
Talarian™: Everything
You Need To Know
About Middleware

A Guide To Selecting A Real-Time Infrastructure



1 Everything You Need To Know About Middleware

Contents
Contents 1

Executive Summary 3

What is Middleware? 4

Specialized Kinds of Middleware 5
Transaction Processing Monitors 5

Remote Procedure Calls (RPCs) 5

Object Request Brokers 6

Homegrown Middleware 6

Message-Oriented Middleware 6

Message Queuing 6

Message Passing (Publish-Subscribe) 7

Java Message Service (JMS) 7

The Middleware Market 8

Key Features of Modern Middleware 9
Challenges of Network Programming 9

Encoding the Information 9

Data Translation 10

Multi-Protocol Support 10

Finding Resources 10

Flow Control 10

Portability and Standards Issues 10

Asynchronous Operation 10

Configuring Resources/Programs on the Network 10

Dealing with Hardware or Software Failures 10

Managing Multiple Clients and Servers 11

Changing Environment 11

Debugging and Analysis 11

SmartSockets®: An In-Depth Look 12



A Guide To Selecting A Real-Time Infrastructure 2

High-Speed Interprocess Communication 12

Publish-Subscribe Services 13

Peer-to-Peer Communication 13

Multicast 13

Asynchronous Messaging 13

Synchronous Messaging 13

Thread Safe 14

High Availability and Reliability 14

Quality of Service 14

Dynamic Message Routing 14

Multiple RTserver™ Processes 14

Distributed Application Monitoring, Administration, and Debugging 15

Graphical Interface 15

Monitoring Interface 15

Message Logging 16

Platform and Protocol Independence 16

Automatic Data Translation 16

Platform Support 16

Protocol Driver 16

Powerful Message Handling 16

Automatic Message Buffering and Flow Control 17

Prioritized Message Queues 17

Reusable and Extensible Message Types 17

Load Balancing 17

Scalability 17

Benefits of SmartSockets 19
Increased Productivity 19

Reduced Risk 19

Increased Scalability 19

Protected Investment in Hardware and Software 19

Reduced Maintenance Cost 19

Increased Application Availability 19

More Productive Use of Resources 20

Getting Started with SmartSockets 21
Example C Programs 21



3 Everything You Need to Know About Middleware

Executive Summary
In today’s real-time world, businesses need to
exchange information instantly, reliably and securely
with customers, partners and suppliers around the
globe via the Internet. Because this involves complex
applications running across multiple platforms using
data distributed across the enterprise, forward
thinking CIOs and enterprise architects are finding
middleware to be the core infrastructure on which to
build their applications.

For years, middleware has been used to handle data
movement across disparate platforms and between
incompatible databases. In addition, middleware has
made it easy for developers to handle the differences
between platforms and databases by writing
applications that connect to the middleware layer and
by letting the middleware handle the data translation
and transport.

This model has proved itself extensively, and many
large sites rely on middleware for truly mission-
critical applications. In today's world though,
middleware must do more. Not only must it provide a
uniform interface to disparate systems, but it also
must serve as the fundamental corporate data
transport, both within the enterprise and between the
enterprise and the Internet. Hence, middleware today
needs to be robust enough to handle the message load
of the busiest sites in real-time while providing
guaranteed delivery of messages throughout the
enterprise.

Several types of middleware provide targeted
solutions for this problem. Transaction processing

monitors, for example, provide data integrity for
database transactions. Object request brokers
handle the interaction of objects—such as those
in C++ and Java—across disparate platforms.
And specialized services, such as Java
Message Service (JMS), help provide tailored
solutions to unique problems. The core
middleware, which is a superset of all these
models, is message-oriented middleware
(MOM). By use of messages, MOM enables all
forms of communication between programs—be
it transaction processing, object sharing, or Java
communication—to occur between any two
points in the enterprise.

Talarian's SmartSockets product implements
MOM within the constraints of high-speed, real-
time message delivery. SmartSockets is also
known for its scalability: it can be deployed on a
small network of a few nodes or a network of
thousands of clients who need to share real-time
data broadcasts in a secure environment where
mission-critical reliability is a must.
SmartSockets is also deployed at numerous sites
where the real-time aspect is not paramount but
where enterprise system architects want a
messaging infrastructure that does not consume
large amounts of bandwidth but is still capable of
spanning a wide variety of platforms and clients
without difficulty.

The rest of this pamphlet discusses the types of
middleware available today, the strengths of
each, and the best applications for each kind. It
then explains Talarian's SmartSockets in depth.



A Guide To Selecting A Real-Time Infrastructure 4

What is Middleware?
As the distributed model of enterprise computing
has become more common, the term middleware
has acquired numerous meanings that would allow
it to be just about any piece of software that sits
between systems. Terms such as enterprise
application integration (EAI) and extensible mark-
up language (XML) often are mistakenly used to
describe middleware.

In the strict sense, middleware is transport software
that is used to move information from one program
to one or more other programs, shielding the
developer from dependencies on communication
protocols, operating systems, and hardware
platforms. Middleware provides the “plumbing”
necessary for applications to exchange data,
regardless of the environment in which they are
running. Transactions, data broadcasts, EAI
packages, and XML data often ride on middleware
in the enterprise.

The concept of middleware dates back to the 1980s
when companies wanted one package to move data
between mainframes, databases, and user
terminals. Modern middleware extends this
concept to the widespread distribution of data in
real time across a remarkable variety of servers,
clients, and sites.

