
IN THIS CHAPTER

• Using RPM for Software
Management

• Using Red Hat Network and
Alternatives for Software
Management

• Compiling Software from
Source

• System Monitoring Tools

• Reference

CHAPTER 8

Managing Software and
System Resources

This chapter introduces concepts, procedures, and software
you can use to manage installed system resources on a Fedora
Core Linux system. Managing the system resources—includ-
ing software, storage, and memory—of your computer is
important for a number of reasons. Good resource manage-
ment promotes and supports efficient, productive sessions, a
stable system, and satisfied users. Managing these resources
involves installing, removing, upgrading, or rebuilding soft-
ware packages—each a vital task that can contribute to your
system’s security.

As a Fedora Core Linux system administrator, you should also
know how to maximize your system’s resources by managing
memory and storage for the most efficient system use.
Properly managing your system resources ensures that you
won’t run out of room for new software, and you can expand
the system to fit changing needs and new projects. In other
words, system resource management is essential to providing
the best possible computing experience for your users.

Fedora Core Linux provides a variety of tools for system
resource management. The following sections introduce the
RPM Package Manager (RPM), along with command-line and
graphical software-management tools. You’ll also learn about
monitoring and managing memory and disk storage on your
system.

Using RPM for Software Management
RPM was derived (in part) from early Linux package manage-
ment software—named RPP, PMS, and PM—that were written
in Perl. RPM was first used with Red Hat Linux 2.0 in late
1995, and then rewritten in C for the Red Hat Linux 3.0.3

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 207

208 CHAPTER 8 Managing Software and System Resources

(Picasso) release in 1996. Since then, the rpm command has been the prime feature of Red
Hat’s unique software management system, which is based on the concept of pristine
sources, or the capability to use a single, initial archive of a program’s source code to build
packages for different systems and to track versions. With the release of Red Hat 8.0
(Psyche) in 2002, Red Hat offered a slightly updated graphical management interface for
its venerable RPM application.

In addition to improving the package management of early software management scripts,
RPM version 4.1 introduced software features designed to ease the task of building soft-
ware for different platforms from a single set of source-code files. Changes can be tracked
and kept outside a developer’s initial source code and multiple packages can be built from
scratch and installed at the same time—simultaneously, RPM also verifies installation
dependencies. Additional features, such as a checksum and GNU Privacy Guard (GPG)
signatures, enable binary software packages to be safely distributed without the fear of
virus infection or the inclusion of Trojan code.

The rpm command uses the RPM system to install, remove (erase), upgrade, verify, and
build software archives known as .rpm files. These archives, or packages, contain package
identification (a signature), checksums (mathematically derived validation values), and an
archive of the software, either in source or binary form. A .rpm package also contains quite
a bit of additional information, such as a name, version, and basic description, and can
include pre- and post-installation scripts used for software installation, erasure, or upgrad-
ing.

The RPM database installed on your computer keeps track of which versions of which
packages are installed. RPM uses your system’s /var/lib/rpm directory to store files (actu-
ally databases) containing information about the software installed on your system. You
can use the ls command to view these files (you might see file sizes different from those
shown here, depending on the amount of software you have installed):

$ ls -l /var/lib/rpm

total 53820

-rw-r--r-- 1 rpm rpm 5423104 Oct 14 19:53 Basenames

-rw-r--r-- 1 rpm rpm 12288 Oct 14 12:32 Conflictname

-rw-r--r-- 1 root root 16384 Oct 14 17:31 __db.001

-rw-r--r-- 1 root root 1318912 Oct 14 17:31 __db.002

-rw-r--r-- 1 root root 458752 Oct 14 17:31 __db.003

-rw-r--r-- 1 rpm rpm 1179648 Oct 14 19:53 Dirnames

-rw-r--r-- 1 rpm rpm 5521408 Oct 14 19:53 Filemd5s

-rw-r--r-- 1 rpm rpm 24576 Oct 14 19:53 Group

-rw-r--r-- 1 rpm rpm 20480 Oct 14 19:53 Installtid

-rw-r--r-- 1 rpm rpm 45056 Oct 14 19:53 Name

-rw-r--r-- 1 rpm rpm 41070592 Oct 14 19:53 Packages

-rw-r--r-- 1 rpm rpm 348160 Oct 14 19:53 Providename

-rw-r--r-- 1 rpm rpm 98304 Oct 14 19:53 Provideversion

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 208

-rw-r--r-- 1 rpm rpm 12288 Oct 14 19:53 Pubkeys

-rw-r--r-- 1 rpm rpm 237568 Oct 14 19:53 Requirename

-rw-r--r-- 1 rpm rpm 176128 Oct 14 19:53 Requireversion

-rw-r--r-- 1 rpm rpm 94208 Oct 14 19:53 Sha1header

-rw-r--r-- 1 rpm rpm 49152 Oct 14 19:53 Sigmd5

-rw-r--r-- 1 rpm rpm 12288 Oct 14 19:53 Triggername

The primary database of installed software is contained in the file named Packages. As you
can see from the preceding example, this database can grow to 33MB (and perhaps larger)
if you perform a full installation of Fedora Core Linux (more than 4GB of software). After
you install Fedora Core Linux, rpm and related commands will use this directory during
software management operations.

Command-Line and Graphical RPM Clients
As a Fedora Core Linux system administrator, you’ll use the rpm command or the Fedora
Core graphical clients to perform one of five basic tasks. These operations, which must be
conducted by the root operator, include the following:

• Installing new software

• Erasing or removing outdated or unneeded packages

• Upgrading an installed software package

• Querying to get information about a software package

• Verifying the installation or integrity of a package installation

The rpm command has more than 60 different command-line options, but its administra-
tive functions can be grouped according to the previous five types of action. Graphical
RPM clients provide easy-to-use interfaces to these operations. As a system administrator,
you’ll have a choice between using a graphical interface and using rpm’s various
command-line options. The general format of an rpm command is

rpm option packagename

The basic options look like this:

• -i—Installs the selected package or packages.

• -e—Erases (removes) the selected package or packages.

• -U—Removes the currently installed package, and then installs software with the
contents of the selected package or packages, leaving the existing configuration files.

