Java 2 Security

By Brian Maso

This paper explores some of the internals of Java 2 security. We'll take an inside-out approach to
exploring the important concepts and APIs: First we'll look at the high-level concepts that Java 2
security is based on, and then we'll examine the Java class internals that encode these concepts. The
Java classes are a highly optimized implementation of the relatively simple concepts on which Java 2
security is based. The high optimization level means that a bare reading of the source code is confusing
and at times misleading, so a good understanding of the concepts and how the Java security classes
map to those concepts is essential when pursuing a strong understanding of Java 2 security.

This paper wraps up with a discussion of advanced Java security techniques. We'll see how to impose
Java security on non-Java interpreted scripts, how to create logical threads of execution taking into
account Java 2 security, as well as other techniques.

Java 2 Security Concepts and Implementation Classes

Java 2 security is a two-part mechanism for creating security-aware Java methods. Security-aware
methods can only be completed by threads that have sufficient permissions to complete the actions of
the method.

The first part of this mechanism is a very simple API to create security-aware methods. A security-
aware method completes some potentially dangerous operation, and so requires "guard" conditions to
ensure only trusted or permitted threads are allowed to use the method. A method is made security-
aware by including a preamble "guard" block. For example, consider the security requirement of a
FileOutputStream object. Through its methods, a FileOutputStream object can be used to truncate and
modify any file in the local filesystem. Obviously, this is a powerful object, which can have serious
security implications if used maliciously. To guard against malicious activity, the FileOutputStream
constructor includes a small guard condition that can be written like this:

zzzzzzzzzzzzzzzzzzzzzz

public FileQutputStream(String nane)
{
SecurityManager sm = System get SecurityManager () ;
if(sm!= null)
{
Fi | ePerm ssi on perm = new Fi |l ePerm ssi on(name, "wite");
sm checkPer m ssi on(pernj;

}
_—

For historical reasons the preamble of the FileOutputStream class constructor doesn’t look exactly like
this. However, the code in its constructor does perform the same security check, although indirectly. If
you follow the trail of execution in the FileOutputStream constructor, you would see that eventually
the SecurityManager.checkPermission() method is called is the same manor indicated in the sample
code above.

The checkPermission method call in the constructor returns benignly if the current thread has the given
FilePermission, which represents permission to open and write to the given local filesystem file with
the given name. If the current thread does not have that permission, then checkPermission throws an
AccessControlException--an unchecked exception derived from RuntimeException. Thus, the guard
block guarantees the calling thread can only create and use the FileOutputStream object if it has
sufficient permissions. Threads without necessary permissions receive an exception, so they are unable
to perform this potentially dangerous operation.

The second part of this mechanism, really the guts of Java 2 security, defines how threads are
associated with Permissions. Protection domains are the key concept of this facility. A protection
domain is an execution context with a set of associated permissions. When a thread enters a protection
domain, the Java VM maintains an internal association between the thread and the domain. The list of
all protection domains associated with a thread at a given point in time is known as the thread's access
control context. Thus, the access control context is basically a collection of the permissions available
to a thread at a given point in time.

The AccessController.getContext() method returns an object representing the current thread's access
control context. getContext in fact returns an instance of the java.security.AccessControlContext class:

//...get the current thread's access control context from the VM... AccessControlContext acc =
AccessController.getContext(); The checkPermission method in the FileOutputStream constructor code
example works by accessing the current thread's access control context-the list of protection domains
associated with the calling thread-and running a check to make sure the required FilePermission is a
member of that context. If it is, then the checkPermission method returns without doing anything. If
the required permission is not a member of the calling thread's access control context, then
checkPermission throws an AccessControlException.

An AccessControlContext object is an opaque data structure. While internally the object maintains a
reference to a list of ProtectionDomains, this list is not available through the context object's public
interface. The context object does, however, provide its own checkPermission method that consults
the permissions associated with each ProtectionDomain in the context's list. So, in theory, the
SecurityManager.checkPermission method might be coded like so:

public void checkPerm ssi on(Perni ssion perm

{

AccessCont r ol Cont ext acc = AccessControl | er. get Context ();
acc. checkPerm ssi on(pernj;

}

£N develé'ﬁﬁ”ﬁ‘é“ﬁtor‘ www.develop.com 5

That's not exactly correct. The SecurityManager.checkPermission implementation actually calls
AccessController.checkPermission, which in turn executes code similar to the two lines listed above.
Through this short series of indirections the current thread's list of ProtectionDomains is accessed to
see if the permission required by the FileOutputStream guard block is indeed a member of the current
thread's access control context. The actual order of method calls is not really important, and in fact
may change as the Java Core API evolves. The salient features of the Java 2 security design are:

» Security-aware classes and objects use a guard block before executing potentially
dangerous code. Without this guard block, a method is security-agnostic, able to be
executed by any client code at any time.

 The Java VM maintains an internal list of ProtectionDomains associated with each thread.
(The next section details how this association is maintained.)

e Each ProtectionDomain includes its own list of Permissions.

» The SecurityManager.checkPermission method accesses the current thread's
ProtectionDomains, represented by an aggregating AccessControlContext object, and
ensures the required permission is available to the thread's ProtectionDomains.

Managing a Thread's Protection Domains

As stated above, the Java VM internally maintains a list of ProtectionDomains associated with each
Java thread. The mechanism of this association is implemented natively by the VM implementors. This
association happens automatically, magically, outside the Java Core classes.Each domain, in turn,
includes a list of Permissions available to threads in that domain. The list of domains associated with a
thread--the thread's access control context--is built by default from the set of classes the thread is
currently executing within.

In Java 2, each class is associated with a single ProtectionDomain. This isn't a well-documented part of
the Java VM specification--in fact, this association doesn't appear as part of the VM specification--but a
little spelunking in the Core API source reveals the association. Java classes are loaded into a VM
through the ClassLoader.defineClass method, whose code looks like this:

protected final defined ass(String name, byte[] bytecode,
int offset, int |en)

//...call overloaded defineC ass with a null ProtectionDonmin...
defi ned ass(nane, bytecode, offset, len, null);

}

protected final defined ass(String name, byte[] bytecode,
int offset, int Ien,
Pr ot ecti onDomai n donai n)

{

That is, no matter whether or not a ProtectionDomain is provided with a class' bytecodes, each class is
assigned to at least the default ProtectionDomain.