Middleware as used in this sense tends to be
message-oriented. That is, data is sent between
systems in messages, which are similar to data
packets on the network. These messages have
headers that indicate the destination and payloads
of varying sizes and formats that contain the actual

data. Message-oriented middleware (or MOM)
originally appeared in the form of message queues.

When a message was sent to another system, it was
stored in a message queue on the destination
system. Whenever the destination system needed
the data, it looked in the queue for the message. If
it was there, the message was retrieved; if not, the
system would wait until the data arrived in the
queue. This approach proved reliable, but slow. It
still is used today in many transaction-oriented
environments, where security of transactions and
integrity of message delivery is a high priority.
A second model, called publish and subscribe (or
pub/sub), evolved from the need to deliver
messages in real time, especially to a large number
of clients. In the pub/sub model, clients register for
certain kinds of messages they are interested in,
and a server sends the clients those messages in
real time. The emphasis of the pub/sub model is to
send data from one server to many clients as fast as
possible. Typical applications might be
stockbrokers needing the latest prices on certain
bonds or equities. These prices typically are sent in
real time to all brokers who subscribe to this
information.

One company today, Talarian Corp., combines the
two models of MOM: its product SmartSockets
delivers messages in real time with the reliability
and integrity of message queuing. In fact,
SmartSockets can be installed as either a pub/sub
implementation or a message-queuing package.



5 Everything You Need To Know About Middleware

Specialized Kinds of
Middleware
The previous section briefly introduced the two
types of message-oriented middleware. Other types
of middleware are commonly found today
performing narrow functions.

The middleware market can be broken into five
different segments:

1. Transaction processing monitors
2. Remote procedure calls
3. Object request brokers
4. Homegrown middleware solutions
5. Message-oriented middleware (MOM)

Transaction Processing
Monitors
Typically, transaction-processing (TP) monitors are
not used for general purpose program-to-program
communication. Rather, they provide a complete
environment for transaction applications that
access relational databases.

In TP monitors, clients invoke remote procedures
that reside on servers, which also contain a SQL
database engine. Procedural statements on the
server execute a group of SQL statements
(transactions), which either all succeed or all fail as
a unit. The applications based on transaction
servers are called on-line transaction processing
(OLTP). They tend to be mission-critical
applications that require a rapid response 100% of
the time and tight controls over the security and
integrity of the database.

The communication overhead in this approach is
kept to a minimum because the exchange typically
consists of a single request/reply (as opposed to the
multiple SQL statements required in database
servers).

TP monitors provide application development tools
(such as user interaction and database interfaces),
system administration (such as security and

tuning), and transaction execution (such as
scheduling and load balancing).

X/Open, a vendor-neutral standards group, has
done a considerable amount of work toward
defining a process model and related services
interfaces for distributed processing applications.
Most vendors have pledged to support some or
most aspects of the X/Open model.

TP monitors should be considered when
transactions need to be coordinated and
synchronized over multiple databases. TP monitors
tend to be heavyweight and expensive, and they
require a great deal of expertise to implement
properly. Most TP vendors have a large service
side to their business.

Remote Procedure Calls
(RPCs)
RPCs have been around for a long time. They are
one of the earliest forms of interprogram
communication, and they operate at a very low
level. From a programmer’s point of view, RPCs
are easy to understand. The code invokes a
procedure that is located on a remote system, and
the results are returned. Generally, the application
components communicate with each other
synchronously, meaning they use a request/wait-
for-reply model. RPCs work well for smaller,
simple applications where communication is
primarily point-to-point (rather than one system to
many). RPCs do not scale well to large, mission-
critical applications, as they leave many crucial
details up to the programmer, such as the
following:

1. handling network or system failures
2. handling multiple connections
3. portability
4. buffering and flow control
5. synchronization between processes



A Guide To Selecting A Real-Time Infrastructure 6

Due to their synchronous nature, RPCs are not a
good choice to use as the building blocks for
enterprise-wide applications where high
performance and high reliability are needed. The
RPC standards have not evolved in any significant
way during the last five years, primarily because of
the emergence of the Object Request Brokers
described in the next section.

Object Request Brokers
Object Request Brokers (ORBS) can be thought of
as language-independent, object-oriented RPCs.
There are two competing standards for ORBs:

1. CORBA, backed by more than 700
companies from the Object Management
Group (OMG)

2. DCOM, backed by Microsoft

(Java’s Remote Method Invocation (RMI) could be
considered an ORB, although it is useful primarily
for facilitating communication between two
programs written in Java and does not address
other programming languages as do both DCOM
and CORBA.)

ORBs are designed for use in projects that require a
strict object-oriented approach, where “objects are
the only way.” Like RPCs, ORBs are generally
synchronous and operate in a point-to-point
manner. In general, both CORBA and DCOM
assume the system has a reliable communications
layer, and they do not address the problems
involved when this layer is not reliable.

Early on, the OMG recognized that CORBA’s
request-reply communication was not going to be
adequate for building true, enterprise-wide,
mission-critical applications. Some of the CORBA
vendors added proprietary extensions to their
products to address these shortcomings. The OMG
specified the CORBA Event Service, a standard set
of services layered on top of CORBA, which
brought most of the vendor extensions into the
CORBA model. In 1998, the OMG approved the
Asynchronous Messaging Service. However, this
facility is not widely used in CORBA deployments
today.

