

Understanding Class.forName
Loading Classes Dynamically from within Extensions

Abstract

Dynamic loading of Java classes at runtime provides tremendous flexibility in the
development of enterprise systems. It provides for the basis of “application servers”, and
allows even simpler, lighter-weight systems to accomplish some of the same ends. Within
Java, dynamic loading is typically achieved by calling the forName method on the class
java.lang.Class; however, when Class.forName is naïvely called from within an Extension,
strange errors can occur. This paper describes why those errors occur, and how Java2
provides two facilities: one a modification to the forName syntax, and the other, called the
“Thread context ClassLoader”, to avoid them.

This paper assumes you are passingly familiar with Java Reflection, and have at least a
general idea of what Java ClassLoaders are and how they are used within Java code.

KEYWORDS: Java ClassLoaders Extensions Threads

 2

Problem

Dynamic runtime loading. One of Java’s strongest features is its ability to dynamically
load code given the name of the class to load, without having to know the actual
classname until runtime. This allows Java developers to build flexible, dynamic systems
that can grow and change without requiring complete recompilation. For example, the
following code executes the main method of a class given on the command-line to the
class DynamicLoader:

public class DynamicLoader
{
 public static void main(String[] args)
 throws Exception
 {
 Class toRun = Class.forName(args[0]);

 String[] newArgs = scrubArgs(args);

 Method mainMethod = findMain(toRun);
 mainMethod.invoke(null, new Object[] { newArgs });
 }
 private static String[] scrubArgs(String[] args)
 {
 String[] toReturn = new String[args.length-1];
 for (int i=1; i<args.length; i++)
 {
 toReturn[i-1] = args[i].toLowerCase();
 }
 return toReturn;
 }
 private static Method findMain(Class clazz)
 throws Exception
 {
 Method[] methods = clazz.getMethods();

 for (int i=0; i<methods.length; i++)
 {
 if (methods[i].getName().equals("main"))
 return methods[i];
 }

 return null;
 }
}

Ted Neward

 3

As you can see, DynamicLoader takes the arguments (except the first one) given to it, and
passes them directly on to the main method of the loaded class, after first making all the
command-line arguments lower case. This means we can run any compiled Java class
through DynamicLoader without having to change DynamicLoader’s code in the slightest.
In fact, we can run any executable Java code, from Swing-based client apps to console-
based Web servers—DynamicLoader really doesn’t care. For example, when we run the
following class:

public class Echo
{
 public static void main (String args[])
 {
 for (int i=0; i<args.length; i++)
 {
 System.out.println("Echo arg"+i+" = "+args[i]);
 }
 }
}

through DynamicLoader, like this:

> java DynamicLoader Echo ONE TWO THREE

we get the following output:

Echo arg0 = one
Echo arg1 = two
Echo arg2 = three

As you can see, DynamicLoader created an instance of the Echo class, and called its
main method, all without having any direct reference to Echo itself. In O-O parlance, this
means DynamicLoader is completely decoupled from Echo; there are no explicit
dependencies between these two classes.

This use of dynamic runtime loading is the heart of Java Application Servers like the Java2
Enterprise Edition reference implementation, Enterprise JavaBeans, and the Servlet
Specification. In each one of these architectures, at the time the application server is
compiled, it knows nothing about the code that will be attached to it. Instead, it simply asks
the user for a classname to load, loads the class, creates an instance of the class, and
starts making method calls on that instance. (It does so either through Reflection, or by
requiring that clients implement a particular interface or class, like GenericServlet in the
Servlet spec, or EJBObject in the EJB spec.)

Ted Neward

 4

Use of dynamic runtime loading isn’t restricted solely to server-side architectures,
however. Web browsers must use it in order to be able to load applets specified by name
by a remote web page, as well. RMI uses it to dynamically load stubs and/or skeletons for
remote objects, and JNDI and JDBC will use it to load, at runtime, the exact driver
necessary (given by the user’s appropriate “.properties” file) to perform the work asked. In
each case, a ClassLoader is asked to load a class by name that may not have existed
within the JVM before this moment.

Enterprise application architects are also starting to discover ways to put dynamic runtime
loading to work for them, as well. For example, several papers and articles have already
been published describing how to use XML to create GUI dialogs and/or windows [6],
including the ability to instantiate custom classes that didn’t exist when the basic system
was built.

