
Software Security:
State of the Practice

Diana Kelley
Partner
SecurityCurve

Agenda

• Why Software Security Matters
• Vulnerabilities and Risk in Software
• Building Security In
• Making it Happen

What do These have in Common?

2005 Toyota Prius

Therac-25 Radiation
Therapy Machine

Miele G885 SC Dishwasher

Software that Failed

• The dishwasher . . . was rendered useless
after a power outage. Its software got
knocked out.”

http://www.baselinemag.com/print_article/0,3668,a=35839,00.asp

• “Prius hybrids dogged by software. . . stall
or shut down at highway speeds”
http://money.cnn.com/2005/05/16/Autos/prius_computer/index.htm?cnn=yes

• Six known accidents involved massive
overdoses by the Therac-25 -- with
resultant deaths and serious injuries.”

http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html

Chemical Bank ATM Incident

• “…a single line in an updated computer
program . . . caused the bank to process
every withdrawal and transfer at its
automated teller machines twice. Thus a
person who took $100 from a cash machine
had $200 deducted, although the receipt
only indicated a withdrawal of $100.”

http://query.nytimes.com/gst/fullpage.html?res=9B00E7D7173BF93BA25751C0A962958260

Royal Bank of Canada Error

• “After a software upgrade went badly awry
last week, the holders of some 10 million
accounts at the bank had to wait days in some
cases for deposits to be credited or
prearranged payments to be completed.”

• …”the problems started with a routine
programming update by the information
technology staff. . . . the new software was
written in-house”

http://query.nytimes.com/gst/fullpage.html?res=9A06E4D81131F934A35755C0A9629C8B63

Software Reliability

• Requires that proper processes and
procedures are following during development
• Means “building security in” from the beginning

• Benefits
• More reliable software
• Fewer “gotchas” in pre-production testing
• Or, worst-case, in deployment
• If done right – less expensive

software/development costs

The OWASP Top Ten

• A1 - Cross Site Scripting (XSS)
• A2 - Injection Flaws
• A3 - Malicious File Execution
• A4 - Insecure Direct Object Reference
• A5 - Cross Site Request Forgery (CSRF) A CSRF
• A6 - Information Leakage and Improper Error

Handling
• A7 - Broken Authentication and Session

Management
• A8 - Insecure Cryptographic Storage
• A9 - Insecure Communications
• A10 - Failure to Restrict URL Access

Quick Example – SQL Injection
• Ability to show orders from a table in a SQL DB

• Correct Usage
•User enters in Name field = Kenny

•Result
SELECT * FROM OrdersTable WHERE CustomerName =

‘Kenny'

• Exploit Usage
•Attacker enters Name and SQL Command

• Kenny;drop table OrdersTable--‘
• Semi colon triggers end of query begins a new one

•Result
SELECT * FROM OrdersTable WHERE CustomerName =
‘Kenny';drop table OrdersTable--‘

• What happens to the Orders table?

SQL Injection in the News

• April 2008 - nihaorr1
• Infected upwards of 100,000 web pages (per

the Register)
• 500,000 per Slashdot

• Used SQL injection to infect databases
• Legitimate users (at legitimate but infected

sites) were redirected to the attacker site
• And infected by drive-by malware/Trojan if

vulnerable

Why Tools Can’t Catch it All

• Some attacks are not dependent on software
failure
• Credential Theft

• Login is valid
• Activity is approved for that user/role

• Denial of Service
• Overloading the application with requests

• Man in the Middle Attacks
• Intercept communications
• Theft – cookies or credentials
• Inject data into the stream
• Redirection via bogus DNS

Why Tools Can’t Catch it All

• Business logic flaws
• Abusing a process or function

• Self-service password recovery
• Weak KBA

• Password lockout
• DOS for other users

• Business logic flaw white paper by Jeremiah
Grossman

http://www.whitehatsec.com/home/assets/WP_bizlogic092407.pdf

Building Security in

• Check assumptions
• And leave finger pointing at the door

• Is a team effort
• “It Takes a Village”

• Is not the same thing as creating “perfect”
code
• Unbreakable?