Homegrown Middleware
When companies first encounter the need for a
middleware layer, they often have a specific
problem to address that requires a modest solution.
Rather than invest in a middleware package,

smaller firms will allow their own development
staff to write a middleware-like solution to solve
the particular problem. Although initially
workable, this approach tends to lack scalability
and flexibility as new problems have to dovetail
with the old solution. As a result, supporting the
homegrown middleware becomes expensive as it
has to be customized and extended constantly—
generally by staff members who have never written
middleware software before. The final result is an
expensive solution that tends to break easily and
does not scale well.

Message-Oriented
Middleware
In general, MOM products work by passing
information in a message from one program to one
or more other programs. The information can be
passed asynchronously, where the sender does not
have to wait for a reply. MOM products, in
general, cover more than just passing information;
they usually include services for translating data,
security, broadcasting data to multiple programs,
error recovery, locating resources on the network,
cost routing, prioritization of messages and
requests, and extensive debugging facilities. Unlike
both ORB and RPC products, MOM, in general,
does not assume the system has a reliable transport
layer underneath. MOM tries to address the
problems that surface when the transport layer is
unreliable, as occurs when programs must
communicate over a WAN or over the Internet.

Two different types of MOM have emerged:

1. message queuing
2. message passing

Message Queuing

In message queuing, program-to-program
communications occur via a queue, which is
typically a file. It allows programs to send and
receive information without having a direct
connection established between them. A program
simply gives messages to the message queuing
service, identifying by name the queue in which it
wishes the message to be placed. The message
queuing service acts as an intermediary, and the
mechanism by which the message is transmitted is
completely hidden from the application programs.
In large, enterprise-wide applications, queues can
be set up to forward the messages to other queues.
Message queuing provides safe storage of
information and is most appropriate where



7 Everything You Need to Know About Middleware

applications cannot be connected directly (for
example, in mobile computing). However, message
queuing tools require considerable configuration to
set up correctly and performance can be poor. If
access to a queue is lost for any reason, the entire
system can be affected.

Message Passing (Publish-Subscribe)

Message passing has proven popular for building
large, distributed applications. This approach
differs from message queuing in that rather than
oblige applications to retrieve the information they
request, the information is more efficiently pushed
to the interested parties. One increasingly popular
flavor of message passing uses a model of
communication known as publish-subscribe
(pub/sub). In pub/sub, programs subscribe to
(register interest in) a subject. Programs also
publish (send) messages to the subject. Once a
subject has been subscribed to by a program, the
program will receive any messages published to
that subject in the distributed application. Subjects
are defined by the application developer.

In traditional network applications, when two
processes must communicate with each other, they
need network addresses to begin communicating. If
a process wants to send a message to many other
processes, it first would need to know the physical
network addresses of the other processes and then
create a connection to all those processes. This
architecture does not scale well because config-
uration is complicated and tedious. The publish-
subscribe communications model provides location
transparency, allowing a program to send the
message with a subject as the destination property

while the middleware routes the message to all
programs that have subscribed to that subject.

MOM vendors typically implement publish-
subscribe with a set of agents that maintain a real-
time database, listing which programs are
interested in which subjects. A program publishes a
message by connecting with one of the agents (it
may or may not be on the same machine) and
sending the message to it. The agent then routes the
message to the appropriate programs. Often, the
pub/sub middleware has greater fault tolerance
because the agents can perform dynamic routing of
the messages as well as provide hot fail over
should any of system fail. Pub/sub is most
appropriate for highly distributed applications
where fault tolerance and high performance are
important. It does not work well in situations where
processes may be disconnected from the network
for long periods of time.

Java Message Service
(JMS)
The JMS is a specification published by JavaSoft,
the division of Sun Microsystems responsible for
developing and managing the Java language. It
specifies a set of programming interfaces by which
Java programs can access MOM software. Most
MOM vendors today have announced they intend
to support JMS in future releases, while a few
leading-edge vendors, such as Talarian, already
have implemented support for JMS in their
products.



A Guide To Selecting A Real-Time Infrastructure 8

The Middleware
Market
Due to the incursion of the Internet into enterprise computing
and the corresponding move to a distributed-computing model,
the middleware market has seen tremendous growth during the
past several years. Most analysts expect this growth to continue
unabated through the early years of this decade.

Technology Forecast: 2000 from PricewaterhouseCoopers
quotes a Dataquest survey of 547 IT shops and their buying
plans for all forms of middleware. (See Figure 1.) The type of
middleware that the largest number of sites expects to purchase
is MOM. During the period from 1998 to 2003,
PricewaterhouseCoopers expects the MOM market to grow at a
compound annual growth rate (CAGR) of 19.6%

Talarian is recognized in the same report as a key innovator and
one of the leading vendors of MOM software. And indeed, since
1988 Talarian has been leading the field in the delivery of real-
time MOM infrastructure.

0 50 100 150 200

MOM

TPMs

ORBs

Other

None

Figure 1. Types of middleware most IT sites are likely to purchase.
(Source Dataquest, quoted by PricewaterhouseCoopers)



9 Everything You Need To Know About Middleware

Key Features of
Modern Middleware
Today’s mission-critical systems make extensive use
of distributed computing to share information over
large, heterogeneous networks. At the heart of these
mission-critical systems is the difficult task of
passing information reliably between many
applications running on different computers. Today’s
IT environment often includes a mix of mainframes,
UNIX workstations, and PCs trying to communicate
over multiple network protocols.

The need for distributed applications runs the gamut
from the classic commercial replication of a database
to today's more exotic push technologies where
selected information is pushed out over the Internet
in real time to interested subscribers. There are
increasing amounts of information being made
available and ever greater demands for instant access
to the information. In many applications, high
volumes of information (often passed in messages)
must be distributed throughout the network.
Examples of such applications include the real-time
collection, monitoring, and distribution of data from
sources such as factory floors all the way to the data
centers where inventory, order entry, and personnel
information is kept.