At a point in time all you would need to do to compile a thread's access control context is to take a
snapshot of the thread's stack; each class that thread is currently executing has an associated
ProtectionDomain. The combined set of all ProtectionDomains is the thread's current access control
context.

That is essentially what the AccessController.getContext() method does. It compiles the list of classes
the current thread is executing in and from each pulls out the associated ProtectionDomain--defined at
class load time. This list of ProtectionDomains is stored in a new AccessControlContext object. See
Figure 1 below. In the AccessControlContext object's private ProtectionDomain[] member named

£N develé'ﬁﬁ”ﬁ‘é"ﬁtor‘ www.develop.com 3

"context”, though that's just an implementation detail of the AccessControlContext class that may
change in later versions of Java.

Stack Farmas aach
SorEspande o 5 medhod
P thread 15 @X@ g

{
F) I'I .-""__'____'-.. -"-____ =
C = Class <& domain
II ", . _ . __,_,-"- '.._-_\- _ . --'_'__-
I'I o T e -
. Class 13 domain)
—_— e L
— T — - R
— Class g+ domain 1
' — - B — -
r e e
Class — damain 1
Tm— ~ k — -
___.-' - __-'-._\ ..--'- B R “"-\.
—| Class = domain
AccessContral-
Current Thread Stack Context
Figure 1

Execution Context + Assigned Context = Access Control Context

The access control context concept isn't that hard to understand at the level I've presented it.
Basically, this context is a collection of ProtectionDomains, representing all the "domains"--security-
relevant contexts--the current thread is associated with, built from the classes a thread is currently
executing in.

The low-level Java security APIs and infrastructure are built around a slightly more complicated model
of the access control context, though. Now we're going to flesh-out the full access control context
model by illuminating some of its more complicated internal aspects, in order to understand the Java
APIs that are based on the more complicated model.

The access control context is actually a composite context, the sum of two distinct contexts associated
with a thread. Both of these member contexts have their own set of ProtectionDomains.

The Execution Context

I'm going to call the first member of a thread's composite access control context the execution
context. There is no official name for this context. | use execution context because it’s unambiguous
and indicates how this context’s ProtectionDomains are defined. This is the set of ProtectionDomains
associated with all classes the thread is currently executing in, as described above. This context
dynamically changes, with ProtectionDomains constantly being added and removed from it. Whenever a
Java thread enters a new domain (by invoking a method of a class), the Java VM adds a

zzzzzzzzzzzzzzzzzzzzzzzz

ProtectionDomain object associated with that domain to the thread's execution context. When the
thread later leaves the domain (by returning from the method invocation), the Java VM automatically
removes the associated ProtectionDomain from the thread's execution context.

The Assigned Context

The other member context of the composite access control context is the assigned context. The
assigned context's ProtectionDomains are static and are not changed by the Java VM. The assigned
context may be modified programmatically only, using the AccessController.doPrivileged API. This
method temporarily modifies the calling thread's assigned context for the duration of a
PrivilegedAction.run method call. When a thread enters a doPrivileged call, a new assigned context is
associated with the thread until the method call exits. The previous assigned context is remembered
when the thread enters doPrivileged, and re-assigned to the thread when doPrivileged exits.

This does not imply that a thread has no initial assigned context. Initially, before any call to
doPrivileged in a thread, a thread inherits a default value to be used as an initial assigned context. This
default assigned context value is known as the thread's inherited context. Upon creation, every Java
thread is assigned an inherited context defined as the full (composite) access control context of the
thread that created it. Defined when the thread is created, a thread's inherited context does not
change during the thread's lifetime. Basically a thread's inherited context is that thread's default
assigned context. When the thread is involved in a doPrivileged call, this default is overridden. Outside
any doPrivileged call, this default (inherited) context is used as the assigned context. Figure 2 is a
sequence diagram illustrating when a thread is associated with an inherited context and how its
assigned context is defined at different points during its lifetime.

N develé‘ﬁtﬁ“ﬁ‘é“ﬁtor‘ www.develop.com 5

cisglEior | thCsaaar cantan [}

Tuizide ary doPrivieged call
Ihwiel inbrdsad castinl adud
an e samgras cariesi

i caling hieads sssgresd and

Poasg doFris ey prasoble © s L“]
§

1
]
i
]
i
L]
i
1
]
L i o v B, Dhesd i o ARRCURE LRl Slores obl vekia i
conlil of cmiabng |hrod, i ored i oPyiagadpai] '
mipried comes of pes thread i i
i i
. | !
e
' :
1
i
1
2 :
Pt a1 s G B LS VLY il i 1
cantanl. Exdculion cenlial ek Pasnabds cliii’ i
doemaan and sy damine sresd By i i
Frabsgegciion aEn H H
i doPriviaged postambls sty]

1 ARy Gl sl N CamIEFlE Fom

i vihsi land fuing paambl
daPrskgadiae, accil |

da-ﬂ"_'f -

g coPrivieged scapls -r-mml:mmmd}]

o b s e Kb arsmigrand Lot ke duratian
of thea 2all

i

| foPrivisged poebambie resels (heesds

ansHyRET el snaCUIE Conleals Fom vl
i dunng privambli

Figure 2

@develﬁvﬁ‘ﬁ“ﬁ‘é""r“itor' www.develop.com

More AccessControlContext Internals

It is a good idea at this point to acquaint you with some AccessControlContext implementation details
before continuing with Java 2 security concepts. An AccessControlContext object contains both
contexts described above: both the execution and assigned contexts. The ProtectionDomains in the
execution context are stored in the AccessControlContext's private context member. In addition, the
current thread's assigned context is stored in the AccessControlContext object's privilegedContext
member:

public final class AccessContr ol Cont ext

{

/**

* execution domai ns

*/

private ProtectionDomai n[] context;

/**

* assigned domains are the "context" array of this nested
* ACC obj ect .
**/

private AccessControl Context privil egedCont ext;

}

Figure 3 illustrates the static structure of an AccessControlContext, and how it is used to represent a
thread's current execution and assigned contexts.