• Not likely

• Risk assessment
• Balancing the risks and consequences
• Building software that meets the defined risk

level

Software Assurance

“Software assurance has as its goal the
ability to provide . . . justifiable
confidence that software will
consistently exhibit its required
properties. . . . security is what enables
the software to exhibit those properties
even when the software comes under
attack.”

From the Information Assurance Technology
Analysis Center (IATAC) SOAR on Software

Security Assurance
http://iac.dtic.mil/iatac/download/security.pdf

Software Development Lifecycle

Building Security Into the Lifecycle

Security Requirements
• Confidentiality

• In use, transit and at rest
• Mis-use case shoulder surfing a cleartext displayed password
• Requirement: Mask passwords when typed

• Integrity
• Tamper proofing and tamper evident
• Mis-use case modification of stored data
• Requirement: Hash stored data

• Availability
• Ensuring service is available to agreement levels
• Use case patching or updating the system
• Requirement: Ability to update without reboot

• Accountability
• Log and verify interaction with the system
• Mis-use case attacker steals credentials
• Requirement: Strong authentication

Building Security Into the Lifecycle

Architecture

• Risk
assessment

• “Threat
modeling”

Building Security Into the Lifecycle

Design

• Risk
assessment

• Security
test plans

Building Security Into the Lifecycle

Implementation

• Code
reviews

• Static code
risk testing

Building Security Into the Lifecycle

Testing

• Static security
testing

• Penetration
and dynamic
testing

• Risk analysis

Building Security Into the Lifecycle

Deployment

• Security
monitoring

• Intrusion
reporting

Securing the SDLC

•Risk assessment feedback
•Implement fixes/changes as needed
•Documentation

Consider the Development Model
• Less agile

• Waterfall
• Modified Waterfall

• More agile
• Spiral
• eXtreme Programming (XP)

• Is one inherently more secure?
• Not necessarily
• Some agility allows for mistakes to be caught

and corrected without a full “re-boot”
• Too much agility trades requirements and

design time for speed to code

Additional Secure SDLC Resources

• Comprehensive, Lightweight Application
Security Process, (CLASP)
• The Open Web Application Security Project

(OWASP)
http://www.owasp.org/index.php/OWASP_CLASP_Project

• The OWASP Top Ten
• And Testing Guide

http://www.owasp.org/index.php/OWASP_Top_Ten_Project
http://www.owasp.org/index.php/Category:OWASP_Testing_Project

• Cigital’s TouchPoints
• Software Security: Building Security In by

Gary McGraw
http://www.cigital.com/training/touchpoints/

Additional Secure SDLC Resources
• DHS – Build Security In

https://buildsecurityin.us-cert.gov/

•Top Ten Security Coding Practice
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+
Practices

• SAMATE - Software Assurance Metrics And Tool
Evaluation
https://samate.nist.gov/index.php/Main_Page

• Microsoft’s Security Development Lifecycle
(SDL)
•A Look Inside the Security Development Lifecycle at Microsoft
http://msdn.microsoft.com/msdnmag/issues/05/11/SDL/

•The Security Development Lifecycle by Michael Howard and
Steve Lipner

Additional Considerations
• Have change control procedures

• Impact statements, signoff for changes, and backout procedures

• Have a process for identifying new vulnerabilities
• Test production changes

• And educate testers!