Historically, the communication infrastructure for
these distributed applications was built in-house
using low-level interprocess communication
primitives such as sockets, pipes, shared memory,
RPCs, and sometimes even files. Information was
typically encoded in a structured packet of
information called a message (not to be confused
with an e-mail message). These home-brewed
solutions were relatively straightforward to develop
for very small applications running on LANs. But as
the distributed applications grew larger and more
heterogeneous, using these primitive mechanisms
became less attractive because of the myriad
complexities to deal with. In-house solutions are
starting to break as the complexity of the network
grows and the software is being used on ever more
demanding applications.

Challenges of Network
Programming
The term network programming is used to define
the software development process of building
applications that must communicate with one
another over a network such as a LAN, WAN or
even the Internet. No matter what the nature of
the application, establishing program-to-program
communication that operates reliably over a
network using sockets, shared memory, RPCs or
some other interprocess communication
mechanism is an arduous task. Network
programming can be a software developer's
worst nightmare. In projects involving
distributed applications, building the interprocess
communication is often the most difficult and
risky part and often the cause of behind schedule
and over budget client/server applications.

With the number of mission-critical distributed
systems growing rapidly, a new market has
emerged for off-the-shelf middleware.

Before IT managers can identify the right
middleware solution, they must understand the
difficult challenges of network programming.
The following reveals and clarifies those
challenges.

Encoding the Information

Information that is passed from one program to
one or more other programs must be encoded
(formatted) in a manner that all the participating
programs understand. Upon receipt of the
information, programs must know how to access
and decode. If developers are using RPCs or an
(ORB), the encoding/decoding rules are defined
in an interface definition language. Some other
forms of middleware use self-describing
messages in which the sending and receiving
processes do not need to be tightly coordinated
to exchange information. Upon receipt of the



A Guide To Selecting A Real-Time Infrastructure 10

message, the message itself can be queried to
understand how it has been encoded.

Data Translation

As information is passed across the network, it often
will go from one type of platform (for example, Sun
SPARC) to another type (such as Intel x86 PCs).
Often, the platforms will not have compatible formats
for representing different types of data such as
floating point numbers and text strings. The network
programmer must translate the different types so they
are understood by the receiving processes. Ideally,
this translation should be completely transparent and
done only one time, at the final destination (receiver
makes right).

Multi-Protocol Support

Today's distributed computing environments use
many different network protocols, including TCP/IP,
IBM’s SNA, multicast, Digital’s DECnet and many
others. Information moving from one program to
another across the network may need to be
transferred from one protocol to another; this is
called context bridging.

Finding Resources

To build a large, distributed application, many
resources (for example, processes) must be tracked.
For these resources to share information, they often
need to know each other's location and how to
communicate. The location of the resources changes
frequently as new applications and new servers are
brought online. The ability to find and track resources
is often called naming services.

Flow Control

In a distributed application, programs are sometimes
unable to keep up with the flow of information, or
they can be busy doing something else when
information arrives. This can cause programs and
complex applications consisting of multiple programs
to get out of sync and potentially use large amounts
of system resources, such as memory or CPU.
Developing software to handle varying traffic rates
can be a complex task.

Portability and Standards Issues

There are few standards for passing information
across a network. The few existing standards often
conflict with one another. Some of the existing
standards include sockets, streams, named pipes,
RPCs, and ORBs. Even at this level, there are often
multiple, competing standards. For example, there are
several different versions of RPCs, including ONC
and DCE. Examples of ORBs are OMG’s CORBA
and Microsoft’s COM/OLE. Even Java’s RMI could

be considered an ORB. Lower-level interprocess
communications (IPC) socket primitives include
Berkeley UNIX sockets, UNIX System V
sockets, and Winsock. Berkeley sockets, which
are supported on many different platforms, often
have small, subtle differences across different
flavors of UNIX operating systems. Winsock is
similar to Berkeley sockets, but contains some
significant differences.

Asynchronous Operation

In a distributed application, a program often
needs to send information without waiting for a
reply. This implies that the reply will come from
one or more of the receiving programs at some
indeterminate time in the future. Working in an
asynchronous environment makes the job of the
network programmer more difficult.

Often, programming mechanisms such as
callbacks are used to handle asynchronous
behavior. These are functions that are executed
when a specific type of event occurs (for
example, a reply arriving). Another common
way to achieve asynchronous operation is
through the use of threads, where a program may
have multiple threads sending and receiving over
a single connection. This implies the middleware
used must be thread-safe.

Configuring Resources/Programs on the
Network

In a distributed computing environment,
uniquely identifying a machine or program often
is done through a complex numbering or naming
scheme. For TCP/IP networks, IP addresses of
the form xxx.xxx.xxx.xxx are used to uniquely
identify a machine. Network programmers must
understand and use these arcane facilities when
building their applications. Reconfiguring an
application when a machine is added or removed
from the network can be complex because source
code may need to be changed and the entire
project may be required to go through another
cycle of integration and test.

Dealing with Hardware or Software
Failures

One major problem facing today's client/server
computing environments is the higher likelihood
that some component of the application will fail
or partially fail: the network, a machine, or a
program on a machine. Recovering from such
failures can be difficult. Often, complete
recovery is not possible, and the application must
gracefully degrade as resources are lost.