This AccesaConrmiContest obyet represents the execidion
contex of a thread. This object's context membser references
thi probechon dormaing in the execulion conlaxl
ProtectionDomain objects are usad to reprasant
indhavidisal protection domans

.

-

o

-]

oo et i - I I
privlegedConfeat | AccessCoantmlConlexd

1 -priaeged Conled
l FreEd contax B .
gEpigned ; AcceeaConirolContext = |

T |eonies 1 L5 i
Y |prregedComent - AvcessControlontas =
.-"-F-.-
--"'—.-
"'u .-"'----_.

The assignad contexd of & thread & represanted by 8 spcon
AccessContmlConlext object, refereniced by the execution
conbext object. The conbel mermber of 1his second
AccessComrolConteat objecd references the profection
dornaing = ihe assigned contest, represented by
ProtacbionDomain ohjacts

Figure 3

) develGpifintor www.develop.com

The private AccessController.getStackAccessControlContext method returns a new
AccessControlContext object with the exact structure illustrated in Figure 3, representing the current
thread's full security context. Thus an implementation of AccessController.checkPermission could look
like the following. (This code will be revised in the next section. It is provided here to lay the
foundation for the AccessControlContext object's structure. But several important features of this code
are temporarily removed for clarity.):

public final class AccessContr ol Cont ext

{
public void checkPerm ssi on(Perni ssion perm
{
/1...get raw executi on and assi gned contexts using
/1 get St ackAccessCont r ol Cont ext
AccessCont r ol Cont ext acc = get St ackAccessContr ol Cont ext () ;
/l...if there is no recorded assigned context, then use the
/1 current thread's inherited context as the assigned
cont ext. ..
i f(acc.privil egedContext == null)

acc. privil egedCont ext =
Thr ead. current Thread() . get | nherit edAccessControl Cont ext () ;

//...conmbi ne execution PDs and assigned PDs in to single

/1 array by sinmple copy...

i nt execLen = (acc.context == null ? 0 : acc.context.length);

i nt assignLen = (acc.privil egedContext.context == null ? 0 :
acc. privi | egedCont ext . cont ext . | engt h);

Prot ecti onDomai n[] pds = new Prot ect Domai ns[execLen +
assi gnLen] ;
int index = 0;

i f(execLen > 0)

{
System arraycopy(acc. context, 0, pds, index, execlLen);
i ndex += execlLen;

}

i f(assignLen > 0)
System arraycopy(acc. pri vi | egedCont ext. context, O,
pds, index, assignLen);

//...finally, check all protection domains to see if
/1 pernission is available...

The getStackAccessControlContext method returns a "raw" context object. The context member in that
object includes the ProtectionDomains associated with all classes the current thread is executing in
since the most recent doPrivileged call--that is, the execution context. The nested privilegedContext
reference points to another AccessControlContext captured when the most recent doPrivileged call
happened. This nested AccessControlContext object is the physical encoding of the assigned context.

Combining Execution and Assigned Contexts

develé‘ﬁ’r’ﬁié"ﬁtor‘ www.develop.com

A ProtectionDomain's most important attribute is a set of java.security.Permissions. Taken together,
the ProtectionDomains of a thread's assigned and execution contexts act as a cumulative "Permission
filter". The set of Permissions associated with a Java thread at a point in time is defined as the set of
all Permissions common to all ProtectionDomains in the thread's current combined access control
context. That is, the intersection of the Permission sets of all ProtectionDomains in the thread's
assigned and execution contexts.

Figure 4 illustrates these concepts: the two ProtectionDomain sets that comprise a thread's full access
control context, and how the Permission sets in those ProtectionDomains are intersected, resulting in a
"most common denominator” set of Permissions available to the thread.

o,
i ."\.
/ i
||l .||
1
1
fyilable permizsmns in the securiy i domain 4
corkerd are the imersecton of all permissions
in the gecibion and ResRgad Coebesls PETm= l
-\--\--\"'\-\._ | |
e _,-—-'l'"-\.__ - ——-II— ——
.-"f-- ‘-\-"" ||' '-l' -\"\,-\-\. | -\--."'--\.
; } "" I"-. ?““- h"*.
\ / Ix .':["- ' -:': } /
‘“’ dCII'ﬂiII'I 1 perms - r J. domain, 3 perms -
.I-." -_-—___ PO I IS
| ‘\7
Ny |
. domain 2
| domain 1 | .'
perms |
, ! |
| domain 2 |- — 1 Y /
_) !
—
Execution Y
e ——
—— T
— e —

g R

& e
domain 3 e
e

| domain4 |—

Assigned

AccessControl-
Context

Figure 4
The execution context at a point in time obviously may contain redundant references to
ProtectionDomains. For example, if a thread executes method a in class Foo, which in turn calls
method b in class Foo, then the thread's execution context will include two references to the same
ProtectionDomain during the execution of Foo.b. Similarly, an execution context may also contain
references to ProtectionDomains that are also members of the current assigned context.

You would definitely want to "optimize" a thread's access control context by taking out redundant
references to ProtectionDomains before actually trying to use the context for security checks. The
checkPermission pseudo-code above is going to work a lot more efficiently if redundant
ProtectionDomains are culled from the "pds" ProtectionDomain[]. That is, you would want the array to
be as short as possible, so culling redundant references would be in order. The pseudo-code for the
AccessController.checkPermission method given above leaves out any such optimization for clarity.