• -q—Queries the system or selected package or packages.

• -V—Verifies installed or selected package or packages.

Using RPM for Software Management 209
8

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 209

TWO HANDY OPTIONS

By appending vh to any option, you get

vSome status feedback.

hHash marks as the work proceeds.

Many additional options can also be added to or used in conjunction with these options. These
are summarized in the following table.

Option Used To

rpm-i Install a Package

Useful options to -i:

--excludedocs Doesn’t install documentation to save space.

--replacepkgs Replaces the package with a new copy of itself.

--force The “big hammer”—Ignores all warnings and installs anyway.

--noscripts Doesn’t execute any pre- or post-install scripts.

--nodeps Ignores any dependencies.

--root path Sets an alternative root to path.

rpm -e Erases (deletes) a Package.

Useful options to -e:

--nodeps Ignores any dependencies.

rpm -U Upgrades a package, removing the older one but keeping modified

files, such as configurations.

Useful options to -U:

--oldpackage Permits downgrading to an older version.

Other options are the same as with rpm -i.

rpm -q Queries about Package Information

Useful options to -q:

-p file Displays all information about the package file.

-f file What package owns the file file?

--whatprovides x Determines what packages provide x.

--whatrequires x Determines what packages require x.

-i Summarizes the package information.

-l Lists the files in package.

--scripts Displays the contents of any install, uninstall, or verifies scripts.

--provides Displays the capabilities package provides.

CHAPTER 8 Managing Software and System Resources210

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 210

--requires Displays the capabilities package requires.

rpm -V Verifies Packages Against the RPM Database

Useful options to -V:

-a Verifies all installed packages.

rpm -K Uses GPG to verify a downloaded package.

Useful options to -K:

--nosignature If you lack public GPG encryption keys, do not have GPG installed, or

are legally prohibited from using GPG, this still verifies the package

using size and MD5 checksums.

Details on obtaining the Fedora Core public GPG encryption key and using it are at

http://www.rpm.org/max-rpm/s1-rpm-checksig-using-rpm-k.html.

RPM IS FOR PROGRAMMERS, TOO!

Remember that RPM was created not only to provide an easy to use administrative tool, but also
as a developer’s tool for use in multi-platform source-code package management. Programmers
using rpm for development and distribution will use its rpmbuild command, along with a
myriad of additional command-line flags. RPM can be used to build binaries, execute programs,
test installations, verify and sign packages, build source packages, track versions, and target
builds for specific architectures. Details can be found at the RPM home page (listed in the
“Reference” section at the end of this chapter).

Using rpm on the Command Line
Because the new graphical RPM client can only install and uninstall RPM packages (for
now—more functionality is promised), you will still end up administering RPM packages
from the command line. You can perform all the five basic rpm operations using the rpm
command from the command line. This section gives you an introduction to performing
those operations. It also provides examples of how to install, verify, query, remove, and
upgrade a software package.

The most common rpm operation is software installation. Using rpm is an easy way to keep
track of installed software, and it can be used to quickly remove undesired packages. Use
the -i option, along with the full or partial name (using regular expressions) of a software
package, to install software with rpm. For example, to install the unace archiving package,
use the rpm command like this:

rpm -ivh http://mirrors.zoreil.com/plf.zarb.org/9.1/

➥i586/unace-2.2-2plf.i586.rpm

Retrieving http://mirrors.zoreil.com/plf.zarb.org/9.1/

➥i586/unace-2.2-2plf.i586.rpm

Using RPM for Software Management 211
8

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 211

warning: /var/tmp/rpm-xfer.48amVs: V3 DSA signature: NOKEY, key ID 8df56d05

Preparing... ### [100%]

1:unace

[100%]

This example uses the v and h options, which provide a more verbose output and display
of hash marks to show the progress of the installation. The example also demonstrates the
capability of rpm to use HTTP or FTP servers to fetch files for installation. It also shows
that rpm can use GPG keys to validate a file. (The key was not installed in our example.)

You can also use rpm to query its database after installing packages to verify an installa-
tion. Use the -V option, along with the name of a software package, to verify installation
your system. For example, to verify the unace archiving package, use the rpm command
like this:

rpm -V unace

NOTE

If everything is correct with your software installation, your system will display no response to
rpm -V after you run the command; only problems are displayed.

As you can see from the following program output, you can get additional information
about a package by adding additional verification options (such as two more v’s) to the -V
option. To get more information about an installed package, use one or more forms of the
rpm query options. For example, to display concise information about an installed
package, use the -q option, along with the i option and the installed package name, like
this (note that your version will be different from that shown here):

rpm -qi unace

Name : unace Relocations: (not relocateable)

Version : 2.2 Vendor: Penguin Liberation Front

Release : 2plf Build Date: Sat 01

➥Mar 2003 12:13:48 PM EST

Install date: Tue 02 Sep 2003 03:46:28 PM EDT Build Host:

➥baader.subversion.alt

Group : Archiving/Compression Source RPM: unace-2.2-2plf.src.rpm

Size : 401368 License: freeware

Packager : Guillaume Rousse <guillomovitch@zarb.org>

URL : http://www.winace.com

Summary : Decompressor for .ace format archives

Description :

Unace is a utility to extract, view, and test the contents of an ACE archive.

CHAPTER 8 Managing Software and System Resources212

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 212

This form of the rpm query provides quite a bit of information about the software package.
(You can also query packages before installation by providing a pathname for them.)

If this package isn’t up-to-date, you can easily and quickly upgrade the package by down-
loading a newer version and then using rpm’s -U or upgrade option like this:

rpm -Uvh unace-2.2-2plf.i586.rpm

Preparing... ### [100%]

1:unace ### [100%]

Note that it wasn’t necessary to remove the currently installed software package—the U
option removes the old version of the software (saving the old configuration files), and
then automatically installs the new software.