Class.forName. In most of these systems, the code to do the runtime loading comes
through the method forName on the class java.lang.Class; its use is demonstrated in the
previous DynamicLoader code. Class.forName attempts to load the class whose name is
given in its only argument, and returns the Class instance representing that class. In the
event that the Class could not be found, resolved, verified, or loaded, Class.forName
throws one of several different Exceptions, all of which are listed in the javadoc page for
java.lang.Class [1].

Assume for the moment that this DynamicLoader class we’ve created is a useful bit of
functionality, and several other developers have expressed an interest in making use of it.
In accordance with the new Java2 emphasis on Extensions, we package DynamicLoader
up into a .jar file, and drop it into the Extensions directory of our Java execution
environment1. (If you’re not familiar with Java Extensions, see [1] or [5] for details.)

The problem comes, however, when we try to execute the Echo class found on the
CLASSPATH from within DynamicLoader2:

> java DynamicLoader Echo ONE TWO THREE
Exception in thread "main" java.lang.ClassNotFoundException: Echo
 at java.net.URLClassLoader$1.run(URLClassLoader.java:202)
 at java.security.AccessController.doPrivileged(Native Method)
 at java.net.URLClassLoader.findClass(URLClassLoader.java:191)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:280)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:237)
 at java.lang.Class.forName0(Native Method)
 at java.lang.Class.forName(Class.java:124)
 at DynamicLoader.main(DynamicLoader.java:8)

1 Either <JDK>/jre/lib/ext or the <JRE>/lib/ext directories, depending on whether the executing version of java is
running out of the <JDK>/bin directory or <JRE>/bin.
2 This assumes you’ve jar’ed DynamicLoader.class into a .jar and placed the .jar in the <JAVA_HOME>/jre/lib/ext
directory; if you haven’t, do that now.

Ted Neward

 5

We can verify that the class, Echo, does in fact exist, either by running Echo directly, or by
running the javap utility to list its attributes:

> javap Echo
Compiled from Echo.java
public class Echo extends java.lang.Object {
 public Echo();
 public static void main(java.lang.String[]);
}

So what gives? Why is DynamicLoader failing to load Echo? What changed between
DynamicLoader-on-the-CLASSPATH and DynamicLoader-as-an-Extension?

Problem Analysis

In order to understand precisely what’s going on here, you have to understand some of
the basics of the Java ClassLoader model and what changed in Java2 from JDK 1.1.

Java2 ClassLoader Delegation Model. As described in [2], the Java2 ClassLoader
model is a “delegating parent” model, meaning that when a ClassLoader is asked to load
a class, it first delegates the opportunity to load the requested class to its parent
ClassLoader. Only if the parent (a) hasn’t already loaded the Class, and (b) can’t load the
Class does the child ClassLoader get the opportunity to provide the Class requested, if it
can. This means that ClassLoaders form a hierarchical tree, with the “bootstrap”
ClassLoader (the only ClassLoader in the JVM with a “value” of null) as the root of the
tree. (More on the bootstrap ClassLoader later.) Any ClassLoader constructed within user
code3 must have a parent ClassLoader; if none is provided in the ClassLoader constructor
call, the ClassLoader constructors assume this ClassLoader’s parent to be the “system” or
ClassLoader. (More on the “system ClassLoader” later.)

Implicitly associated with each loaded Class in a JVM is the ClassLoader that loaded it. It
is this ClassLoader that is returned from the Class method getClassLoader. Each Class is
associated with one-and-only-one ClassLoader, and this is not mutable—Class objects
can’t change the ClassLoader reference to point to another ClassLoader.

A ClassLoader’s loadClass method is called (either directly by the programmer or implicitly
by the JVM) when a client wishes to load a class through that ClassLoader. Under the
JDK 1.0 and 1.1 models, the ClassLoader directly overrode loadClass to undertake the
necessary actions to load the code. Under JDK 1.2, however, this is no longer the case;
instead, the loadClass method calls its ClassLoader parent/delegate’s loadClass to see if
the parent recognizes the class. Only if the parent (and, by extensions, all of its parental
ancestors, as well) fails to load the class does this ClassLoader get the chance to load the
code. To do that, it calls the findClass method, which is the method customized
ClassLoaders are now supposed to override.