The AccessController.checkPermission method does perform an optimizing combination of assigned and
execution contexts dynamically. The method takes a snapshot of a thread's execution and assigned
contexts and combines them in such a way that redundancies are removed by using a DomainCombiner
object. A combiner object implements the DomainCombiner interface and has just one job in life: to
combine execution and assigned contexts in an optimizing manner. The DomainCombiner interface
looks like this:

public interface Domai nCombi ner
{
public ProtectionDonmai n[] conbi ne(
Prot ecti onDomai n[] executi onCont ext ,
Prot ecti onDomai n[] assi gnedCont ext) ;

}

The most obvious implementation of this method simply combines the execution and assigned contexts,
removing redundancies. Here is one possible implementation:

public class Sinpl eConbi ner inplenents Donmai nComnbi ner
{
public ProtectionDonmai n[] conbi ne(
Prot ecti onDomai n[] executi onCont ext ,
Pr ot ecti onDomai n[] assi gnedCont ext)

{
i nt execlLen = (executionContext == null ? O :
executi onCont ext . | engt h);
i nt assignLen = (assignedContext == null ? 0 :

assi gnedCont ext . | engt h) ;

/[/...if either context is null or enpty, return the other
/1 one. ..
i f (execLen == 0)

return assi gnedCont ext ;
i f(assi gnedLen == 0)
return execCont ext;

/l...collect all domains in to a Set object, which ensures
/1 uni queness of objects...
Set set = new HashSet ();

for(int ii=0; ii

£N develé'ﬁﬁ”ﬁ‘é“ﬁtor‘ www.develop.com 10

Each AccessControlContext object has a reference to a DomainCombiner (which may be null). As it
turns out, only AccessControlContexts representing an assigned context can have an associated
combiner. AccessControlContext objects representing execution contexts (i.e., those "raw"
AccessControlContext objects created by the AccessController.getStackAccessControlContext method)
never have a combiner. Figure 5 illustrates the static structure of "raw" AccessControlContext objects
returned by AccessController.getStackAccessControlContext, in which you can see the "combiner”
member of the outer AccessControlContext object is always null, while the nested
AccessControlContext (representing the thread's current assigned context) may have a non-null
reference to a DomainCombiner.

Thee cornbiner redarence i ahasy nl %
for AccessCordrolContext objects mpresenting
the greculion conlest

|

| -contexl
axai - ArcensConrnllontast .

4 F
coilex] 3 -
privegedConlexd - AccessCondrodConbet
combersr | DomdnCombine:

-privilagadContax

-conbaxl ProtecticnDornain
assigned | AccessConlrolCante st] I

conbext
pimlegedContesl | AccasalonirolConiet
combingr : DomainCombmar

techipnllomain

= e

____.-"' i e T Diomiain Combimer
£ . 0
The combenar mfarance may b norenull for L
AccessControlCanest shjecls represenbing the
aEgigned contaxt

Figure 5

The AccessController.checkPermission and AccessController.getContext methods both start out the
same: copying the "raw" AccessControlContext (with separate execution and assigned contexts) using
getStackAccessControlContext, and then combining those contexts in an optimizing manner, like so
(some details elided for clarity, and some of the code is reorganized also for clarity):

) develGpifintor www.develop.com "

public class AccessControll er

{

public void checkPerm ssi on(Perni ssion perm

{
AccessCont rol Cont ext acc = get St ackAccessContr ol Cont ext () ;
Prot ecti onDomai n[] conbi ned = nul | ;

/[l...if there is no assigned context, use thread's inherited
/1 context as the assigned context. (In fact, the actua
/1 test is alittle nore conplicated, but this code hits
/1 the maj or points. See core source code if you need
/1 to see the bare naked truth.)...
i f(acc.privil egedContext == null)
acc. privil egedCont ext = getlnheritedAccessControl Context();

//...if assigned context has a conbiner, use it to
/1 conbi ne the executi on and assi gned cont ext
/1 Prot ecti onDomai n[] arrays.

i f(acc.privlegedContext != null &&
privil egedCont ext . conbi ner !'= null)
conbi ned =

acc. privi | egedCont ext . conmbi ner. conbi ne(acc. cont ext,
acc. privi |l egedCont ext . cont ext);

//...if there is no comnbiner, use sinple algorithmfor
/1 conbi ni ng contexts. ..
el se
conbined = ...; // See SinpleConbiner above for algorithm

/l...check for presence of the perm ssion in all
/1 Prot ecti onDomai ns in the conbined array. Iteration
/1 left out for brevity...

}

That is, if no DomainCombiner is present, then a block of code implementing the basic combiner
algorithm illustrated above by my SimpleCombiner class is used.

Assigning Permissions to ProtectionDomains

I've been carefully avoiding one crucial part of the Java 2 security system: how permissions are
assigned to protection domains. The assignment of permissions to protection domains is actually an
open task, left up to Java ClassLoaders. The ClassLoader base class does not proscribe a mechanism for
defining this association. ClassLoader subclass instances are left with the task of providing a
ProtectionDomain instance as part of a class definition. Recall that ClassLoader subclasses define
classes using one of these two overloaded, inherited defineClass methods:

develé‘ﬁ[ﬁ"ﬁ‘é"ﬁtor‘ www.develop.com 12

public abstract class C asslLoader

{

/**

* Associates "default" protection domain to the new cl ass.
**/

protected final C ass defineC ass(String name, byte[] bytecode,
int offset, int |ength)

defi ned ass(nane, bytecode, offset, len, null);

}
/**

* Associ at es subcl ass-provi ded protecti on domain to the new

* ¢l ass.
**/

protected final C ass defineC ass(String name, byte[] bytecode,
int offset, int |ength,
Pr ot ecti onDonmai n donmi n)

}

So subclasses must either use the "default” protection domain, or define a new one. It's easy to define a
new protection domain because the ProtectionDomain class has a simple public constructor:

public class Protecti onDomai n

{

public Protecti onDomai n(CodeSour ce source,
Per m ssi onCol | ecti on perns);
}

The java.security.Policy singleton class is provided to make a ClassLoader subclass' life
easier. The java.security.Policy class is just a glorified lookup table, able to provide a
set of Permissions for a given CodeSource:

public abstract class Policy

/**

* get singleton Policy object
**/

public static Policy getPolicy();

/**

* Get the set of permission associated with a CodeSource.
**/

public Perni ssionColl ection getPermn ssi ons(CodeSource source);