You can also upgrade your system software by using the rpm command’s -F or “freshen”
option, which will fetch a designated package from a remote FTP or HTTP server. For
example, to upgrade the fetchmail-conf package, use rpm like this:

rpm -Fv ftp://ftp.tux.org/linux/redhat/updates/9/en/os/i386/\

initscripts-7.14-1.i386.rpm

Retrieving ftp://ftp.tux.org/linux/redhat/updates/9/en/os/i386/\

initscripts-7.14-1.i386.rpm

Preparing packages for installation...

initscripts-7.14-1

Use the -e option, along with the name of a software package, to remove or erase software
from your system with rpm. For example, to remove the unace archiving package, use the
rpm command like this:

rpm -e unace

Note that if the operation succeeds, no messages will be displayed on your system. You
can quickly search for the names of installed packages by piping the output of rpm -qa
through the grep and sort commands (see Chapter 5, “First Steps with Fedora,” for addi-
tional information on grep and sort); here’s how to do that search:

rpm -qa | grep mail | sort

fetchmail-6.2.0-7

mailcap-2.1.14-1.1

mailx-8.1.1-31.1

mozilla-mail-1.4.1-8

procmail-3.22-11

sendmail-8.12.10-1.1

sendmail-cf-8.12.10-1.1

This example returns a sorted list of all packages with names containing the word mail.

Using RPM for Software Management 213
8

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 213

NOTE

Another essential feature of the rpm command is its --rebuilddb option. If your system’s RPM
database becomes corrupted, this is your first (and perhaps only) option for restoring software
management services. We hope that you never have to use this option; help ensure that by
always backing up your data!

Package Organization with RPM
Software packages on your Fedora Core Linux system are organized into various groups, as
you see later in this chapter. Using a group organization helps Fedora Core keep software
organized by category and provides for hierarchical listings of software when using graphical
RPM clients. You never have to manipulate these groups, but understanding the concept of
package organization can help you gain familiarity with the way Fedora Core Linux works.

Extracting a Single File from an RPM File
Occasionally, it is useful to extract a single file from an RPM package. You can do so using
the command-line version of mc, the Midnight Commander. In Figure 8.1, the Midnight
Commander is displaying the contents of the yum .rpm file. The Midnight Commander is a
UNIX clone of the famous DOS Norton Commander, a file management utility. Using mc,
just highlight the RPM file and press Enter; the contents of the RPM file will be displayed. In
the listing, you can browse the file structure of the RPM file and use mc to copy files from it.

CHAPTER 8 Managing Software and System Resources214

FIGURE 8.1 A classic two-panel directory view and drop-down menus betray Midnight
Commander’s DOS inspiration, but it’s a full-featured Linux file manager.

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 214

You might want to know what a .rpm script will do before you install the application. You
can use the F3 key in mc to view the script files. If you want to look at the scripts without
using mc, use this command:

rpm -q --scripts filename > scripts.txt

This command pipes the scripts into a file, where you can examine it with a text editor.
You could also pipe it to the less pagination command to view the scripts on your
display:

rpm -q --scripts filename | less

Graphical Package Management
The Fedora Core Linux graphical package management tool identified in the menu as
Add/Remove Software is actually an application named system-config-packages. This appli-
cation replaces kpackage, gnorpm, and xrpm—all of which are no longer provided. Add/
Remove Software allows you to select packages arranged in categories and install or remove
them. With the addition of YUM to Fedora Core, you may now add your own packages to
the Fedora Core graphical tools’ database, improving its usefulness over earlier versions.

Launch the Fedora Core GUI package manager by clicking the Start button on your
desktop, and then choose System Settings, Add/Remove Applications. The package manage-
ment tool launches with the Add and Remove Software screen, shown in Figure 8.2.

Using RPM for Software Management 215
8

FIGURE 8.2 The initial screen of the package management tool will look familiar if you
installed Fedora Core; it’s the package selection screen used by the installation program.

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 215

The packages listed in the screen are organized into the groups Desktops, Applications,
Servers, Development, and Systems groups. Graphical buttons on the left allow you to
choose one of two modes: install or remove. To choose individual package groups for
installation or removal, first click the appropriate graphical button. The numbers to the
right of the package group name indicate the number of packages installed on your system
and the total number of packages available in the group. In Figure 8.2, you can see that
39 of 42 possible GNOME packages have been installed.

TIP

The View menu choice allows you to toggle between the default group listing and a listing by
individual packages—handy if you know the name of the package you seek. In Package View
mode, check the box next to the package name to install or remove it; the package manager will
always resolve any dependency issues.

Clicking on the Remove Software or Install Software buttons on the left of the Add Package
Groups window brings up a window with a listing of packages associated with the related
category. Figure 8.3 shows the details available for the KDE Desktop Environment package.

CHAPTER 8 Managing Software and System Resources216

FIGURE 8.3 The Installed Packages listing (collapsed in this view) details the base packages
installed when the main category is selected. Packages Not Installed are those that you have
the option of installing.

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 216

Using Red Hat Network and Alternatives for Software
Management
For the Red Hat 8 and 9 releases, the only command-line application for the management
of system software provided by Red Hat was RPM; the only GUI tool for management was
the Red Hat Packages graphical client (system-config-packages) now identified as
Add/Remove Software. For the average person, RPM is hopelessly complicated; it includes
extra complexity to allow it to be used as a general .rpm file-building and development
tool, features not normally used by many people. The graphical software management
client has been improved for Fedora Core to enable the use of local and remote YUM (that
stands for YellowDog Updater modified, first used in the YellowDog [PPC] Linux distribu-
tion) repositories.

Not previously covered in this book is the Red Hat Network (https://rhn.redhat.com—
see Figure 8.4). RHN hasn’t been covered because it is not free to the users of this book (or
to users of the freely-available FTP download version) and it is limited to managing only
the software that is provided by Red Hat. Other alternatives are now available.

Using Red Hat Network and Alternatives for Software Management 217
8

FIGURE 8.4 The Red Hat Network provides automated update subscription services. It only
works with software provided by Red Hat and is designed for commercial users.

The RHN service is a client-server mechanism through which a user subscribes to a
channel on the server (a repository of software for a specific release of Fedora Core). The
local client (identified by a round icon at the right of the desktop panel) can manually or
automatically connect to the Red Hat Network server, obtain a list of updates, errata, and
security fixes and install them; one subscription is required for each client.