3 That is, non-JVM code.

Ted Neward

 6

As an example of how this works, consider a JVM embedded inside of a Web browser.
When a Web page comes in with an <APPLET …> tag on it, the Web browser constructs
an instance of its (vendor-specific) AppletClassLoader. This ClassLoader is responsible for
obtaining the compiled bytecode from the Website that served the page in the first place;
the Web browser simply does something similar to the following:

// inside the Web browser somewhere...
AppletClassLoader cl = new AppletClassLoader(appletCodebase);
Applet applet = (Applet)cl.loadClass(appletClassName).newInstance();

where appletClassName is given within the <APPLET …> HTML tag. AppletClassLoader,
in its loadClass method, first checks with its parent, which under most JVMs will be the
primordial ClassLoader. Let’s track how this applet’s Class gets loaded.

Because the system ClassLoader is the parent to the AppletClassLoader, the system
ClassLoader is given the opportunity to find the Class. Because the Class code can’t be
found along the CLASSPATH, in any of the Extensions directories, or in the core library
classes (it’s an applet, remember the code resides up on the server), the system
ClassLoader signals failure. This means it’s now AppletClassLoader’s turn, and it
examines the <APPLET …> tag for any information, like CODEBASE attributes, on the
whereabouts of the Class file requested. If AppletClassLoader finds a compiled .jar or
.class file, it downloads the code as a binary file and loads it into the JVM (via the
defineClass method on ClassLoader) from there. The Web browser can now construct an
instance of the Applet class, because now it has the requested Class file loaded into its
JVM: It can now call the start, stop, and other methods on Applet.

This parent-child relationship of Java2 now releases Java ClassLoader developers from
having to remember to check the system ClassLoader to see if the class has already been
loaded. More importantly, however, it permits a “chain-loading” of classes from a variety of
sources.

For example, in a hypothetical enterprise system, I might create a JDBCClassLoader,
whose parent is a URLClassLoader pointing to an HTTP server inside my corporate
firewall. That URLClassLoader in turn is a child of the primordial ClassLoader. This
provides me a three-layered, code-loading facility, where rapidly-changing code, such as
business rules (sales promotionals and the like) can be stored in the RDBMS, potentially
on a user-by-user basis, if necessary. The less-mutable code is stored on my HTTP
server, and the system and bootstrap ClassLoaders are responsible for the core Java
classes, as usual. This approach allows the more stable code to “override” more mutable
behavior; if you desire the opposite, simply reverse the placement of the
JDBCClassLoader and the URLCLassLoader. In each case, because the nature of the
ClassLoading mechanism is “parent-first”, whichever ClassLoader is highest up on the
hierarchy has “classloading priority” over its children.

Because each child delegates to its parent, we will load code in top-down order; in the
fictitious aforementioned example, the system ClassLoader gets the first chance, followed
by the URLClassLoader, followed by the JDBCClassLoader. Understanding how the
system ClassLoader is architected, along with this understanding of the “parent-first”
nature of delegating ClassLoaders, yields discovery of the problem.

Ted Neward

 7

Java2/JDK1.2 Default ClassLoader architecture. The Java2 system provides for
loading code from one of three places by default: the core library, the Extensions directory
(or directories, if you modify the java.ext.dirs property to include multiple subdirectories),
and from the directories and/or .jar/.zip files found along the java.class.path property,
which in turn comes from the CLASSPATH environment variable. Each of these three
locations is in turn covered by its own ClassLoader instance: the core classes, by the
bootstrap ClassLoader, the Extensions directory/directories by the extension ClassLoader,
and the CLASSPATH by the system or application ClassLoader4.

Before we delve too deeply into this, let’s run a quick test. Compiling and executing this
code:

public class EchoClassLoader
{
 public static void main (String args[])
 {
 ClassLoader current =
 new EchoClassLoader().getClass().getClassLoader();

 while (current != null)
 {
 System.out.println(current.getClass());
 current = current.getParent();
 }
 }
}

produces this rather interesting result:

> java EchoClassLoader
class sun.misc.Launcher$AppClassLoader
class sun.misc.Launcher$ExtClassLoader

The result highlights something very interesting. I’ve been speaking of the system
ClassLoader as a singular entity, but there are two parents to our class’ ClassLoader: one
called Launcher$AppClassLoader, and one called Launcher$ExtClassLoader, both of
which live in the sun.misc package.

