
The Application Modernization Challenge
 A Practical Guide

to Choosing the Right Approach

t r a n s p o s i t i o n

02

Table of Contents

The Application Modernization Challenge: A Practical Guide to Choosing the Right Approach
 The Zombie Appocalypse
 Black-box or White-box?
 Automatic Migration/Manual Rewrite /Transposition

Your Application Modernization Project: Key Decision Points
 Selecting the Target Platform
 Budgeting & Outsourcing
 Engagement Scoping
 Internal Resource Allocation
 Migration
 QA

Conclusions & Recommendations

3
3
4

9

5
5

7
7

6
6

03

The Application Modernization Challenge :
A Practical Guide to Choosing the Right Approach

The Zombie Appocalypse

As an IT executive in a medium-sized or large enterprise, you must be feeling the increasing
pressure to modernize your organization’s core business applications.
Across industries and business sectors, competitive advantage and business growth are
increasingly derived from adopting new technologies. Enterprise technology has to evolve in
order to keep pace with competition and ever changing business needs. Whether it is a modern
environment, a mobile app, a cloud-based service or a new web app, business leaders in your
organization are all in agreement that it should be launched ASAP. However, your legacy
applications are not architected to support integration with newer applications, components
and devices.

Maintenance costs for legacy systems increase over time. Developers with needed expertise in
out-of-date technologies become hard to find and expensive to contract. Security updates for
legacy systems become obsolete. Enterprises that try to postpone the inevitable, find that the
cost of inaction is often the loss of significant business opportunities.
Legacy modernization is a moving target. The pace of change in the IT world is such that the use
of RAD tools such as VB6 and WinForms - that were considered state of the art just a few years
ago - has created ‘zombie’ legacy systems – difficult to integrate, impossible to secure, expensive
to maintain, and inaccessible remotely with standard devices. However, those legacy applications
still hold significant business value and therefore, must be modernized.

Black-box or White-box?

While the meaning of ‘Legacy Systems’ may change over time, the challenges of migrating
critical business applications remain the same. Code modernization projects aim to salvage the
investment made in infrastructure, business logic and functionality, and at the same time develop
an application that would be maintainable, customizable and compatible with new user interface
(UI) standards such as HTML5.

Application modernization approaches broadly fit into two categories: Black-box and White
box modernization. This white paper will compare the main code modernization techniques;
Transposition, Automatic Migration and Manual Migration, in the context of common
modernization use-cases, to help you determine the right approach for your project.

04

Black-box
A Black-box approach to
migration means that inner
workings of the migration
process are obstructed from
view, as well as any user input
into the migration process.

The Black-box approach is
commonly used for version or
language upgrades, but falls
short when the application
requires architectural changes
or refactoring onto
a new platform and
user exprience.

White-box
The White-box approach
allows the flexibility to
intervene in the migration
process and impact
application structure, code
patterns and user exprience.

A White-box approach
is commonly applied to
architectural changes or the
refactoring of applications
onto a new platform and
user exprience.

Automatic Migration
is a method used to upgrade
or migrate applications,
that fit a predetermined
configuration and do
not require customized
reengineering.

Manual Rewrite
A complete manual rewrite
of an application is advised
when existing business logic
becomes obsolete, or when
the application requires
re-purposing.

Transposition
Transposition is a patent
pending modernization
technology that employs
semantic code understanding,
for context-aware application
migration. Use it to preserve
an applications’ business logic
and functionality, or when your
application needs reengineering,
or refactoring onto a new
platform and user experience

05

Selecting the Target Platform

The target platform decision is, of course, a compromise between the a. new need (be it
competitive advantage, security or maintenance, to name a few), b. the desired result (Mobile,
Web or Cloud operability) and c. the challenges of modernization.

Legacy data architectures are especially at odds with Distributed and Service Oriented
architectures (e.g. Client/Server, Web, Cloud). When the gap to bridge between legacy and target
is a core architectural one, we recommend avoiding the black-box approach of an automated
solution, which leaves very little room for refactoring and re-architecting.

Budgeting & Outsourcing

Application modernization is so specialized, that it is hardly ever done in-house. When the need
to modernize presses, most large enterprises turn to their Systems’ Integrator (SI) of choice, for a
manual rewrite project scoping and price quote. While turning to a trusted partner is never a bad
idea, SI project pricing structure usually includes a ‘Time and Materials’ (T&M) bracket that can
easily spiral out of control, in terms of time-to-market, internal resources and budget.