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 217

NOTE

If this client-server model appeals to you and you want to use it for your network, you can sign
up for subscriptions or consider one of two Open Source Up2Date server alternatives: Current at
http://current.tigris.org/, or NRH-up2date at http://www.nrh-up2date.org/index.html.
These two project are attempting to provide RHN-like services under you control so that you can
use non-Red Hat and non-Fedora packages with the service.

Although there are several alternatives for rpm/system-config-packages, two of the most
useful are APT and YUM. These package management applications go a long way toward
solving dependency problems and easing the use of RPM to manage software. Both can
install software from either local or remote repositories. Interestingly, the YUM application
is now provided in Fedora, and system-config-packages has been modified to be used as
a graphical front end for it.

The benefit to installing and using either of these two applications is that they allow you
easy access to and installation of programs that Red Hat nor Fedora Core can’t or won’t
provide (such as multimedia and non-GPL licensed applications). Since the APT and YUM
mirrors for Fedora all have current Fedora Core updates, it is not necessary for you to use
up2date or RHN to keep your computer software current. The following sections discuss
the APT and YUM applications in more detail.

APT
Originally developed for Debian Linux and modified to use with rpm packages by
Connective Linux, APT and its GUI interface Synaptic are easy to install and use. There are
two primary providers of APT packages and repositories; either provider is a good choice.
However, because of version conflicts between packages, the two projects’ files should not
be used together. FreshRPMs at http://www.freshrpms.net/ is one provider; the Fedora
Project at http://fedora.mplug.org/ is the other. The Fedora Project has now been inte-
grated into the briefly-lived Red Hat Linux Project and renamed Fedora Core. We will use
FreshRPMs as an example because they provide packages not available from Fedora Core.

Here’s how you install and configure APT:

• Read the introduction to APT in the /apt/ section of the http://freshrpms.net site.

• Install the FreshRPMS GPG key (you need to have lynx installed, or simply down-
load and gpg --import the downloaded text file):

lynx -source http://freshrpms.net/packages/RPM-GPG-KEY.txt | gpg --import

• Install the correct version of apt from FreshRpms.

CHAPTER 8 Managing Software and System Resources218

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 218

rpm -ivh http://ftp.freshrpms.net/pub/freshrpms/fedora/linux/2/

➥APT/apt-0.5.15cnc6-1.1.fc2.fr.i386.rpm

• Review the man page of apt. The most important commands are apt-get update and
apt-get install packagename.

man apt

• The list of apt repositories is preconfigured in /etc/apt/sources/list, but the index
of packages that is available needs to be updated with

apt-get update

• Once the update of the packages list is completed, we suggest that you install
Synaptic, the GUI package manager shown in Figure 8.5.

apt-get install synaptic

• Launch synaptic from the command line, browse the available packages, and install
what you like.

synaptic &

The Synaptic graphical interface is nicely laid out (see Figure 8.5). It allows you to view a
list of all available packages and any dependencies required for them. It also provides a
graphical interface to add new repositories.

Using Red Hat Network and Alternatives for Software Management 219
8

FIGURE 8.5 Synaptic is a graphical interface to the APT package management application
making it incredibly easy to use.

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 219

YUM
Some developers believe that although APT is a good tool, using it for .rpm packages is a
hack. APT also is believed to be bloated with unnecessary code used for the Debian .deb
packages. A new tool, YUM, was developed using the Python language because the Fedora
Core installer, Anaconda, was written in Python and much of the code could be shared.
This decision is what has made YUM the choice for integration into the Fedora Core distri-
bution. It works much the same as APT, but lacked a GUI tool. The Fedora developers have
integrated support for YUM into the graphical Red Hat/Fedora package management tool.
You can obtain YUM from the Fedora site as well as from FreshRPMs.net; the home page
of YUM is at http://linux.duke.edu/projects/yum/.

Here’s how you install and configure YUM:

• Read the HOWTO and Users FAQ at the Fedora site http://fedora.mplug.org/.

• Install the Fedora GPG key:

lynx -source http://fedora.mplug.org/FEDORA-GPG-KEY | gpg --import

• Install the correct version of YUM.

rpm -ivh http://ftp.freshrpms.net/pub/freshrpms/fedora/linux/2

/yum/yum-2.0.7-2.fc.fr.noarch.rpm

• Review the man page for yum to familiarize yourself with all available options.

man yum

Once YUM is installed, the following commands are useful (remember that the Fedora
graphical client is available if you configure it to use YUM repositories):

yum list—A list of all packages available from the repository.

yum list installed—A list of all packages installed on your computer.

yum list updates—A list of all updates available for your computer.

yum install packagename—Installs packagename.

yum update—Run without a packagename, YUM will update all installed packages.

yum remove packagename—Removes a package and dependencies.

yum upgrade—Run without a package name, YUM will upgrade all packages and remove any obso-

leted packages; yum update will not remove obsoleted packages.

CHAPTER 8 Managing Software and System Resources220

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 220

You’ll find either APT or YUM to be useful additions to Fedora Core. We suggest that you
use the one from FreshRPMs.net if you want to install some of the multimedia applica-
tions described in Chapter 26, “Multimedia Applications.”

Compiling Software from Source
Not all the software you might want to use is available in rpm packages or in the exact
form that you desire. Many complicated programs have options that can only be selected
at compile time and many smaller, special-purpose applications only exist as source code.
Fedora Core provides all the tools necessary for you to compile source code into binary
applications. First, we’ll cover building from source rpm files, and then manipulating
source rpms files and finally, building from source tarballs.

NOTE

For other software package formats, you can use the File Roller application (found in the
Accessories menu) to easily display, browse, read, and extract contents of compressed files,
including legacy archives such as tarballs or compressed tar archives (recognized by their .gz or
.tgz extensions). Other compressed files, such as those created with the compress command
(ending in .Z) or bzip2 files (ending in .bz2), are also supported by File Roller. The File
Roller client will also convert compressed archives between gzip and bzip2 formats.