The bootstrap ClassLoader is implemented as part of the VM itself, and cannot be
instantiated by Java code. It is this ClassLoader that brings the core Java classes into the
VM, allowing the rest of the JVM to load itself. (Take a second to think about this—in order
to construct a ClassLoader, which extends Object, the JVM must load the Object class.
But in order to do this, it requires a ClassLoader with which to load it!) Normally, this
means loading code from the “rt.jar” file in the jdk/jre/lib subdirectory, but under the Sun
JVM, the boot.class.path property actually controls it5.

4 At one point, during the JDK 1.2 Beta3 release, it was also called the base ClassLoader.
5 Why this could be important is beyond the scope of this paper.

Ted Neward

 8

The extension ClassLoader, the first child of the boostrap ClassLoader, is implemented in
pure Java code. As already mentioned, the extension ClassLoader’s primary responsibility
is to load code from the JDK’s extension directories. This in turn provides users of Java
the ability to simply “drop in” new code extensions (hence the name “Extension directory”),
such as JNDI or JSDT, without requiring modification to the user’s CLASSPATH
environment variable.

The system, or application, ClassLoader is the ClassLoader returned from the static
method ClassLoader.getSystemClassLoader. This is the ClassLoader responsible for
loading code from the CLASSPATH, and by default will be the parent to any user-created
or user-defined ClassLoader in the system.

(As an aside, both of these classes are direct descendants of URLClassLoader.
ExtClassLoader reads the java.ext.dirs property for a list of directories. It takes each
directory in turn, iterates over each file in the directory, builds a URL out of it, and stores
that URL in the URLClassLoader-parent portion of itself. ExtClassLoader also overrides
the findLibrary method to search the directory given by the property os.arch under each
extension directory for the library matching the requested name. This allows extension
directories to also silently support native-libraries in the same “drop-in” manner as
Extensions themselves. AppClassLoader reads the java.class.path property, and for each
File.pathSeparator-separated entry, builds a URL out of it. Once these two classes are
created, however, they behave in all respects like a standard URLClassLoader. These two
classes, along with URLClassLoader, are described more fully in [5].)

So now we have some deeper insight into the architecture of the ClassLoader system in
Java2. Let’s take a moment and see, step-by-step, why Class.forName, when called on a
class found within the CLASSPATH, fails when called from within an Extension.

To summarize the “normal” ClassLoader tree:

Bootstrap ClassLoader
Type: none; implemented within the VM
Parent: none
Loads core runtime library code from sun.boot.class.path

Extension ClassLoader
Type: sun.misc.Launcher$ExtClassLoader
Parent: null (bootstrap ClassLoader)
Loads code found in extension directories (given by java.ext.dirs)

System (or Application) ClassLoader
Type: sun.misc.Launcher$AppClassLoader
Parent: Extension ClassLoader
Returned from ClassLoader.getSystemClassLoader
Loads code found on java.class.path (the CLASSPATH variable)

Ted Neward

 9

Calling Class.forName within an Extension. Go back to the original problem: this
code:

public class DynamicLoader
{
 public static void main(String[] args)
 throws Exception
 {
 Class toRun = Class.forName(args[0]);

 String[] newArgs = scrubArgs(args);

 Method mainMethod = findMain(toRun);

 mainMethod.invoke(null, new Object[] { newArgs });
 }
 // . . .
}

when called from within an Extension, fails with:

> java DynamicLoader Echo ONE TWO THREE
Exception in thread "main" java.lang.ClassNotFoundException: Echo
 at java.net.URLClassLoader$1.run(URLClassLoader.java:202)
 at java.security.AccessController.doPrivileged(Native Method)
 at java.net.URLClassLoader.findClass(URLClassLoader.java:191)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:280)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:237)
 at java.lang.Class.forName0(Native Method)
 at java.lang.Class.forName(Class.java:124)
 at DynamicLoader.main(DynamicLoader.java:8)

Walking through the Class.forName call highlights the problem. Class.forName obtains the
caller’s ClassLoader, and uses that ClassLoader instance to load the Class into the VM.
Written in pseudocode, Class.forName looks like:

public Class forName(String classToLoad)
 throws . . .
{
 ClassLoader cl = ClassLoader.getCallerClassLoader();
 return cl.loadClass(classToLoad);
}

It’s fairly easy, now, to spot what the problem is. When a Class is loaded from the
CLASSPATH, its associated ClassLoader is the AppClassLoader instance. When that
Class invokes Class.forName, it can find other classes along the CLASSPATH or in the
Extensions directory because AppClassLoader first delegates to its parent, the
ExtClassLoader. Only if the requested class is not found as an Extension is the
CLASSPATH searched.