}

The java.security.SecureClassLoader base class, the parent of URLClassLoader and ultimately a
superclass of all ClassLoaders created by the Core Java classes, uses the singleton Policy object to
assign ProtectionDomains to new classes. Here's an except from the SecureClassLoader class to
illustrate the mechanism (details and exceptions removed for clarity):

&3 developiéntor www.develop.com 13

{
/**

public abstract class SecureCd assLoader extends C assLoader
**/

* Qverl oaded defineCl ass to be used by subcl asses.

of f set,

i nt

public C ass defined ass(String nanme, byte[] bytecode,
{
Per mi ssi onCol | ecti on perns

i nt
| engt h, CodeSource source)
Pol i cy. get Pol i cy().get Perni ssi ons(source);
Prot ecti onDomai n donai n
per ms) ;

new Protecti onDomai n(sour ce
associ at ed
/1

/1...invoke supercl ass defineCl ass to |oad the class,

with the given protection donain..
return defineCl ass(nanme, bytecode,
}

of f set,
}

| engt h, donain);

—

1 il L e e S g e
_11____ -

Figure 6 is a combination collaboration and class diagram illustrating how the Policy object is used to
assign a protection domain to all classes defined by SecureClassLoader subclasses.

1.1, gaiFolic g =guiPehp] —
1.2, geiPemissiansjinpace] —»
¥
= T — F.uﬂil':l.l.l...li..lil..l..ﬂl.l_ g
[1 -\. I'-:hl;h._%
A %\ ey,
FAY Ty
£ | P
Cliesl code - requines rew chiss I I'I T, Vg
%_ L e Y
1 .,
LT - —
4 . |
.EI- || —1,) B
I LY, [t Sy e L
|
e A i
g —_—
:; —— glagy
g I
The Barahi] bosiradars mprasomis & @nghe I‘"'
G o bvn el asder mefanc e, Whn the Jelals gl
o il fshp DEtssasn e Class el sk e
up he abyEcts clasefcalian wa presenied
1o hetler meicsle the esgumace al calle

Figure 6

) develGpifintor www.develop.com

14

The Default Policy Implementation

You may already be familiar with the default Policy implementation in Java 2. This implementation is
file-based, using the so-called "policy" files referred to in most Java 2 security tutorials. Policy files
include grant blocks, where each block is distinguished by a codeBase and/or zero or more signedBy
qualifiers. The grant contents list a set of Permissions. This default Policy implementation'’s
getPermissions method finds all grants in active policy files matching the input CodeSource, returning a
PermissionCollection containing Permissions in those matching grants.

For example, putting this grant in an active policy file will make the default Policy implementation's
getPermissions method return a PermissionCollection containing the FilePermission for any CodeSource
whose source URL matches "file:/java/classes/-" (that is, whose URL begins with "file:/java/classes/"):

grant codeBase "file:/javalcl asses/-"

{

permi ssion java.io.FilePernission "/tnp/-" "read, wite,
del ete";
li;

You can easily override the default Policy implementation, providing an implementation of your own
devising, using the "java.policy.provider" system property. For example, you may want a Policy that
reads its grants from a database, or that uses an XML format, instead of Java's somewhat cumbersome
grant-based "policy" files. Defining a custom Policy implementation is relatively simple, but it is also
beyond the scope of this paper. (Read the java.security.Policy javadocs for more on designing custom
Policy implementations.)

The Default ProtectionDomain

Classes loaded using the 4-argument overloaded ClassLoader.defineClass method are automatically
assigned to the default (or null) ProtectionDomain. The first time a class is defined using the default
domain, the ClassLoader base class consults the singleton Policy object to obtain the default
ProtectionDomain, like so (some details and synchronization simplified for clarity):

public abstract class C asslLoader

{

private ProtectionDomai n defaul t Domain = nul |l ;

protected final C ass defineC ass(String name, byte[] bytecode,
int offset, int |ength,
Pr ot ecti onDomai n donmi n)

{

i f(domain == null)
domai n = get Def aul t Domai n() ;
}

private static synchroni zed Protecti onDonai n get Def aul t Domai n()
i f(defaul tDomain == null)

CodeSour ce nul | Source = new CodeSource(null, null);
Per m ssi onCol | ecti on perns =

&N develé'ﬁﬁ”ﬁ‘é“ﬁtor‘ www.develop.com 15

Pol i cy. get Pol i cy() . get Perm ssi ons(nul | Source);

def aul t Domai n = new Prot ecti onDomai n(nul | Sour ce, permns);

}

return defaul t Domai n;

}

}

Modifying and Recording Contexts at Runtime

Now | will show you how to take use hooks in the Java 2 security APl to implement non-trivial security
structures in your Java apps. The simplest hooks in to the Java 2 security API allow you to record and
modify a thread's assigned context. With this API you can

» Suspend some of a thread's protection constraints temporarily to perform services the
thread wouldn't normally be able to execute. For example, applet code generally cannot
modify system properties. But a trusted class invoked from an applet might need to
perform this operation. The trusted class can temporarily suspend the executing thread's
more restricted protection domains in order to perform the operation on behalf of the
sandboxed applet.

* Add constraints to a thread by adding protection domains. This is most necessary when
executing third-party scripts or other non-Java code. For example, a script engine
interpreting arbitrary script would want to restrict the interpreter thread so that untrusted
script doesn't execute with the engine's own (more permissive) protection domain. This is
not the same problem as adding protection domains to execute third-party Java code, such
as applets within a browser or EJB within an EJB container. The Java applets or EJB are
Java classes, which will have protection domains associated at load time. Dynamically
interpreted scripts will not have associated Java classes, so you must physically add
protection domains for the script source to an interpreting thread at runtime.

» Create logical threads of execution (not necessarily the same as a physical Java thread).
With this feature you can force a Java thread to take on a pre-recorded protection domain
to perform "out of band" operations. For example, class loaders use this feature during
class loading to execute static initializers without incidental security restrictions that
happen to be associated with the loading thread.

Temporarily Suspending Protection Domains

In general, when a third-party component is running inside a hosted environment, the component runs
with tight security constraints. While there may be many operations the host environment wants to
restrict the component from executing directly, the host still needs those operations to be available to
the host's classes executing in the component's thread.