Building RPMS from src.rpm Files
A rule of thumb is that you never build rpms as the root user even though the directories
are already set up at /usr/src/redhat as follows:

tree /usr/src/redhat

/usr/src/redhat

|-- BUILD

|-- RPMS

| |-- athlon

| |-- i386

| |-- i486

| |-- i586

| |-- i686

| `-- noarch

|-- SOURCES

|-- SPECS

`-- SRPMS

Using the mkdir command, re-create this directory tree structure in your home directory;
you can name the new directory redhat (or anything you like). You might even want to
create a new user just to build rpms and source code. (You can compile without being
root; you just can’t install the software system-wide as a regular user.)

Compiling Software from Source 221
8

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 221

The configuration information for building rpms is kept in three places:

/usr/lib/rpm/*/macros—The systemwide defaults.

/etc/rpm/macros.*—Where systemwide changes are kept.

~/.rpmmacros—Where user-specific changes are kept.

Because we need to tell rpm that we will not be using the systemwide default build loca-
tion for our user, we can

$ echo “%_topdir $HOME/redhat” > $HOME/.rpmmacros

TIP

Here, we use > instead of >> to blank the file in case there is already content in it. The >>
construct appends information to a file.

To select a temporary directory

$ echo “%_tmppath $HOME/tmp” >> $HOME/.rpmmacros

To set any compiler optimization flags (here, we’re using an Athlon processor as an
example), we’ll use

$ echo “-o3 -march=athlon” >> $HOME/.rpmmacros

To rebuild a src.rpm file as a regular user, you would use

$ rpmbuild --recompile packagename.src.rpm

After a successful build, you will find the binary file(s) in ~/redhat/RPMS/athlon.

You can install them as root with

rpm -Uvh --replacepkgs --replacefiles packagename.rpm

If the build fails, the error message will point you to a solution (usually a dependency has
not been satisfied). You’ll find that a lot of the packages named with -devel will be
needed before you compile from source code. Install the package for the missing depen-
dency and retry the compile.

Working with Source RPM Files
You might want to modify a source package for your own uses such as adding documenta-
tion, changing default settings, or patching the source code itself. Fedora Core provides
the source code to its distribution in the form of source RPM files. You can access the
source code on disks 4 and 5 of the downloadable CD images or obtain them from the
Fedora Core FTP site.

CHAPTER 8 Managing Software and System Resources222

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 222

TIP

An important part of the RPM file is called the .spec file, a specification file. It tells RPM how to
behave with the particular source files during compilation, installation, and erasure.

As an example, we’ll use information that was found at
http://elektron.its.tudelft.nl/~rbos36/mdkfreetype2.html (the page has now been
removed by the author) to modify the freetype2 library provided with Fedora Core in
order to enable the bytecode interpreter. The code for the interpreter has been disabled by
default because of redistribution licensing concerns that don’t affect individual use.
Enabling the interpreter will result in improved rendering of the TrueType fonts. We used
the file from Red Hat 7.3 as our example, but the source file from 10 should work as well.

Begin work by first installing the source RPM package with rpm -i. (Note that here we are
building as root to follow the example from the Web page; you should typically build
packages as a regular user.) In our example, obtain the freetype-2.0.9-2.src.rpm and
install it with rpm -i. The source code files are placed in /usr/src/redhat/SOURCES.

Copy the source file (it’s a compressed tar file) to /tmp, and then cd (change directories)
there to unpack and modify it:

cp freetype-2.0.9.tar.bz2 /tmp

cd /tmp

Because it’s a .bz2 (BZip2 compressed) tar file, un-tar it with

tar xjvf freetype-2.0.9.tar.bz2

and cd to the new directory:

cd freetype-2.0.9

Using the text editor of your choice, edit the file include/freetype/config/ftoption.h
and find the line

#undef TT_CONFIG_OPTION_BYTECODE_INTERPRETER

Change it to

#define TT_CONFIG_OPTION_BYTECODE_INTERPRETER

Save it and exit the text editor.

Next, re-create the compressed archive:

cd /tmp

tar cfj freetype-2.0.9.tar.bz2 ./freetype-2.0.9/

Compiling Software from Source 223
8

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 223

Put it back in your source directory:

mv freetype-2.0.9.tar.bz2 /usr/src/SOURCES

Now edit the .spec file in /usr/src/redhat/SPECS to change the line beginning with
Release to increment the number found there. (We are changing the version number by
doing this, so it will not conflict with the version of the application we will be replacing.)
Make any changes to the %description line to describe your changes if you desire, and
save the file.

Build the binary RPM with

rpmbuild -bb freetype.spec

During the build process, RPM will detect a patch and ask you about the patch; press y for
“yes” to continue.

The new RPMs (actually four of them) are found in /usr/src/redhat/RPMS/i386. We only
need the one named freetype-2.0.9; you can install it with rpm -Uvh. (This is why we
changed the version number; if we had not, RPM would not upgrade to the “same”
version. Had we not changed the version number, we could have forced the installation
with the --replacepackages --replacefiles option.)

The font server needs to be restarted to use the new library, so we use the service
command as shown in Chapter 7, “Managing Services.”

service xfs restart

Enjoy your new look—provided by better rendering of the fonts.

Compile from Source Tarballs
Compiling applications from source is not that difficult. Most source code is available as
compressed source tarballs—that is, tar files that have been compressed using gzip or
bzip. The compressed files will typically uncompress into a directory containing several
files. It’s always a good idea to compile source code as a regular user to limit any damage
that broken or malicious code might inflict, so create a directory named source in your
home directory.

From wherever you downloaded the source tarball, uncompress it into the ~/source direc-
tory using the -C option to tar:

$ tar zxvf packagename.tgz -C ~/source

$ tar zxvf packagename.tar.gz -C ~/source

$ tar jxvf packagename.bz -C ~/source

$ tar jxvf packagename.tar.bz2 -C ~/source

CHAPTER 8 Managing Software and System Resources224

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 224

If you’re not certain what file compression method was used, employ the file command
to figure it out:

$ file packagename

Now, change directories to ~/source/packagename and look for a file named README,
INSTALL, or a similar name. Print the file out if necessary because it will contain specific
instructions on how to compile and install the software. Typically, the procedure to
compile source code is

$./configure

which runs a script to check if all dependencies are met and the build environment is
correct. Then,

$ make

to compile the software. And finally, as root:

make install

If the compile fails, check the error messages for the reason and run

$ make clean

before you start again. You can also run

$ make uninstall

to remove the software if you don’t like it.