Ted Neward

 10

When the calling Class is loaded as an Extension, however, its associated ClassLoader is
the ExtClassLoader. Thus, when the Extension-loaded class calls Class.forName,

1. The caller’s ClassLoader is obtained; in this case, that ClassLoader is the
ExtClassLoader instance.

2. The ExtClassLoader, being a good child, gives its parent, the bootstrap ClassLoader,
the opportunity to load the class.

3. Because the bootstrap ClassLoader fails to find it in jdk/jre/lib/rt.jar, it returns without a
loaded Class.

4. ExtClassLoader’s loadClass method then attempts to load the Class from within its list
of URLs (given, as described earlier, in the java.ext.dirs property). Because the class
is not within the list of URLs associated with ExtClassLoader, the load fails, and a
ClassNotFoundException is thrown.

Put simply, because Extension-loaded classes don’t have the AppClassLoader instance
anywhere on their parent-ClassLoader chain, they can’t load any classes off of the
CLASSPATH.

Solution

Fundamentally, there are two solutions available to you: use a different form of the
forName method on Class, or use a ClassLoader associated with each specific Thread,
called the Thread’s context ClassLoader. As with everything, each approach has its own
consequences.

Use Thread.getContextClassLoader. A new concept introduced in Java2, each
Thread now has a context ClassLoader associated with it. Looking at the javadocs[1] for
the Thread methods getContextClassLoader and setContextClassLoader reveals that

Thread.getContextClassLoader: Returns the context ClassLoader for this Thread. The context
ClassLoader is provided by the creator of the thread for use by code running in this thread when loading
classes and resources. If not set, the default is the ClassLoader context of the parent Thread. The
context ClassLoader of the primordial thread is typically set to the class loader used to load the
application.

Thread.setContextClassLoader: Sets the context ClassLoader for this Thread. The context ClassLoader
can be set when a thread is created, and allows the creator of the thread to provide the appropriate
class loader to code running in the thread when loading classes and resources.

Ted Neward

 11

The Launcher constructor, after constructing both the ExtClassLoader and
AppClassLoader, sets the thread context ClassLoader to be the AppClassLoader
instance. This means, unless your code (or other code loaded by your application)
changes it, the thread’s context ClassLoader is the AppClassLoader instance. This also
means that now the AppClassLoader instance is available to Extension classes:

import java.lang.reflect.*;

public class FixedDynamicLoader
{
 public static void main(String[] args)
 throws Exception
 {
 // Instead of
 // Class toRun = Class.forName(args[0]);
 // use:
 Thread t = Thread.currentThread();
 ClassLoader cl = t.getContextClassLoader();
 Class toRun = cl.loadClass(args[0]);

 String[] newArgs = scrubArgs(args);

 Method mainMethod = findMain(toRun);

 mainMethod.invoke(null, new Object[] { newArgs });
 }
 private static String[] scrubArgs(String[] args)
 {
 String[] toReturn = new String[args.length-1];
 for (int i=1; i<args.length; i++)
 {
 toReturn[i-1] = args[i].toLowerCase();
 }
 return toReturn;
 }
 private static Method findMain(Class clazz)
 throws Exception
 {
 Method[] methods = clazz.getMethods();

 for (int i=0; i<methods.length; i++)
 {
 if (methods[i].getName().equals("main"))
 return methods[i];
 }

 return null;
 }
}

After compiling, placing into a .jar and dropping that .jar into the Extensions directory, we
achieve success:

> java FixedDynamicLoader Echo ONE TWO THREE
Echo arg0 = one
Echo arg1 = two
Echo arg2 = three

So the short answer is to use the ClassLoader associated with the current Thread to call
loadClass to load the class desired, instead of using Class.forName.