11 Everything You Need to Know About Middleware

Therefore, fault tolerance is an important feature of
any solution.
Even detecting something as simple as a network
failure is often protocol dependent. TCP/IP was
designed to hide errors and try to correct them
without any intervention. It does a very poor job of
informing the programmer when errors occur.
Generally, TCP/IP will let the programmer know
only about unrecoverable errors, and it is not unusual
for minutes to go by before TCP/IP reveals it has a
problem. Without some type of proactive approach,
recovery from such problems is almost impossible.
This is not acceptable for most of today's mission-
critical applications.

Managing Multiple Clients and Servers

In a distributed application, there can be many
programs exchanging information over many
connections. Often, a program wishes to send a
message to multiple receiving programs, all with a
single operation. Other times, a program would like
to send a message to the “least busy” of a specified
set of programs in order to get a quick reply.
Coordinating multiple programs running across a
heterogeneous network can be a difficult job for a
network programmer.

In managing multiple clients and servers, IT
professionals have to be careful in the use of network
bandwidth to keep all the programs coordinated. A
common problem is flooding the network with
information whenever some type of change occurs to
the distributed system (for example, a program starts
or stops). Whenever this happens, a large amount of
network chatter can occur, which can use large
amounts of network bandwidth and put the system in
an inconsistent state until the change has been
propagated.

Changing Environment

The network environment on which the distributed
application executes changes quite frequently. New
computers are brought in to replace old computers or
to add more capacity to the enterprise. New network
equipment—such as bridges, routers, and switches—
is added to make more efficient use of the network.
Even interfaces between the software programs
change as the scope of the distributed system evolves
over time. This dynamic environment can wreak
havoc in even the best-designed systems.

Some types of middleware have great difficulty
handling these changes. Middleware that
depends on an interface definition language, such
as ORBs and RPCs, relies heavily on static
definitions that will not change. Changes to the
interface require changes to the interface
definition and the recompilation and relinking of
the code. The OMG’s CORBA has defined a
dynamic invocation interface (DII) to handle this
problem. In practice, few developers use the DII
because it is very difficult to understand and
program.

Publish-subscribe middleware uses the idea of
subjects to handle the frequent reconfiguration of
a distributed application. Changes to the
interfaces between programs are handled by self-
describing messages, whose definition may
change on-the-fly.

Debugging and Analysis

Distributing programs across a network can
provide large benefits to an organization—
supplying real-time information to users
whenever and wherever they need it. The
payback in productivity and quality realized by
the organization can be enormous.
Unfortunately, building distributed applications
is difficult, and trouble-shooting and debugging
problems have the potential to disrupt critical
elements of the operation when these
applications experience failures.

Effectively debugging a distributed application
requires fine-grained visibility into the
communication between programs. In general,
the primitive interprocess communication (IPC)
mechanisms provided by operating systems
notoriously lack debugging facilities, making
applications that use IPC very difficult to debug.
The problem is further exacerbated when
processes are distributed across a network in the
quest to build scalable applications. In this case,
effective debugging tools are a necessity, and
their availability reduces development time
significantly.

Talarian’s SmartSockets, a robust MOM product
that addresses many of the problems described in
this section, is the principal Talarian product.
The rest of this booklet offers an introduction to
SmartSockets.



A Guide To Selecting A Real-Time Infrastructure 12

SmartSockets®:
An In-Depth Look
Talarian’s SmartSockets is a robust, message-
oriented middleware product that offers both
message queuing and publish-subscribe
communication models. SmartSockets enables
programs to communicate quickly, reliably, and
securely across LANs, WANs, and the Internet.
SmartSockets manages network interfaces,
guarantees delivery of messages, handles
communication protocols, and deals with recovery
after system/network problems. This lets software
developers use their skills to handle higher level
requirements, rather than to solve the underlying
complexities of the network.

SmartSockets greatly reduces risk in software
projects where multiple programs must
communicate with one another. It speeds
development and ensures portability and
interoperability. SmartSockets can be used in a
broad range of technical applications including
real-time command and control, high-performance
message passing, high availability solutions, and
multi-tier client/server applications. SmartSockets'
programming model is built specifically to offer
high-speed interprocess communication,
scalability, reliability, and fault tolerance.

The following components make up the
SmartSockets product:

1. Application Programming Interface—a C/C++
callable library of functions for working with
messages, communicating between processes, and
monitoring distributed applications.

2. C++ Class Library—an object-oriented layer on
top of the standard SmartSockets services.

3. Java Class Library—a version of SmartSockets
written natively in Java offering Java programmers
access to the publish-subscribe features of
SmartSockets.

4. RTserver™ process(es)—a powerful message
router that allows applications to use a publish-
subscribe communications model; processes
register interest in specific subjects, clients publish
(send) messages to a subject, and all processes that
registered for that subject receive the messages.

5. RTmonitor™ process(es)—a graphical point-and
click interface for monitoring, administering, and
debugging a distributed application; allows
developers to use a visual interface for watching
things such as IPC traffic and process information.

6. Ready-to-use message types—predefined
message types to get the application developer
going quickly. Custom message types can be
developed with ease.

7. Sample C, C++, and Java Programs—an
extensive set of sample C, C++, and Java programs
to get you off to a fast start.

8. Documentation—available on-line and in print, a
complete bound set of manuals that are filled with
examples. Included is an easy-to-read tutorial.

SmartSockets has several capabilities that make
building distributed applications easier, while
keeping the system up and running. SmartSockets’
programming model is built specifically to offer
high-speed interprocess communication,
scalability, reliability, and fault tolerance. An
application developed with SmartSockets can
consist of multiple programs working together in a
heterogeneous network. The following paragraphs
describe the key features of SmartSockets.