• Interactions with other services
• Have separate personnel and environments for

production and test
• Mask out sensitive data when testing

• Code review or application firewall consider:
• Time constraints
• Code availability
• Administrative overhead of firewall configuration

Tools

• Static source code analysis
• Requires access to source code
• Can be accomplished before build
• Manual or
• Automated

• For developers (inside the IDE)
• For auditors/testers (as stand alone)

• Dynamic
• Source code not required
• Tests the product from the view of the “outsider”
• Best in conjunction with

• Skilled testers who can tune the products
• Manual penetration testing to validate tool findings

Education

• For business owners
• Risks associated with poorly designed software
• Value to the final product

• For assessors and auditors
• Common secure coding errors
• Consequence evaluation
• Dependencies on key regulations/compliance mandates

Education

• For testers
• Creating misuse and abuse cases
• Penetration (manual and assisted)

• For developers
• How to write secure code
• Common coding errors
• Language specific security training

• .NET is different from Java
• Web apps are different from C/C++ apps

Educational Resources

• For Developers
• Certification
• GIAC Secure Software Programmer (GSSP)

• Currently Java/JavaEE and C
• C++, .NET/ASP, PHP, PERL, and others coming soon*

http://www.sans-ssi.org/#cert

• For Security Professionals
• Certified Secure Software Lifecycle Professional- CSSLPCM

• Offered by ISC2
• Exams starting in June 2009 – Experience Assessment

Now
https://www.isc2.org/cgi-bin/content.cgi?category=1690

Educational Resources

• Universities – examples:
• Carnegie Mellon University (CMU) and University of

Ontario (Canada): Secure Software Systems
• Northeastern University: Engineering Secure Software

Systems
• University of California at Berkeley, Walden University

(online): Secure Software Development
• University of Oxford (UK): Design for Security

• Commercial Providers
• Cigital
• Neohapsis
• SecurityInnovation

Making it Happen - Executives

• Usually focused on
• Cost control and ROI
• Compliance/Regulations

• “Orange isn’t my color”

• Metrics and provable results
• Cost control and ROI

• Emphasize improvements to the process and
potential cost savings

• “Software Errors Cost U.S. Economy $59.5
Billion Annually” – NIST

http://www.nist.gov/public_affairs/releases/n02-10.htm

Making it Happen - Executives
• Cost control and ROI

• 100 time more expensive to find and fix
problems earlier

• 40-50% of effort is avoidable rework
• 90% of downtime comes from (at most) 10% of

defects
Source:Software Defect Reduction Top-10 List, Barry Boehm,
USC and Victor Basili, U. of Maryland, Center for Empirically-

Based Software Engineering (CeBASE)
http://www.cebase.org/www/AboutCebase/News/top-10-defects.html

Making it Happen - Executives

• Compliance/regulations
• Tools and outsourcing to accomplish

goals/meet needs
• Metrics and provable results

• Dashboards from vendor testing tools
• Internally gathered metrics

• Define “success”
• Reduce severe vulnerabilities
• Fix vulnerabilities faster
• Product with fewer vulns in production

• NIST Software Assurance Metrics And Tool
Evaluation (SAMATE)

http://samate.nist.gov/index.php/Main_Page

Making it Happen - Partners and
Suppliers
• Usually focused on

• Cost control and ROI
• Making the sale
• Liability

• Some controls
• Requiring documented use of security in the SDLC
• Writing SLAs that make payment contingent on meeting

them
• Using tools to measure software security assurance before

acceptance
• Liability

• Get legal involved
• Remuneration if loss occurs
• Tight SLAs

• Based on losses and failures
• But keep in mind

• Accountability is not transferrable

Making it Happen - Developers

• Usually focused on
• Doing a good job as defined by

• The company.
• Their own internal compass.

• What are the developers in your company
rewarded for?
• Is it

• Lines of code?
• Speed of completion?
• Match to functions?

• Make writing low-defect code a success metric
• Create incentives for teams that build

• Robust software.
• That meets corporate software assurance levels.

Making it Happen - Developers

l A good job – Compass
• Provide training to developers
• Provide tools that will empower

• Self-checks
• Learn what works
• Static source analysis plug-ins for IDEs

Final Thoughts

• Follow a robust SDLC methodology
• Implement risk management at all phases

• Bring risk to the table early
• It’ll save money in the long run
• Define security requirements before implementation
• Test applications for mis-use cases before production

• Tools are useful – but not a panacea
• Can’t fix broken requirements definition
• Can’t scan for business logic errors

• Education is critical
• For all stakeholders