Ted Neward

 12

Those readers familiar with multi-threaded environments may be wondering about
Threads created by user-code—what ClassLoader is set to be the context ClassLoader
for user-created Threads? A Thread, when created, inherits the context ClassLoader of
the Thread that created it, so all Threads, unless modified, will have AppClassLoader set
as their context ClassLoader.

Use the 3-arg form of Class.forName. Sun introduced a new form of the forName
method that takes 3 arguments, instead of just one. In addition to the name of the Class to
load, callers pass a boolean parameter indicating whether to initialize the loaded Class or
not, and a ClassLoader parameter to load the code through. This method performs the
same steps as the 1-arg Class.forName; in fact, the 1-arg version of Class.forName calls
directly into the 3-arg version, passing “true” and the caller’s ClassLoader as the second
and third parameters, respectively.

Class.forName(classname, init_flag, classloader) will load the code “through” the
ClassLoader passed to it; crudely put, it functions somewhat similar to the following:

Class forName(String classnm, boolean init, ClassLoader loader)
 throws . . .
{
 // . . .

 loader.loadClass(classnm);

 // . . .
}

This is a gross oversimplification, but the point is clear—instead of using the caller’s
ClassLoader to do the load, it uses the ClassLoader instance passed in. This now means,
to avoid the problem that started this paper, FixedDynamicLoader could also do:

public class FixedDynamicLoader
{
 public static void main(String[] args)
 throws Exception
 {
 //Class toRun = Class.forName(args[0]);
 Class toRun =
 Class.forName(args[0],
 true,
 ClassLoader.getSystemClassLoader());

 String[] newArgs = scrubArgs(args);

 Method mainMethod = findMain(toRun);

 mainMethod.invoke(null, new Object[] { newArgs });
 }
 // . . .
}

This code has the advantage of being perhaps a bit more explicit about what the intent of
the code is, as opposed to the slightly more obscure use of the Thread’s context
ClassLoader. Other (technical) differences between the two are more profound, however.

Ted Neward

 13

Class.forName vs ClassLoader.loadClass. There are some subtle differences
between these two APIs. The method call CL.loadClass(C), where CL is our ClassLoader
and C is the name of the class to load, queries the ClassLoader directly for the class by
name. This in turn relies on ClassLoader delegation to ask the bootstrap ClassLoader to
determine if the class has already been loaded. Conversely, the method call
Class.forName(C, false, CL) uses the VM’s internal class resolution mechanism to do the
actual loading. Among other things, this allows Class.forName to support the loading of
arrays of Classes as a type; for example, calling CL.loadClass(“[C;”) will result in failure,
where doing the same with Class.forName(“[C;”, false, CL) will succeed.

Consequences

As with any discussion, there are consequences to each of the solutions set forth within
this white paper.

? Versioning: The 3-arg Class.forName, Thread.getContextClassLoader, and
Thread.setContextClassLoader are Java2/JDK1.2 APIs. This means any Java
API or class library that wants to remain compatible or usable with JDK 1.1 will not be
able to be loaded. Remember, the VM, during its resolution step of classloading (see
[4]), will verify that all methods referenced inside of a class actually exist, and will
throw an Exception if this is not the case. How, then can code avoid this ClassLoader
trap in Java2 code, while remaining compatible with 1.1 code?

One solution is to eliminate your JDK 1.1 compatibility requirement. It sounds a bit
draconian, but Java2/JDK 1.2 has been out for approximately a year at the time of this
writing, Java2/JDK 1.3 is in the final beta stages. More to the point, almost no new
development is being done in JDK 1.1 (except for applets, since 1.1 is as far as most
browsers have gone in JDK support).

However, for many APIs and/or design teams, this is an unacceptable solution. Too
many JDK 1.1-based systems exist to simply write off JDK 1.1 environments entirely,
and developing a system that fails to work properly in a JDK 1.2 / Java2 environment
is simply unthinkable. Fortunately, a convenient middle ground is possible.