High-Speed Interprocess
Communication
SmartSockets supports very high-speed message
routing and delivery throughout a network.
SmartSockets provides access functions so
developers can quickly encode, decode, and copy



13 Everything You Need to Know About Middleware

messages. SmartSockets will transparently
determine the shortest route between programs
using a shortest-path algorithm. In general, the rate
at which information can be passed using
SmartSockets IPC is restricted only by the
limitations of the physical network.

Publish-Subscribe Services

SmartSockets uses a powerful publish-subscribe
communications model in which programs
subscribe (register interest) to a subject. Programs
also publish (send) messages to the subject. Once a
subject has been subscribed to by a client process,
the client will receive any messages published to
that subject in the application. Subjects are defined
by the application developer and can be thought of
as a logical message address, providing a virtual
connection between client processes. In
SmartSockets, these can be specified hierarchically
(for example, "/market/stock/NYSE") and can be
published and subscribed to using wildcards.

In traditional network applications, when two
programs must communicate with each other, they
need very specific physical network addresses (for
example, in TCP/IP, a node name and port
number). If a program wants to send a message to
many other programs, it first would need to know
the physical network addresses, and then create and
maintain a connection to all those programs. This
architecture does not scale well, as configuration is
complicated and tedious. The SmartSockets
publish-subscribe communications model allows a
program to simply send the message with a subject
as the destination property; then, SmartSockets
takes care of routing the message to all programs
that are subscribed to that subject.

Once an application developer has written a client
using the SmartSockets API, multiple instances of
that process can be deployed on the same machine
or different machines in the same LAN, WAN or
anywhere on the Internet

The API is the same regardless of where the
processes reside. Applications therefore can be
developed on a single machine and then distributed
over a network as needed, all without changing a
single line of source code.

Peer-to-Peer Communication

As well as supporting the publish-subscribe model
of message routing described earlier, SmartSockets
also supports direct peer-to-peer communication
between two programs. This is useful in
applications where very high-speed communication

is required between exactly two programs and no
intermediate hops are warranted.

Multicast

When one system needs to broadcast data to many
clients, it can choose one of two ways of doing
this. The first is to send the same message to each
client. This approach is effective, but it consumes a
tremendous amount of bandwidth as the same data
repeatedly crosses the network. A more efficient
method is to use multicast, which is an Internet
standard for broadcasts that allows for a more
optimized distribution. With multicast, the message
is sent to specific servers that then distribute the
data to local clients. In this way, enterprise
bandwidth is conserved. Historically, multicast has
suffered from reliability issues—not every intended
client received the message. Recently, however, the
reliable multicast protocol (RMP) was designed
and implemented to solve this problem. Today,
Talarian is one of the first companies to implement
multicast with RMP and have it support mission-
critical delivery of packets while preserving the
bandwidth savings.

Asynchronous Messaging

Rather than block a process waiting for a message
to be delivered or for a reply to come back,
SmartSockets allows messages to be delivered
asynchronously without blocking the mainline
logic of the calling program. Sending messages
asynchronously allows a program (and the entire
distributed application) to operate at higher
performance levels because the program can
continue its tasks without waiting for a reply to a
message it has sent. Also, operating asynch-
ronously allows the system to respond more
quickly to external events.

With SmartSockets, it is simple to initiate
concurrent operations involving multiple network
platforms and to have them run to completion in
parallel. SmartSockets' asynchronous functionality
allows developers to leverage the inherent
parallelism of the network environment.

Synchronous Messaging

Non-blocking RPCs are available within
SmartSockets. These RPCs allow a client process
to wait for a specified period of time for a specific
message. Other messages that arrive while waiting
for the RPC to return are buffered and processed
once the RPC completes or the time-out expires.



A Guide To Selecting A Real-Time Infrastructure 14

Thread Safe

SmartSockets is completely thread safe, allowing
multiple threads to operate simultaneously on a
single connection. In multiprocessor environments
with operating system kernel thread support,
multiple threads can greatly increase performance.

Benefits: Increased scalability, increased
productivity, reduced risk, and more productive
use of resources.

High Availability and
Reliability
In many mission-critical applications, fault
tolerance and reliability are important
requirements. The systems require continuous
operation—24 hours a day, 7 days a week—
regardless of hardware or software failures.
SmartSockets achieves increased reliability in its
communication layer by transparently checking for
problems that occur when processes are connecting
and sending or receiving messages.

SmartSockets IPC has been designed to handle
many different kinds of network failures. In
general, the SmartSockets IPC avoids operations
that can block (or stall) indefinitely, or puts an
upper limit on the amount of time these operations
can block, and it periodically checks for potential
failure conditions.

Publish-subscribe services are enabled through a
SmartSockets program called RTserver. RTserver
is a high-speed software message router with which
programs can connect to send/receive messages to
other programs in the application group. An
RTserver may or may not reside on the same
machine as the programs that connect to it.

SmartSockets allows programmers to achieve a
higher level of availability in a distributed
application through the use of software
redundancy. Redundancy involves one or more
backup (but active) processes for each primary
process. For example, to ensure that a specified
process continues to run regardless of problems
that may occur in the network, one or more backup
processes can be run. Backup processes can be
receiving the same data as the primary process all
along and be ready to take over instantly if the
primary process fails.