Manual rewrite projects are typically between four to ten times longer and more expensive than
automated projects or Transposition1. Moreover, manual rewrite projects involve a high level of
risk, as their failure rate can reach 65%2.

Alternatively, some enterprises approach an automated solution vendor for a quote. When
budgeting for an automated migration project, always remember that architectural changes and
UI will need to be refactored outside the automation tool, which will incur additional costs.

Other considerations include the length of the required code freeze for your selected
modernization path. A manual rewrite project usually lasts many months and sometimes years.
Any ongoing programming and maintenance performed during the project period would need to be
integrated into the application, adding complexity to the process. Automatic migration is typically
a shorter process. However, it will require a code freeze for the entire period. Transposition will
require the shortest freeze, because the project duration is as short as in automatic migration
(or shorter), but ongoing changes are formulated as rules. The fresh code can be re-integrated by
applying existing rules.

1 Based on Gartner Group study “Forecasting the Worldwide IT Services Industry: 1999,1” and Gizmox internal Data

2 The Standish Group Report, 2014

06

Engagement Scoping

Imagine a contractor coming to install a new fireplace in your house. Now assume you no longer
have the water and power infrastructure schemes. Without figuring those out first, the contractor
is likely to hit a vital pipe or cable, which will double the duration and cost of the project.

A manual rewrite project scoping is guided by many - well tested, yet generalized - rules of
thumb. Your enterprise application has evolved through accretion. Even if your original code
documentation is available, which is rarely the case, it is probably not very useful at this stage.
Much of your legacy code had been rewritten over the years with layers and patches. Some of those
are likely to be redundant, often providing extended capabilities in a completely undocumented
way. Moreover, at the time your legacy application was written, best practices did not include
current standards like object oriented models or n-Layers architecture. This condition is commonly
referred to as ‘spaghetti code’. Without proper reverse engineering, no rewrite project scoping can
truly provide an accurate pre-engagement assessment. Indeed, Research by Standish Group found
that all manual rewrite projects are disposed to an average of 189% budget and time overrun.

The pre-engagement assessment capabilities of Transposition on the other hand, includes an
algorithmic process, equivalent to a detailed reverse engineering that would make sense of the
most tangled legacy ‘spaghetti’. Transposition assessment can identify all the hidden ‘pipes and
cables’ up front, to provide a very accurate scoping of the project.

Internal Resource Allocation

A manual rewrite project requires considerable internal resource allocation. In particular, the
reverse engineering, or business logic re-capture stage of the specification is human resource
intensive. Moreover, non-technological enterprises (but say, finance, or health) often do not
employ technical staff with the required skill-set to manage a complex application modernization
project. In most cases, a rewrite would involve expert reverse engineering and would require
expertize in the source and target environments – a rare combination of skills.

Automatic migration requires relatively little internal resources during the migration, because it
does not involve reengineering and relies on a preconfigured, generic process. However, internal
resources are required in the post-migration phase, to customize the delivered code.

Transposition is a software-guided and human controlled process that algorithmically
‘understands’ your legacy application. It can provide optimized analysis, assessment and gap
bridging suggestions. Transposition delivers a fully re-engineered and customizable application –
all with minimal internal resource allocation. Alternatively, you may pick and choose standalone
parts of the project, to be managed in-house.

07

Migration

Comparing an automated migration project to Transposition is like comparing machine translation
to the product of a human translator (equipped with the best machine translation tools). The
former is textual (literal), out-of-context. The latter is semantic and context-aware. Automated
migration is a ‘Black-box’ technique that can be compared to textual translation. This means the
migrated application is a textual translation of the source application, sub-optimal to the target
platform and new user experience.

Manual rewrite projects are highly dependent on the volatile human factor.

Transposition is a software-guided, semantically aware and human controlled process that
minimizes common human errors like integration collisions or non-repetitive code patterns. In
addition, it is a ‘White-box’ technique, meaning that customization is possible at any stage and
optimized for the target platform and desired user experience.

Quality Assurance (QA) and Maintenance

Software testing can be a painful, costly and time-consuming process. In manual rewrite projects,

the average ‘bug’ ratio is around 20-30 bugs per 1000 lines of code3. In contrast, Transposition bug

ratio is dramatically reduced to around 1 bug per each 1000 line of code.

In automatic migration, the migrated code is generically configured and machine-generated.

It has to cover all common use cases with pre-configured rules and therefore likely to include

excessive, generic code lines. The result is difficult to test, maintain and extend. In contrast,

the code resulting from Transposition is native and optimized to provide specific application

functionality. This makes transpositioned code easier to test, maintain and extend, by means of

target platform standards and developers.