Because Java uses a lazy dynamic-loading system (see [2], [4], or [5] for details),
classes aren’t loaded into the VM until the last possible moment. This means it’s
possible to use a Strategy-pattern approach towards classloading, based on the
version of the VM your code is executing within:

package com.javageeks.lang.classloader;

interface VMClassLoader
{
 public Class loadClass(String cls)
 throws ClassNotFoundException;
}

public class ClassLoaderHelper

Ted Neward

 14

{
 private static VMClassLoader vmClassLoader;
 static
 {
 String vmVersion = System.getProperty("java.version");
 if (vmVersion.startsWith("1.2"))
 {
 //System.out.println("Loading 1.2 VMClassLoader");
 vmClassLoader = new VMClassLoader()
 {
 public Class loadClass(String cls)
 throws ClassNotFoundException
 {
 Thread t = Thread.currentThread();
 ClassLoader cl = t.getContextClassLoader();
 return cl.loadClass(cls);
 }
 };
 }
 else if (vmVersion.startsWith("1.1") ||
 vmVersion.startsWith("1.0"))
 {
 //System.out.println("Loading 1.1/1.0 VMClassLoader");
 vmClassLoader = new VMClassLoader()
 {
 public Class loadClass(String cls)
 throws ClassNotFoundException
 {
 return Class.forName(cls);
 }
 };
 }
 else
 {
 // ???
 }
 }

 public static Class loadClass(String cls)
 throws ClassNotFoundException
 {
 return vmClassLoader.loadClass(cls);
 }

 /**
 * Test driver.
 */
 public static void main(String[] args)
 throws Exception
 {
 //Class toRun = Class.forName(args[0]);
 Class toRun =
 ClassLoaderHelper.loadClass(args[0]);

 String[] newArgs = scrubArgs(args);

 java.lang.reflect.Method mainMethod =
 findMain(toRun);

 mainMethod.invoke(null, new Object[] { newArgs });

Ted Neward

 15

 }
 private static String[] scrubArgs(String[] args)
 {
 String[] toReturn = new String[args.length-1];
 for (int i=1; i<args.length; i++)
 {
 toReturn[i-1] = args[i].toLowerCase();
 }
 return toReturn;
 }
 private static java.lang.reflect.Method findMain(Class clazz)
 throws Exception
 {
 java.lang.reflect.Method[] methods = clazz.getMethods();

 for (int i=0; i<methods.length; i++)
 {
 if (methods[i].getName().equals("main"))
 return methods[i];
 }

 return null;
 }
}

The key here is in the static block of the ClassLoaderHelper class. When loaded in a
1.2 VM, an anonymous instance of VMClassLoader is created, which uses the
Thread contextClassLoader methods to obtain the ClassLoader and call loadClass.
When loaded into a 1.1 (or 1.0, although this is, as of this writing, untested) VM, the
anonymous VMClassLoader instance falls back on Class.forName, since 1.1 VMs
don’t have the problem described in this paper.

Running this code within a 1.2 VM yields the following:

> java -version
java version "1.2"
Classic VM (build JDK-1.2-V, native threads)

> java ClassLoaderHelper Echo ONE TWO THREE
Loading 1.2 VMClassLoader
Echo arg0 = one
Echo arg1 = two
Echo arg2 = three

Running this code within a 1.1 VM yields the following:

> java -version
java version "1.1.7"

> java ClassLoaderHelper Echo ONE TWO THREE
Loading 1.1/1.0 VMClassLoader
Echo arg0 = one
Echo arg1 = two
Echo arg2 = three

By using ClassLoaderHelper.loadClass instead of Class.forName, code can continue
to support both JDK 1.1 and JDK 1.2 (and beyond) VMs without having to maintain
two (or more) separate codebases.

Ted Neward

 16

 (ClassLoaderHelper could also be modified to use the 3-arg version of
Class.forName instead of the Thread’s context ClassLoader. However, it would
require a ClassLoader instance to be passed in, to avoid making the assumption that
it should use the system ClassLoader.)

? Using Thread.getContextClassLoader relies on the Thread’s context
ClassLoader to be appropriately set. What if the Thread’s current context
ClassLoader isn’t the one expected, but is instead set by an arbitrary third-party
package (like RMI or JNDI)?

In fact, there’s not much you can do to prevent this. Because
Thread.setContextClassLoader makes a Security check, however, you can take some
small comfort in the fact that only those systems that have “setContextClassLoader”
permission will be allowed to modify a Thread’s context ClassLoader.

Practically speaking, this means in an enterprise system, you can modify your policy
file such that only your codebase is permitted to modify the Thread’s context
ClassLoader. This doesn’t prevent Sun-sponsored APIs (like RMI, which is “part” of
the runtime library, or JNDI, which is part of the runtime library starting in JDK 1.3)
from being able to modify it, but at least you can prevent rogue third-parties from
doing so.