For example, an applet running inside a browser; the applet class is associated to a protection domain
with very few permissions. The applet's init, start, stop and destroy methods thus have very few
permissions available to them. This prevents the applet from opening local filesystem files, for
example. However, you might want browser classes running in the applet thread to be able to open
certain files on behalf of the applet. For example, the host browser may want to log TCP
communications between the applet and its original server to a file. The logging code would be
executed by the applet thread, so you would want to suspend the applet thread's association with the
applet's protection domain temporarily while executing the logging code.

Another example is EJBs hosted inside an EJB container. EJBs usually run in a very restricted protection
domain that prevents them from creating new threads. (Thread management is considered a container

£N develé'ﬁﬁ”ﬁ‘é“ﬁtor‘ www.develop.com 16

responsibility--allowing hosted EJB objects to create threads could hamstring the constainer's ability to
manage resources and preserve scalability.) However, several facilities require thread creation that
must be made available to EJB objects. For example, if an EJB object posts a JMS message to a JMS
gueue or topic. In this case the JMS code invoked by the EJB object might need to create a background
thread in order to asynchronously send the JMS message. The JMS code would need to temporarily
suspend the association to the EJB object's protection domain in order to execute properly.

Figure 7 illustrates the security problem with hosted components. The thread in this illustration enters
the hosted component's (applet's or EJB's) protection domain automatically when it is used to invoke
any of the hosted component's methods. The hosted component then invokes host container code,
basically requesting that the container perform some operation on behalf of the component. The host's
code must suspend the thread's current list of protection domains, which includes the hosted
component's more restricted domain, in order to complete the operation on behalf of the component.

Host Container Application

object Component)
_ domain S

sommns will ischixle balh the Braent hesd domam ane
Ired FESIAE] el COfspel reasl delifvsin

Wehan thesad seaches this secured abject, A preies) -:-'_']

/ -

-
—— Sesured
Host management (—— | rd object
=+] o
. Host domain)
Figure 7

The single-argument AccessController.doPrivileged method is used to suspend the assigned and
execution context of a Java thread for the duration of one PrivilegedAction.run call. This is the
mechanism you use in host container code to temporarily suspend the association of a thread to a
hosted component's protection domains.

zzzzzzzzzzzzzzzzzzzzzzzz

&) developmeéntor www.develop.com 17

In Java code the pattern has three aspects:

1. The hosted component's protection domain restricts the component from doing some
operation directly. For example, a third-party EJB object is restricted from creating new
threads because its protection domain does not include the java.lang.RuntimePermissions
("modifyThread" and "modifyThreadGroup") required to execute the Thread class
constructor.

2. The host component has a reference to a host object whose own protection domain does
include the required permission. For example, when an EJB object posts a JMS message it
does so through a MessageQueue or Topic object received through a series of JNDI and
object accessor calls. The queue or topic object may need to create new threads, even if
the EJB object controlling it is not allowed to.

3. The host object method invoked by the hosted component wraps its privileged operation
code with a AccessController.doPrivileged call. In the EJB example, the JMS MessageQueue
or Topic that must create a new Java thread would do so in a PrivilegedAction.run method
implementation executed through AccessController.doPrivileged.

The single-argument doPrivileged call suspends the calling thread's current assigned and execution
contexts. For the duration of a PrivilegedAction.run call the thread uses an empty assigned context,
and the thread's execution context includes just the invoking class' and PrivilegedAction class'
protection domains.

The following code snippets from an EJB object class and a JMS MessageQueue class demonstrate the
use of the single-argument doPrivileged call.

/1 Hosted EJB object code
public class MYEIBObj ect inplenments Sessi onCbj ect

{

&%

* This nmet hod nust post a nessage to a JM5S queue as
* part of its execution.

**/

public void postsMessage()

{

/l...obtain reference to MessageQueue through series
/1 of JNDI and JMS calls...

MessageQueue ng = ... ; ng. post Message(text);

} // Host MessageQueue code suspends call's protection
/] domains in order to create new thread.
public class Host MessageQueue i npl ements MessageQueue

{
public void post Message(Text Message text)
{
AccessControl | er.doPrivil eged(
new Privil egedAction() {
public Object run() {
/[/...within PrivilegedAction.run the thread' s assigned
cont ext

/1 i ncl udes only the protection donmain of the invoking
/1 cl ass: Host MessageQueue's donain in this exanple. The
/1 execution context includes just the protection

/1 domai n of this nonymous inner class...

Thread t = new PostingThread(this, text);

t.start();

&N develé'ﬁﬁ”ﬁ‘é“ﬁtor‘ www.develop.com 18

1)

}

Adding Dynamically-defined Protection Domains to a Thread

The problem: How to add restrictive protection domains to a thread? My favorite example for when this
might be necessary is in script interpreters. A scripting engine dynamically interprets scripts
(JavaScript, custom script language, etc.) and executes whatever method calls are indicated by that
script. The script is third-party provided code, but there is no Java class--just a text file. How to
"inject" a protection domain into the executing thread so that scripts cannot, for example, overwrite
important files or do other malicious actions?

The script interpreter is in effect a host environment, and the scripts are hosted components. We want
to add a protection domain containing only those permissions we want to assign to the hosted script in
order to "sandbox" the script. This is done using the two-argument overloaded
AccessController.doPrivileged method:

public class AccessController
{
public Object doPrivileged(Privil egedActi on acti on,
AccessCont r ol Cont ext host edConponent Domai ns) ;
}

Imagine a very simple script interpreter that reads a text file containing a series of Java class method
calls in text form. The interpreter would read each line of the script and execute the named method
calls through Java Reflection. Here is one sample script file (potentially dangerous because it truncates
the Unix password file):

class: java.io.FileQutputStreanm nethod: (java.lang.String);
args: "/etc/passwd";

Assuming that the interpreter code runs with a very high level of privileges, a naive interpreter
implementation would blithely interpret this file, and end up truncating the Unix password file. Such a
naive implementation might look something like this (many implementation details left out for clarity):

public class Naivelnterpreter
public static void main(String[] args)

Buf f er edReader input = new BufferedReader (
new | nput St r eanReader (System i n));

try

for(:;)
{
/l...read class nane, nethod nane, nethod arg types
/1 and arg val ues. ..
String line = input.readLine();
String classNane = parseCl assNane(line);
String net hodNanme = par seMet hodNane(l i ne);
Cl ass[] met hodAr gTypes = parselMet hodAr gTypes(!li ne);
oj ect[] nethodArgs = parseMet hodArgs(li ne);

develé‘ﬁ[ﬁ"ﬁ‘é"ﬁtor‘ www.develop.com 19

[/...use reflection to find nethod or constructor to
use. ..