Quality of Service

To meet the system and network outage recovery
requirements, SmartSockets allows the sending
program to optionally specify guaranteed message
delivery on the messages it sends out. If an outage
should occur to the sending program before a
message is delivered, the message is automatically
recovered and delivered to the receiving
application when the system is brought back up.
SmartSockets also handles the complex one-to-
many case where a message must be guaranteed to
multiple receivers.

By using guaranteed message delivery, distributed
applications that require high availability can be
integrated easily. This simple concept—which is
exceedingly difficult to program—allows messages
to be reliably delivered between programs in an
application, eliminating the need for complex
error-recovery code to be written into distributed
applications and providing a much more timely
mechanism than batch file transfer.

Dynamic Message Routing

SmartSockets handles changes and failures to the
network through dynamic message routing.
Routing tables in the RTservers are updated in real
time as changes occur in the network (such as
processes or machines going down). Messages are
always sent through the RTserver virtual network
using a shortest-path algorithm. This enables a
distributed application to continue to function even
in the face of component failures.

The popular message queuing products cannot
handle changes to the network easily. In general,
they are preconfigured to forward messages from a
queue to another queue. If any component fails in
this path, the message queuing software is stuck
until the failed component is functioning correctly.

Multiple RTserver™ Processes

Because of SmartSockets’ modular architecture, a
distributed application can be built with any
number of RTservers, with multiple protocols
supported by each. A simple application may use
only one RTserver to provide all services. A more
complex application may use multiple RTservers to
reduce network bandwidth and to add performance,
load sharing, modularity, and reliability. Using
multiple RTservers reduces network traffic and the
number of direct links that must be maintained.

Benefits: Increased application availability,
operation 24 hours a day, 7 days a week.



15 Everything You Need to Know About Middleware

Distributed Application
Monitoring, Administration,
and Debugging
Debugging and monitoring a distributed
application is extremely difficult because of the
many variables involved (network, machines,
programs) and the primitive tools that are offered
by the operating systems. SmartSockets offers both
graphical and programming tools to make the
monitoring, administration, and debugging of
distributed applications much easier. Compre-
hensive information can be gathered in real time
about all facets of a running SmartSockets project,
including message traffic, message buffering,
memory usage, and CPU usage. It is possible to
query each client for the subjects it has subscribed
to, the options that have been set for it, the node it
is running on, and the architecture of that node.
Monitoring can be done interactively through the
graphical user interface or programmatically
through the programming interface.

Graphical Interface

RTmonitor is a graphical tool designed to monitor,
debug, administer, and test an entire SmartSockets
application. RTmonitor provides the capability to
publish messages and to monitor critical IPC
information in real time as it changes, all without
having to make a single change to the application
and without incurring performance overhead in the
application when monitoring is not in use. The
RTmonitor GUI is a multi-window development
interface that provides snapshots and continuous
real-time views of the activities occurring within a
process IPC environment.

The ability to monitor a network application
executing, with all its IPC activities visible, is
invaluable when tracking down elusive problems.
The total development time can be cut significantly
through the use of RTmonitor alone. SmartSockets’
debugging and monitoring capabilities are valuable
support tools as well. Applications built with
SmartSockets even can be monitored in production.
No longer is it necessary to recreate problems or
special debug versions of an application to study
problems. With RTmonitor, there is no need to ask
customers to submit large log files. SmartSockets
applications can be studied wherever they are—as
soon as they display irregular behavior.

Monitoring Interface

A subset of the SmartSockets robust monitoring
API was used to build the RTmonitor graphical
interface. From within their program, developers
can use the monitoring API to track more than 300
different variables and events. This API provides
mechanisms to track when processes start and
when they fail, when they subscribe/unsubscribe to
a subject, or when a specific message type is
published or received. Actions can be taken by a
program when a process joins an application or
when it terminates.

When a program is linked with the SmartSockets
libraries, it is automatically instrumented for
monitoring. Calls to the API or clicking on choices
in RTmonitor turn it on. By embedding monitoring
within the SmartSockets API, developers take
advantage of varied information such as CPU
usage, memory usage and message queue sizes.

Monitoring can be done either synchronously
(polling) or asynchronously (watching). When
polling is used, a call is made to the API to collect
the specified information and the function does not
return until the operation is complete. When
watching is used, a call is made to the API to
register interest in specified variables or events.
The function returns immediately. Whenever the
specified event happens, a monitoring message is
sent asynchronously to the program. Typically, the
program will use callbacks to process the
information. Both polling and watching can be
used within the same program.

Southwest Airlines Flies with
SmartSockets.
In late 2000, Southwest Airlines, the fourth-largest
domestic airline in the U.S., deployed Talarian
SmartSockets as the real-time infrastructure for its
SWIFT (Southwest Integrated Flight-Tracking)
system. SWIFT provides flight managers with a
real-time status report on flight tracking and fuel
usage, passenger loads, crew management data,
gate information and weather reports for more than
2,600 daily flights. Says Phil Hyatt, technical
project lead for Southwest Airlines, “We needed a
system that could be built quickly and could
integrate smoothly with SWIFT’s publish-and-
subscribe architecture in which information is
delivered instantly to the correct parties as it
changes. What really appealed to us was
SmartSockets’ complete and easily configurable
API. Its simplicity and flexibility allowed us to
implement the project in less than a month.”



A Guide To Selecting A Real-Time Infrastructure 16

Message Logging

SmartSockets messages can be logged
automatically to a file at any point along the way:

1. Messages arriving for a program
2. Messages leaving a program
3. Messages arriving at an RTserver
4. Messages leaving an RTserver

Messages can be logged in ASCII or binary format.
ASCII log files can be edited or moved easily from
one platform to another. Binary message logging is
much faster and uses less disk space.