An alternative to running make install is a program named CheckInstall, which will
produce an rpm file for your installation. This method allows the RPM database to be
aware of and keep track of all the files you are installing. See the following sidebar on
CheckInstall for more information.

A HANDY SOFTWARE INSTALLATION TOOL—CHECKINSTALL

When you compile applications from source and install them, they won’t show up in the RPM
database and therefore can’t be managed by RPM.

You can provide RPM management for these applications by using a program named
CheckInstall. At its simplest, checkinstall is a drop-in substitute for the make install step
in building from source code.

For example, when compiling from source code, you would traditionally use

./configure

make

make install

Compiling Software from Source 225
8

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 225

Using CheckInstall, the steps would look like this:

./configure

make

checkinstall

CheckInstall will create a binary .rpm package and install the application from it. This makes
the new application part of the RPM database. The new .rpm file is left for you in
/usr/src/redhat/RPMS/i386. The new application can later be uninstalled with rpm -e.

Some applications arrive in the form of a shell script wrapper. Using the shell script as the argu-
ment to CheckInstall will provide a .rpm file of the installed files and add them to your RPM
database. Not all applications will install with CheckInstall. Read its accompanying documenta-
tion carefully.

CheckInstall can be downloaded from http://asic-linux.com.mx/~izto/checkin-
stall/index.php.

System Monitoring Tools
Monitoring your server or workstation is an important task, especially in a commercial or
corporate environment. Whether you’re working on critical application programming or
conducting e-commerce on the Internet, you’ll want to track your system’s health signs
while it’s running. Good Fedora Core Linux system administrators are also quite vigilant
about watching running processes on their systems, including resources such as CPU and
disk, memory, network, and printer usage. Even though the task isn’t strictly part of stan-
dard security operations, such as examining system logs and network traffic, monitoring
resource usage can help you spot misuse and avoid developing problems, such as
unwanted intruder connections to your network.

The next sections introduce just a few of the basic tools and approaches used to monitor a
running Linux system. Some of the tools focus on in-memory processes, whereas others,
such as filesystem reporting and network monitoring, have more comprehensive uses.
You’ll also see how to control some system processes using various command-line and
graphical tools included with Fedora Core Linux.

Console-Based Monitoring
Traditional UNIX systems have always included the ps or process display command. This
command lists the running processes on the system and identifies who owns them and
how much of the system resources are being used.

Because of the architecture of the Linux kernel and its memory management, Linux also
provides much process reporting and control via the command line. This feature can be
accessed manually through the /proc filesystem, a pseudo-filesystem used as a direct inter-
face to the kernel. (You see how it’s used in the upcoming discussion of the ps command.)

CHAPTER 8 Managing Software and System Resources226

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 226

The /proc filesystem is frequently used by application programmers who construct an
interface for the raw information it provides. This filesystem is too complex to adequately
deal with in the context of this chapter, but you can benefit from reading the proc man
page and /usr/src/linux-2.4/Documentation/filesystems/proc.txt to examine the list
and description of the scores of kernel values available. You then can write shell scripts
(see Chapter 22, “Shell Scripting”) to use those values as needed.

Processes can be controlled at the command line as well. Whenever a program or
command is launched on your Fedora Core Linux system, the process started by the kernel
is assigned an identification number, called a PID or Process ID. This number is (generally)
displayed by the shell if the program is launched in the background, like this:

$ xosview &

[1] 11670

In this example, the xosview client has been launched in the background, and the (bash)
shell reported a shell job number ([1] in this case). A job number or job control is a shell-
specific feature that allows a different form of process control (such as sending or suspend-
ing programs to the background and retrieving background jobs to the foreground; see
your shell’s manual pages for more information if you are not using bash).

The second number displayed (11670, in this example) represents the Process ID. You can
get a quick list of your processes by using the ps command like this:

$ ps

PID TTY TIME CMD

736 tty1 00:00:00 bash

743 tty1 00:00:00 startx

744 tty1 00:00:00 tee

752 tty1 00:00:00 xinit

756 tty1 00:00:09 kwm

...

11670 pts/4 00:00:00 xosview

11671 pts/4 00:00:00 ps

Note that not all output from the display is shown here. But as you can see, the output
includes the process ID, abbreviated as PID, along with other information, such as the
name of the running program. Like any UNIX command, many options are available; the
proc man page has a full list. A most useful option is aux, which provides a friendly list of
all the processes. You should also know that ps works not by polling memory, but through
the interrogation of the Linux /proc or process filesystem. (ps is one of the interfaces
mentioned at the beginning of this section.)

The /proc directory contains quite a few files—some of which include constantly updated
hardware information (such as battery power levels, and so on). Linux administrators will

System Monitoring Tools 227
8

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 227

often pipe the output of ps through a member of the grep family of commands in order
to display information about a specific program, perhaps like this:

$ ps aux | grep xosview

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

bball 11670 0.3 1.1 2940 1412 pts/4

➥S 14:04 0:00 xosview

This example returns the owner (the user who launched the program) and the PID, along
with other information, such as the percentage of CPU and memory usage, size of the
command (code, data, and stack), time (or date) the command was launched, and name of
the command. Processes can also be queried by PID like this:

$ ps 11670

PID TTY STAT TIME COMMAND

11670 pts/4 S 0:00 xosview

You can use the PID to stop a running process by using the shell’s built-in kill command.
This command will ask the kernel to stop a running process and reclaim system memory.
For example, to stop the xosview client in the example, use the kill command like this:

$ kill 11670

After you press Enter (or perhaps press Enter again), the shell might report

[1]+ Terminated xosview

Note that users can only kill their own processes, but root can kill them all. Controlling
any other running process requires root permission, which should be used judiciously
(especially when forcing a kill by using the -9 option); by inadvertently killing the wrong
process through a typo in the command, you could bring down an active system.