Class clazz = d ass. forNane(cl assNane) ;

Met hod nethod = nul | ;
Constructor ctor = null;
i f(met hodNane. equal s(""))
ctor = clazz. get Const ruct or (net hodAr gTypes) ;
el se
nmet hod = cl azz. get Met hod(net hodNane, net hodAr gTypes) ;

//...invoke method or constructor -- only static nmethods
/1 assuned. . .
if(ctor !'= null)
ct or. newl nst ance(net hodAr gs) ;
el se
nmet hod. i nvoke(nul |, net hodArgs);

}
} catch (Exception e)
{

}
}

e.printStackTrace();

}

A security-aware interpreter will wrap the actual method or constructor invocations with
AccessController.doPrivileged calls, temporarily associating the thread with a more restrictive
protection domain to ensure security policy is preserved. The interpreter will first obtain a reference
to an AccessControlContext object containing only the protection domains we want the script code to
run under--we can use the Policy singleton object to cache the default ProtectionDomain, for example:

public class Securel nterpreter

{
stati c AccessControl Context scriptDonmai ns;
static

CodeSour ce nul | Source = new CodeSource(null, null);
Per m ssi onCol | ecti on perns =
Pol i cy. get Pol i cy() . get Perm ssi ons(nul | Source);

Pr ot ecti onDomai n donmai n = new Prot ecti onDonmai n(nul | Sour ce,
per ns) ;

scri pt Domai ns = new AccessCont rol Cont ext (
new Protecti onDomai n[] {domain}); // 1-elenent array

}

The Securelnterpreter will wrap all script method invocations using the 2-argument
AccessController.doPrivileged. The AccessControlContext passed as the second argument will be used
as the calling thread's assigned context for the duration of the PrivilegedAction.run method call:

develé‘ﬁ[ﬁ"ﬁ‘é"ﬁtor‘ www.develop.com 20

public class Securel nterpreter

{

public static void main(String[] args)

{

Buf f er edReader input = new BufferedReader (
new | nput St r eanReader (System i n));

try
{
for(;;)
{
/l...read class nane, nethod nane, nethod arg types
/1 and arg val ues. ..
/l...use reflection to find method or constructor to
use. ..

//...invoke method or constructor -- only static nmethods
/1 assuned. . .
if(ctor !'= null)

AccessControl | er.doPrivil eged(
new Privil egedAction() {
public Object run() {
ct or. newl nst ance(net hodAr gs) ;
return null;
}
}
}, scriptDomains); // use script domains
/| as assigned context

el se
AccessControl | er.doPrivil eged(
new Privil egedAction() {
public Object run() {
nmet hod. i nvoke(nul |, net hodArgs);

return null;
}
}
}, scriptDomains); // use script domains
/1 as assigned context

} catch (Exception e)
{

}
}
}

e.printStackTrace();

Sidebar: A Better Scripting Engine Design Choice

Another interpreter implementation choice uses generative programming, which both avoids the
requirement for this kind of context tweaking, and also enjoys vastly improved performance.
Generative scripting engines will compile scripts into actual Java classes on the fly. The classes will
probably run much faster than the interpreted equivalent. In addition, the generated Java classes will

&3 developiéntor www.develop.com 21

automatically be associated with a protection domain, so any threads executing generated class code
will automatically be restricted by the class' protection domain.

The best example of a generative system is J2EE's JSP engine. The JSP engine automatically compiles
JSP files into equivalent Java classes. The generated classes run much faster than a text interpreter
ever could, and you can also easily "sandbox" the generated classes so that JSP code can't do anything
malicious/accidentally detrimental to the JSP container or associated resources.

Personally, | think generative script engines are an all-around better design choice than text
interpreters, but they are also a lot harder to implement, requiring advanced use of class loaders as
well as a third-party class generation tool or API. The design of generative script engines is beyond the
scope of this paper, but definitely worth looking into if you are considering script features for your
Java project.

Security for Logical Threads of Execution

The previous example demonstrates how to use the 2-argument AccessController.doPrivileged method
to temporarily define a thread's assigned context in order to restrict that thread's security. The same
method can be used to augment or to completely change a thread's access control context temporarily.
This is most useful when implementing logical threads of execution.

A logical thread of execution is a sequence of operations that is executed in order, but is not actually
executed using the same physical Java thread. Logical threads of execution are usually implemented by
a pool of worker threads and queues, executing many asynchronous tasks in an efficient manor.

In the general case, an initial thread begins work on a particular task, and then suspends execution of
that task--the remainer to be completed later. Usually the suspension is a domain requirement, for
example, if the application must wait for a response from some other facility where a long turn-around
time is anticipated. In such cases you can greatly reduce the number of physical threads as well as
increase the system efficiency by pooling threads and reusing available threads to execute individual
segments of a logical operation.

My favorite example from Java is the problem of class loading, specifically static intialization of loaded
classes. A class loader is initially created by one thread in a VM. Once the loader is created, that
creating thread may go to sleep, go do some other long-running task or simply die. There's really no
reason to expect the creating thread to interact with the ClassLoader instance again. However, the
task of the loader object--loading Java classes and initializing them--is not completed. In Java, classes
are not usually loaded until they are required by a thread, that is, until a thread actually attempts to
execute a method, create an instance or access a static field of a target class. The target class would
only be loaded when the first such access occurs.