? Knowing your loading ClassLoader. In order to use the 3-arg form of
Class.forName, callers must have the ClassLoader instance they want to load through
available to them in order to pass it; under certain circumstances, simply calling
ClassLoader.getSystemClassLoader() here will be wildly inappropriate. For example,
a Servlet will usually be loaded under its own ClassLoader, and if the Servlet calls
Class.forName with the system ClassLoader as the third argument, code loaded
under the Servlet’s ClassLoader won’t be found. This situation can arise more
commonly than one might expect—many Servlets are bundled together with
supporting code directly in the “servlets” directory, placing the supporting code under
the Servlet ClassLoader’s domain.

Under those circumstances, using the Thread’s context ClassLoader can be the only
appropriate parameter; you can either pass it as the third parameter to the 3-arg form
of Class.forName, or else call its loadClass method directly. But, as pointed out in the
aforementioned point, using it relies on the context ClassLoader being set correctly by
the code that loaded your class.

It may seem that callers will always know the ClassLoader they should call through.
However, keep in mind that the ExtClassLoader/AppClassLoader pair is not the only
situation in which ClassLoaders further “up the tree” are going to look to load code
further “down” the ClassLoader tree. For example, sophisticated security mechanisms
within a Java application might make use of an instance of URLClassLoader to load
code on a per-user-role basis; certain parts of the application, however, will be
constant, and therefore installed as an Extension. Those constant classes cannot
simply assume that the ClassLoader that loaded them will be the correct ClassLoader

Ted Neward

 17

to pass into Class.forName (it won’t—we’re now right back to the original problem),
nor will simply passing ClassLoader.getSystemClassLoader() be correct, either.
Instead, they will have to trust that somebody will set the current Thread’s context
ClassLoader to be that custom URLClassLoader instance, and use that to
dynamically load the code.

Summary

Java2, with the release of JDK 1.2, subtly changed the nature of classloading. When Sun
added the “Extens ion” capability to the language/environment, they split the responsibility
for loading Extensions code and “Application” (that is, CLASSPATH-based) code into two
separate ClassLoaders. Under “normal” circumstances, this change will be invisible to
most Java developers, but those working under dynamic-loading systems need to be
aware of this change and what it means for them.

Many Java developers may believe that the circumstances described in this paper won’t
apply to them. “I’m not making use of any of this”, they mutter to themselves. “Why do I
care?” It’s a more relevant concern than readers might wish. Several key Java
technologies, most notably RMI and JNDI, make use of the Thread context ClassLoaders
for precisely this reason—the core classes for both technologies are loaded high up in the
CllassLoader tree, but need to be able to load code stored along the CLASSPATH. Worse
yet, as more enterprise systems are built under EJB servers, which may well be installed
as Extensions, this problem could become more and more common.

As Java2 Security becomes more and more well-understood and implemented in Java
projects, this issue will again rear its ugly head, since developers will slowly begin to adopt
codebase permissions on a per-ClassLoader basis. Multiple ClassLoaders means the
potential for code further up the chain looking for code further down the chain, and we’re
right back to where we started with all this.

Fortunately, as JDK 1.1 systems slowly phase out, it should become more and more
comfortable to use Thread.currentThread().getContextClassLoader().loadClass() or the 3-
arg version of Class.forName() directly; until that time; however, the ClassLoaderHelper
class should provide a measure of portability across JVM versions for doing dynamic
classloading from within an Extension.

Ted Neward

 18

Bibliography/Additional Reading

 [1] JDK 1.2 documentation bundle. See http://www.javasoft.com for downloading.

[2] << Liang/Bracha OOPSLA paper >>

[3] Java Language Specification.

[4] Java Virtual Machine Specification, 2nd Edition.

[5] Server-Side Java, by Ted Neward. Manning Publishing, Feb 2000.

[6] Personal communication with Peter Jones of Sun Microsystems; used with permission.

Copyright

This paper, and accompanying source code, is copyright © 2000 by Ted Neward. All rights reserved. Usage for any other purpose
than personal or non-commercial education is expressly prohibited without written consent. Code is copywritten under the Lesser
GNU Public License (LGPL). For questions or concerns, contact author.

Ted Neward