Using the kill Command to Control Processes
The kill command is a basic UNIX system command. We can communicate with a
running process by entering a command into its interface, such as when we type into a
text editor. But some processes (usually system processes rather than application processes)
run without such an interface, and we need a way to communicate with them as well, so
we use a system of signals. The kill system accomplishes just that by sending a signal to a
process, and we can use it to communicate with any process. The general format of the
kill command is

kill option PID

A number of signal options can be sent as words or numbers, but most are of interest only
to programmers. The most common ones you will use are

kill PID

CHAPTER 8 Managing Software and System Resources228

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 228

This tells the process with that PID to stop. (You supply the actual PID.)

kill -9 PID

This is the signal for kill (9 is the number of the SIGKILL signal); use this combination
when the plain kill shown previously doesn’t work.

kill -SIGHUP PID

This is the signal to “hangup”—stop—and then clean up all associated processes as well.
(Its number is -1.)

As you become proficient at process control and job control, you will learn the utility of a
number of kill options. A full list of signal options can be found in the man signal page.

Using Priority Scheduling and Control
Every process cannot make use of the systems resources (CPU, memory, disk access, and so
on) as it pleases. After all, the kernel’s primary function is to manage the system resources
equitably. It does this by assigning a priority to each process so that some processes get
better access to system resources and some processes might have to wait longer until their
turn arrives. Priority scheduling can be an important tool in managing a system support-
ing critical applications or in a situation in which CPU and RAM usage must be reserved
or allocated for a specific task. Two legacy applications included with Red Linux include
the nice and renice commands. (nice is part of the GNU sh-utils package, whereas
renice is inherited from BSD UNIX.)

The nice command is used with its -n option, along with an argument in the range of -20 to
19, in order from highest to lowest priority (the lower the number, the higher the priority).
For example, to run the xosview client with a low priority, use the nice command like this:

$ nice -n 12 xosview &

The nice command is typically used for disk or CPU-intensive tasks that might be obtru-
sive or cause system slowdown. The renice command can be used to reset the priority of
running processes or control the priority and scheduling of all processes owned by a user.
Regular users can only numerically increase process priorities (for example, make tasks less
important) using this command, but the root operator can use the full nice range of
scheduling (-20 to 19).

System administrators can also use the time command (here, time is used to measure the
duration of elapsed time; the command that deals with civil and sidereal time is the date
command) to get an idea about how long and how much of a system’s resources will be
required for a task (such as a shell script). This command is used with the name of another
command (or script) as an argument like this:

time -p find / -name core -print

/dev/core

/proc/sys/net/core

System Monitoring Tools 229
8

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 229

real 1.20

user 0.14

sys 0.71

Output of the command displays the time from start to finish, along with user and system
time required. Other factors you can query include memory, CPU usage, and filesystem
Input/Output (I/O) statistics. See the time command’s manual page for more details.

Nearly all graphical process monitoring tools include some form of process control or
management. Many of the early tools ported to Linux were clones of legacy UNIX utilities.
One familiar monitoring (and control) program is top. Based on the ps command, the top
command provides a text-based display, constantly updated console-based output showing
the most CPU-intensive processes currently running. It can be started like this:

top

After you press Enter, you’ll see a display as shown in Figure 8.6. The top command has a
few interactive commands: pressing h displays the help screen; pressing k prompts you to
enter the pid of a process to kill; pressing n prompts you to enter the pid of a process to
change its nice value. The top man page describes other commands and includes a
detailed description of what all the columns of information top can display actually repre-
sent; have a look at top’s well-written man page.

CHAPTER 8 Managing Software and System Resources230

FIGURE 8.6 The top command can be used to monitor and control processes. Here, we are
being prompted to re-nice a process.

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 230

The top command displays quite a bit of information about your system. Processes can be
sorted by PID, age, CPU or memory usage, time, or user. This command also provides
process management, and system administrators can use its k or r keypress commands to
kill or reschedule running tasks.

The top command uses a fair amount of memory, so you might want to be judicious in its
use and not leave it running all the time.

Displaying Free and Used Memory with free
Although top includes some memory information, the free utility will display the
amount of free and used memory in the system in kilobytes (the -m switch displays in
megabytes). On one system, the output looks like this:

free

total used free shared buffers cached

Mem 255452 251132 4320 0 19688 77548

-/+ buffers/cache: 153896 101556

Swap: 136512 31528 104984

This output describes a machine with 256MB of RAM memory and a swap partition of
137MB. Note that some swap is being used although the machine is not heavily loaded.
Linux is very good at memory management and “grabs” all the memory it can in anticipa-
tion of future work.

TIP

A useful trick is to employ the watch command; it will repeatedly rerun a command every 2
seconds by default. If you use

watch free

you’ll see the output of the free command updated every two seconds.

Another useful system monitoring tool is vmstat (virtual memory statistics). This
command reports on processes, memory, I/O, and CPU typically providing an average
since the last reboot, or you can make it report usage for a current period of time by
telling it the time interval in seconds and the number of iterations you desire, like

vmstat 5 10

which will run vmstat every five seconds for ten iterations.

Use the uptime command to see how long it has been since the last reboot and to get an
idea of what the load average has been; higher numbers mean higher loads.

System Monitoring Tools 231
8

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 231

Disk Quotas
Disk quotas are a way to restrict the usage of disk space either by user or by groups.
Although rarely—if ever—used on a local or standalone workstation, quotas are definitely
a way of life at the enterprise level of computing. Usage limits on disk space not only
conserve resources, but also provide a measure of operational safety by limiting the
amount of disk space any user can consume.

Disk quotas are more fully covered in Chapter 9, “Managing Users.”

Graphical Process and System Management Tools
The GNOME and KDE desktop environments offer a rich set of network and system moni-
toring tools. Graphical interface elements, such as menus and buttons, and graphical
output, including metering and real-time load charts, make these tools easy to use. These
clients, which require an active X session and in some cases (but not all) root permission,
are included with Fedora Core Linux.

If you view the graphical tools locally while they are being run on a server, you must have
X properly installed and configured on your local machine. Although some tools can be
used to remotely monitor systems or locally mounted remote filesystems, you’ll need to
properly configure pertinent X11 environment variables, such as $DISPLAY, in order to use
the software or use the ssh client’s -X option when connecting to the remote host.