At class load time the VM must execute the class' static initializer. (The static initializer method is a
hidden static method tucked away inside the class. This is the method that actually initializes static
fields and performs other load-time activities of the class.) But which thread should be used to execute
the static initializer? Certainly not the thread that actually created the class loader--that thread may
be busy or dead when the class is actually loaded.

In fact, the requesting thread is used to load required classes and run their static initializers. In effect
the ClassLoader object represents a logical task that is accomplished by multiple different worker
threads over time.

There is an obvious security problem with this setup when taking into account Java 2 security: A
requesting thread that is used to load a required class may not be able to complete the class' static
initializer because of the security restriction imposed by the thread's access control context at load
time. In fact, that thread's current restrictions may prevent it from even opening the class file. The
security context of loading threads is completely unknown. The thread may be executing from a very

£N develé'ﬁﬁ”ﬁ‘é"ﬁtor‘ www.develop.com 29

restricted protection domain, or maybe not--the security context of a thread when it requires a class
to be loaded is completely non-deterministic.

One solution to this problem is to use the 1-argument AccessController.doPrivileged method to
temporarily suspend the loading thread's access control context while the loader accesses the class file
and runs the class' static initializer. That would negate the restrictions of the calling thread's security
context and only subject the static initializer to run under the security constraints of the newly loaded
class' own protection domain.

But if you think about it, that's not the safest way of doing things. That system might allow the loading
thread to access class files that it really shouldn't have access to. What you really want is to impose not
only the class' own protection domain on the loading thread, but also the protection domains of the
thread that created the class loader at time of loader creation. Remember that the loading process is
essentially a suspended operation, started initially by the thread that created the loader, and then
suspended until later. The best solution allows the loading thread to "impersonate" the original thread
that create the loader. This would complete the logical thread of execution fiction, since the loading
thread will have all the same attributes as the creating thread.

The pattern for passing on the security attributes of a logical thread of execution between different
physical threads has these three aspects:

1. The task to be completed by multiple, disparate threads is represented by a Java object
that records as part of its state the status of the task. (This is as opposed to a task
completed by a single physical thread of execution, which can store task status in local
variables.)

2. An original thread begins the task by creating and interacting with the task object. Prior to
initial suspension, the task object records the initial thread's AccessControlContext. This
ACC is the security context to be passed on to other physical threads later as they continue
to execute the task.

3. When the task is later continued by other threads, the task object wraps later execution
steps (executed by other physical threads) in calls to the 2-argument
AccessController.doPrivileged method, using the previously recorded AccessControlContext
as the second argument--the assigned context to attach to the thread temporarily while it
completes a portion of the task.

We can see all three aspects of this pattern by looking at the URLClassLoader source code:

public class URLC assLoader extends SecureC assLoader

/**

* Record of logical thread's security context
**/

private AccessControl Context acc;

public URLC assLoader (URL[] urls)

{
/l...record this thread's security context to be passed on
/1 to threads | ater when they are used to | oad cl asses. ..
acc = AccessController.getContext();

}

£N develé'ﬁﬁ”ﬁ‘é“ﬁtor‘ www.develop.com 23

*

This is the method that is called when this | oader mnust
| oad a class. Make sure to pass the recorded security
context on to the calling thread before calling
defineC ass, so that this thread's context will be
suspended and | ogi cal thread' s used during execution

of the new class' static initializer.

Not e: Several details elided for clarity. See actual source
if you need to fully renove the veil.

* % X X X X X F X X

*
~

protected Class findd ass(String nane)

{
Class clazz = (O ass)AccessControl | er. doPrivil eged(
new Privil egedAction() {
public Object run() {
URL u = ...; // Use URLs passed to constructor to
/1 find required resource file.
CodeSource ¢cs = ...; // URL and digital signatures
/1 used to sign the class file, if
any.
byte[] bytecode = readURLCont ent ToByt eArray(u);
//...call SecureC assLoader supercl ass defined ass..
return defineCl ass(name, bytecode, 0, bytecode.length, cs);
}, acc); // run using recorded context,
/1 which suspends calling thread's
/1 for the | oading process.
return clazz;
}
}
Summary

Java 2 security is built in to every Java 2 VM. Java 2 security automatically associates a set of
protection domains with each running Java thread. In my opinion this is the best part of Java 2
security: the fact that you don't have to do anything. The VM already manages contexts and threads
associations, so there's no code for you to write.

Classes "secure" themselves from malicious client code by adding guard blocks to methods or
constructors. The guard block includes a single call to SecurityManager.checkPermission.
checkPermission in turn ensures a required permission is available to all protection domains associated
with the current thread. Thus third party code running within restricted protection domains cannot
directly nor indirectly perform potentially dangerous operations.

A protection domain is defined by a CodeSource--an indicator characterizing a class' origin--and a
collection of Permissions. The assignment of permissions to domains is generally done using the Policy
singleton object, a convenience mechanism built in to the Java 2 core API.

The security context of a Java thread at a point in time is the optimized combination of the thread's
assigned context and its execution context. The execution context includes all protection domains the
thread has entered since entering the most recent AccessController.doPrivileged invocation. The
assigned context is a static set of protection domains constructed by the doPrivileged method. The

develé‘ﬁ[ﬁ"ﬁ‘é"ﬁtor‘ www.develop.com 24

single argument doPrivileged implies the assigned context is empty, and the 2-argument doPrivileged
method allows you to enlist any arbitrary context as the assigned context for the duration of the
doPrivileged call. The thread's inherited context is used as the assigned context if the thread is not
involved in a doPrivileged method.

Using the 1-argument and 2-argument doPrivileged methods a hosting container can effectively
sandbox interpreted non-Java scripts, create "privileged" operations allowing host classes to execute
safely within hosted component threads, and create logical threads of execution. In all three cases host
code dynamically manages thread assigned context to attach stricter, less strict, or completely
unrestricted contexts to a Java thread.

Java and all Java based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
DevelopMentor is independent of Sun Microsystems, Inc.
[J2001 DevelopMentor, Inc. DevelopMentor is a registered trademark of DevelopMentor, Inc.

N develéﬁtﬁ“ﬁ‘é“ﬁtor‘ www.develop.com 25