Finally in Transposition, the migrated application is functionally equivalent to the legacy one,

allowing cost-efficient reuse of your legacy test scripts.

3 Gizmox internal data

08

Your Application Modernization Project: Key Decision Points

 High budget
 ‘Time &
Materials’ bracket
prone to up to
189% overrun4 of
allocated budget

 High risk: over
65% failure5

 Project scoping
does not
include pre-
engagement reverse
engineering and
therefore inaptly
predictis resources

 HR-intensive
 Qualified staff
with source
and target
environments skill
set is scares and
expensive

 Testing &
iterations only
possible post-
compilation

 Prone to
human error
(e.g. Integration
collision,
non-repetitive
patterns)

 65% fail rate6

 Software guided
monolithic-to-
distributed re-
architecture

 Low budget
 Assessment
utilizing semantic
code understanding
and reverse
engineering
approach, provides
precise scoping and
fixed price quote
upfront

 Shortest code
freeze. Ongoing
changes are
formulated as
rules that can be re-
applied to modified
code

 Minimal and
Flexible. Modular
levels of outsourcing
engagement
available

 Reduced
percentage of
programing ‘bugs’

 Native code
quality. Highly
maintainable and
extendable

 Cost-efficient
reuse of legacy
test scripts

 Software-
guided and
controlled process

 Semantic,
context-aware code
refactoring

 Customizable
Business logic and UI

QA & Maintenance

Legacy App
VBv, Win Forms,
ASP, PowerBuilder

Engagement
Scoping

Budgeting &
Outsourcing

Selecting
Target
Platform

Internal
Resource
allocation

Migration

New App
Saas, Mobile,
Multitenant

 Rearchitecting is
manual and only
possible post-
migration

 Low budget
 Pricing does not
include
rearchitecting, which
is manual
and potentially risky

 Code freeze required

 Minimal for the
migration phase,
HR-intensive for
post migration
phase

 Preconfigured,
machine-generated
code, prone to
excessive ‘code-
noise’, which is hard
to maintain

 Text-based,
contextless

 Business logic
and UI are only
customizable post
migration

Manual
Rewrite

Automatic
Migration

Transposition

Project time
Short
Long

Approach
Black box
White box

 Supports
monolithic-to-
distributed re-
architecture

4-5-6 The Standish Group Report, 2014

09

Conclusions & Recommendations

Approaches to application modernizations vary and are designed to meet different needs. It is
therefore a futile exercise to try and discredit or validate any single approach or method. From
start to finish of your enterprise application modernization project, different considerations
should impact your approach.

While a manual rewrite might be the most flexible process, it also incorporates the highest risks.
Much like a rewrite, Transposition offers high flexibility in reengineering the application, as well
as the protection of a software controlled environment, that minimizes the human error liability.
Automatic migration - although relatively risk-free, in terms of project execution - is limited, and
doesn’t deliver much value, when the target platform necessitates refactoring or reengineering of
the application, and a new user experience.

Our detailed examination shows that Transposition is advantageous when refactoring
applications from one platform onto a different one and in almost every aspect of the project
execution, while a Manual Rewrite has clear advantages when application logic and functionality
have to be rewritten. Finally, an Automatic Migration is recommended for version upgrades, with
no refactoring and reengineering needs.

Here are some specific recommendations:

 Engage in a manual rewrite project if - and only if - your application logic is obsolete. No lesser
 change merits the time, risks and cost involved

 To temporarily extend the life of an application, for a version, code or language upgrade, use
 automatic migration. This approach delivers quick fixes and short-term gains, in terms of
 budget and project length.

 To repurpose your application when its business logic is still valuable, but your code, platform,
 language or user experience are out-of-date, use Transposition. This will allow a complete
 reengineering and user experience refactoring, foror the cost and durationth of an automated
 migration (or less) and the code quality of a rewrite (or better).

t r a n s p o s i t i o n

Gizmox Transposition provides an enterprise level solution for bringing
business applications to the latest platforms and operating systems such as,

latest desktop Win8, 10, or web, cloud and mobile. Gizmox Transposition is
fast and risk-free, using innovative, patented solution and service.

To learn more, please contact us at consult@gizmoxts.com

DOWNLOAD

GET A FREE ASSESSMENT

Transposition Assessment
Wizard

Download and run on your
application code

Get detailed statistics
analyzing your code

Work with Gizmox to get a cost
estimate on transposing your

application

http://www.gizmoxts.com/WP/free-assessment-report-roi-consultancy-poc/