Fedora Core Linux includes the xosview client, which provides load, CPU, memory and
swap usage, disk I/O usage and activity, page swapping information, network activity, I/O
activity, I/O rates, serial port status, and if APM is enabled, the battery level (such as for a
laptop).

For example, to see most of these options, start the client like this:

xosview -geometry 406x488 -font 8x16 +load +cpu +mem +swap \

+page +disk +int +net &

After you press Enter, you’ll see a display as shown in Figure 8.7.

The display can be customized for a variety of hardware and information, and the xosview
client (like most well-behaved X clients) obeys geometry settings such as size, placement,
or font. If you have similar monitoring requirements, but want to try a similar but differ-
ent client from xosview, try xcpustate, which has features that enable it to monitor
network CPU statistics foreign to Linux. Neither of these applications is installed with the
base set of packages; you need to install them manually if you want to use them.

CHAPTER 8 Managing Software and System Resources232

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 232

FIGURE 8.7 The xosview client displays basic system stats in a small window. You can choose
from several options to determine what it will monitor for you.

Some of the graphical system and process monitoring tools included with Fedora Core
Linux include the following:

• vncviewer—AT&T’s open source remote session manager (part of the Xvnc package),
which can be used to view and run a remote desktop session locally. This software
(discussed in more detail in Chapter 27, “Using Emulators and Cross-Platform
Tools”) requires an active, but background X session on the remote computer.

• nmapfe—A GTK+ graphical front end to the nmap command. This client provides
system administrators with the ability to scan networks to monitor the availability of
hosts and services.

• ethereal—This graphical network protocol analyzer can be used to save or display
packet data in real time and has intelligent filtering to recognize data signatures or
patterns from a variety of hardware and data captures from third-party, data-capture
programs, including compressed files. Some protocols include AppleTalk, Andrew File
System (AFS), AOL’s Instant Messenger, various Cisco protocols, and many more.

• gnome-system-monitor—Replacing gtop, this tool is a simple process monitor offer-
ing two views: a list view and a moving graph. It is accessed via the System Tool
menu selection as the System Monitor item (see Figure 8.8).

System Monitoring Tools 233
8

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 233

FIGURE 8.8 The Process Listing view of the System Monitor.

The System Monitor menu item (shown in Figure 8.8) is found in the System Tools menu.
It can be launched from the command line with

gnome-system-monitor

From the Process Listing view (chosen via the tab in the upper left portion of the
window), select a process and click on More Info at the bottom left of the screen to
display details on that process at the bottom of the display. You can select from three
views to filter the display, available in the drop-down View list: All Processes, My Processes
(those you alone own), or Active Processes (All Processes that are active).

Choose Hidden Processes under the Edit command accessible from the top of the display
to show any hidden processes (those that the kernel does not enable the normal monitor-
ing tools to see). Select any process and kill it with End Process.

The processes can be re-niced by selecting Edit, Change Priority. The View selection from
the menu bar also provides a memory map. In the Resource Monitor tab, you can view a
moving graph representing CPU and memory usage (see Figure 8.9).

KDE Process and System Monitoring Tools
KDE provides several process and system monitoring clients. The KDE graphical clients are
integrated into the desktop taskbar by right-clicking on the taskbar and following the
menus.

CHAPTER 8 Managing Software and System Resources234

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 234

FIGURE 8.9 The Graph view of the System Monitor. It shows CPU usage, Memory/Swap
usage, and disk usage. To get this view, select the Resource Monitor tab.

These KDE monitoring clients include the following:

• kdf—A graphical interface to your system’s filesystem table that displays free disk
space and enables you to mount and unmount filesystems using a pointing device.

• ksysguard—Another panel applet that provides CPU load and memory use informa-
tion in animated graphs.

RELEVANT FEDORA CORE AND LINUX COMMANDS

You’ll use these commands while managing your Fedora Core Linux system resources and soft-
ware packages:

system-config-packages—The Fedora Core GUI Package Manager.

nice—Runs a program at a specified priority.

rpm—The RPM Package Manager.

ps—Displays a list all running processes.

top—Displays and manages running processes.

rpmbuild—Builds RPM source and binary packages.

uptime—Tells the length of time since the last reboot and load average.

vmstat—Provides virtual memory statistics.

kill—Stops a process.

System Monitoring Tools 235
8

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 235

Reference
http://www.rpm.org—Home page for the Fedora Core Package Manager. This site provides
essential links to the latest version of RPM software for Linux and X desktop environ-
ments, such as GNOME.

http://www.rpm.org/max-rpm/—Link to the start of an update to Ed Bailey’s classic tome
and RPM reference book, Maximum RPM.

http://linux.tnc.edu.tw/techdoc/maximum-rpm/rpmbook/node15.html—History of the
Red Hat Package Manager.

http://www.smoogespace.com/documents/behind_the_names.html—A history of Red Hat
Linux releases, and a good place to learn about the connection between the names of the
releases.

http://www.gnupg.org/—Home page for GNU Privacy Guard, an unencumbered free
replacement for Pretty Good Privacy.

http://www.debian.org/doc/manuals/project-history/ch-detailed.en.html—History
of the Debian Linux package system.

http://and.sourceforge.net/—Home page of the and auto nice daemon, which can be
used to prioritize and reschedule processes automatically.

http://sourceforge.net/projects/schedutils/—Home page for various projects offering
scheduling utilities for real-time scheduling.

http://freetype.sourceforge.net/patents.html—A discussion of the FreeType bytecode
interpreter patents.

http://www.ethereal.com—Home page for the Ethereal client.

http://www.realvnc.com/—The home page for the Virtual Network Computing remote
desktop software, available for a variety of platforms, including Fedora Core Linux. This
software has become so popular that it is now included with nearly every Linux distribu-
tion.

http://www.nrh-up2date.org/index.html—A replacement for Red Hat’s Up2Date applica-
tion.

http://apt-rpm.tuxfamily.org—An alternative to the default package manager.

CHAPTER 8 Managing Software and System Resources236

11 067232721x_ch08.qxd 7/12/04 2:26 PM Page 236

