utilization in the application server tier.
Figure 9-8 displays an aggregate of all CPUs present in the application server tier, and in this
figure, you can plainly see that CPU utilization is trending upward.The application server tier
CPU aggregate, shown in Figure 9-8, illustrates that by 650 users, the CPU spikes at over 90
percent and then continues to increase, staying over 95 percent utilization at 725 users. The
alarming component of Figure 9-8 is the near linear increase of CPU utilization to user load. A
linear increase indicates that if the application cannot be refactored to reduce CPU utilization,
then tuning efforts are always going to be battling CPU limitations.

Haines_6102.book Page 245 Thursday, April 13, 2006 6:57 AM

246 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

Figure 9-8. The application server tier CPU aggregate

Use Case Degradation Model

This section presents the performance of each use case performed during the capacity assessment.

Use Case: Login

Figure 9-9 illustrates the performance of the Login use case throughout the capacity assessment.
The response time for the Login request stayed relatively steady below the four-second

mark until reaching about 500 users; it experienced a couple spikes above four seconds up
until this point, but nothing sustained or in violation of the flexibility of the use case’s SLA.
Consistent with the observed degradation patterns, after the user load exceeded 550 users, the
response time started to increase significantly.

Haines_6102.book Page 246 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 247

Figure 9-9. The response time for the Login use case

Resource Degradation Model

The Buy High, Sell Low application is CPU-bound primarily on the application server tier.
Figure 9-8 shows the aggregate CPU utilization for the two machines running in the application
server tier.

This section details the performance of each component in each tier as observed during
the capacity assessment.

■Note This section, the largest in the Capacity Assessment Report, contains performance graphs for all
physical machines, internal servers, and network interactions. Pick the resources that are relevant for your
environment and combine multiple related metrics on the same graph. The point of this section is to illustrate
the degradation of resources over user load, and to record the behavior of resources for historical impact
analysis. Therefore this section reports resources that degrade as well as resources that do not.

Web Tier

Insert graphs of the Web servers, including the following:

• CPU utilization

• Physical memory utilization

• Process memory utilization

• Request throughput

• Thread pool utilization

Haines_6102.book Page 247 Thursday, April 13, 2006 6:57 AM

248 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

Application Tier

Insert graphs of the application server machines and instances, including the following
information:

• CPU utilization

• Physical memory utilization

• Process memory utilization

• Application server instance heap utilization and garbage collection rates

• Application server instance thread pool utilizations

• Application server instance pool utilizations

• Application server instance cache counts of activation/passivation, hits, and misses

Database Tier

Insert graphs of the database machine and performance information, including the following
information:

• CPU utilization

• Physical memory utilization

• Process memory utilization

• Disk I/O rates

• Cache hit/miss counts

Network

Insert graphs that display the response time and load between all servers against user load.

Impact Analysis
The performance of the Buy High, Sell Low application has degraded with the release of
version 2.0. The average response time degradation is 12 percent, and the average resource
utilization at expected load has increased by 7 percent. Throughput at expected usage has like-
wise degraded by 10 percent. The maximum capacity has decreased from 650 users to 550 users,
a degradation of 15.4 percent.

Haines_6102.book Page 248 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 249

Figure 9-10 illustrates the impact of the version 2.0 code against the version 1.1 code.

Figure 9-10. The response time impact analysis

The growth patterns between the two response time buffers are similar, but version 2.0
code crosses the SLA violation point at 550 users while the version 1.1 code crosses the SLA
violation point at 650 users. This pattern shift represents a degradation in overall application
capacity of 15.4 percent.

The resource utilization of both code versions was CPU-bound, but version 2.0 code
degraded sooner than the previous version, as illustrated in Figure 9-11.

Continue to add resource degradation graphs for relevant resources in your capacity analysis,
and where relevant, include graphs illustrating the performance differences between unchanged
use cases. For example, if the login functionality did not change between versions, and the
performance degraded, then calling out resource utilization differences in the impact analysis
is important. However, if the functionality dramatically changed, such as swapping a text file
for an LDAP server for user validation upon login, then a direct comparison of response times
is not particularly useful to include (unless, of course, this comparison was requested). When
functionality changes significantly, the best option is to compare the response time buffers
between the application versions: is the new login functionality (with its new SLA) satisfying its
SLA as well or better than the previous version?

Haines_6102.book Page 249 Thursday, April 13, 2006 6:57 AM

250 C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A LA B I L I T Y T E S T I N G

Figure 9-11. The aggregate CPU utilizations at the application server tier between versions 1.1 and
2.0 of the Buy High, Sell Low application demonstrate that version 2.0 makes heavier use of its
CPUs at lower user load than version 1.1.

■Note Many times the code functionality between major versions of an application is significantly different,
so a deterministic impact analysis is impossible to perform. In these cases, performing the impact analysis is
still beneficial, but focus on comparing the response times and resource utilizations of the expected usage of
the new version against the response time and resource utilizations of the expected usage of the previous
version. Figure 9-10 plots the average response time buffers rather than request response times to focus on
that comparison—the average response time buffer value is relative to each use case’s SLA. You may need
to add this disclaimer to your impact analysis: “The impact analysis reports the differences between the
performance of an enterprise environment executing two sets of application code functionality against their
individual performance criteria; it does not necessarily reflect a direct response time impact.”

Final Analysis and Recommendations
At the current user load of 500 users, all use cases are satisfied, and the environment can support an
additional 50 users. This represents a 10 percent user buffer, which by industry standards is too
low: the optimal user buffer for a volatile application like the Buy High, Sell Low application is
anywhere between 25 and 40 percent.

Haines_6102.book Page 250 Thursday, April 13, 2006 6:57 AM

C H A P T E R 9 ■ P E R F O R M A N C E A N D S C A L A B I L I T Y T E S T I N G 251

The primary factor impeding the performance of the application is the CPU utilization
of servers running in the application server tier. Therefore, either the addition of CPUs to existing
servers in this tier or of a new physical machine is recommended.

Furthermore, the latest version of the application uses and saturates the CPU faster than
the previous version; therefore, analyzing in a code-profiling tool the use cases identified as
being problematic in the use case degradation model is recommended to determine the root of
the performance changes.

Summary
This chapter discussed the difference between the concepts of performance and scalability:
performance measures the speed with which a single request can be executed, while scalability
measures the ability of a request to maintain its performance under increasing load. It also
outlined the strategy of ensuring performance before testing for scalability. This strategy led to
a detailed exploration into the ultimate scalability test—the capacity assessment. A capacity
assessment identifies the following key points about your environment:

• Its performance at expected load

• The load that causes it to violate its SLAs

• The load that causes the environment to become saturated

• The load that forces the environment into the buckle zone

Equipped with the correct load testing strategy and monitoring tools, we explored how to
ascertain this information and assemble it into a formal Capacity Assessment Report.

In the next chapter, we explore performance assessments that occur more frequently and
are used to diagnose performance issues and validate the accuracy of capacity assessments.

Haines_6102.book Page 251 Thursday, April 13, 2006 6:57 AM

Haines_6102.book Page 252 Thursday, April 13, 2006 6:57 AM