Message types can be assigned to various logging
categories (classes). Logging for a specific class
can be dynamically turned on and off as the
programs are running.

Message logging allows the developer (or end user)
to view the messages sent or received by any
process. A developer also can use these message
files to set up a controlled test environment in
which to test the behavior of a process. This is
done by having the process receive its input from
the message file instead of from the other
processes.

Benefits: Reduced maintenance costs and
increased productivity.

Platform and Protocol
Independence
Applications built with SmartSockets are
guaranteed to be portable across different
platforms. For example, an entire application or
parts of an application can be moved easily from a
PC running Windows NT to a Sun SPARCstation.
Because SmartSockets offers a portable C API and
C++ and Java classes, source code is immediately
portable across different platforms. The IPC
portion of a distributed application—often the most
platform dependent—need be written only once.

Automatic Data Translation

SmartSockets allows messages to be sent between
programs on different types of computers (for
example, Intel PCs and Sun SPARC). When a
message is sent through a connection, the integers,
real numbers, strings, and other primitive data
types within the message are converted
automatically from the formats of the sending
program to the formats of the receiving program;
no action is required by the application developer.

No unnecessary data conversions are performed if
the sending and receiving programs are running on
computers with compatible data types (for
example, Sun SPARC and HP PA-RISC).

With SmartSockets’ cross-platform and multi-
protocol support, developers can distribute
processes anywhere over heterogeneous networks
and share processing power. Programmers can
modify network components and move resources
and programs from one location to another with
complete transparency. With SmartSockets IT
managers can choose the best computing solution
for a particular need.

Platform Support

SmartSockets is supported on numerous computing
platforms, including the operating systems:

1. Unix (including Solaris, HP-UX, AIX,
DEC Unix, Compaq True64, and IRIX)

2. Windows NT and Windows 2000
3. VxWorks
4. IBM OS/390
5. Linux

Client platforms include all the above as well as
Windows 95/98/ME, Macintosh, and Java clients.

This list is updated frequently. Please contact your
local SmartSockets sales representative for an up-
to-date list.

Protocol Driver

One benefit of SmartSockets is that it shields the
developer from having to understand underlying
network protocols. Although SmartSockets
supports most of the popular protocols, the
SmartSockets Protocol Driver enables customers to
add additional protocols (such as proprietary ones)
easily.

Benefits: Protected investment in hardware and
software.

Powerful Message Handling
Programs built with SmartSockets communicate
via messages. Messages consist of a header and a
data part, which holds the information being
transferred and is dependent on the message type.
The message header contains properties that
describe the message, such as destination (subject),
message type, priority, level of guarantee, read-
only, and other information.



17 Everything You Need to Know About Middleware

Automatic Message Buffering and Flow
Control

Distributed applications typically require a method
to establish data-flow between the client processes.
A single program often will need to read messages
from many different programs. In a SmartSockets
application, each program has message queues that
transparently buffer the messages when there are
variable traffic rates, providing automatic flow
control. This method of communication increases
performance and greatly simplifies development.

Prioritized Message Queues

All messages in SmartSockets may have a priority
attached to them. When a message is delivered to a
client process, it is added to the client’s message
queue in priority order (higher priority messages
come before lower priority messages). This forces
higher priority messages to be processed before
lower priority messages sent at an earlier time.

SmartSockets’ message queues support message
prioritization, searching, and selection. Messages
can be retrieved based on FIFO, LIFO, and other
types of priority specifications. Byte streams,
RPCs, shared memory, and sockets are, by
comparison, primarily FIFO mechanisms.

Reusable and Extensible Message Types

SmartSockets provides more than 150 standard
message types that are used by SmartSockets
internally and are available to the developer. When
a standard message type does not satisfy a specific
need, the developer can create a user-defined
message type. (This requires only a single API
call.) Both standard and user-defined message
types are handled in the same manner. Once the
message type is created, messages can be
constructed, sent, received, processed, and logged
through a variety of methods.

Load Balancing

SmartSockets-enabled programs and RTservers can
subscribe and unsubscribe as needed by the given
application requirements. Dynamic load balancing
is designed into SmartSockets using selected
algorithms including “least busy” and “round
robin.” Message delivery can be controlled via a
simple round robin or by forwarding messages to
the process that is least busy, where “least busy” is
defined as the process that has the fewest number
of messages unprocessed.

Benefits: Increased performance and reliability.

Scalability
SmartSockets was designed to scale to handle
thousands of concurrent users (or processes).
Scalability comes from a variety of different
features, which are summarized here:

1. SmartSockets has a hierarchical
namespace. This means subject names,
which are used for a variety of purposes
including application partitioning, can be
specified hierarchically (for example,
“/company/technology/software/talarian”
or “/company/transport/auto/ford”), much
like many of the popular file systems.

2. The SmartSockets namespace can be
arranged hierarchically into any number
of levels. (Other middleware products
have no namespace, a flat namespace, or a
limited number of levels). In large
enterprise-wide applications, developers
will need to use many levels of the
hierarchy to properly partition the
namespace.

3. SmartSockets does not require a routing
process, or daemon, on every machine
where a client process is running. (Other
products require at least one routing
process on every machine. Some products
require multiple processes on each
machine. This is not reasonable when
deploying to many machines.)

4. Messages are routed dynamically in
SmartSockets. Therefore, information sent
from one application to another could
potentially take a different path every time
if parts of the network become
unavailable. Message routing can be
configured in two ways: manually or
using default routing

5. Default routing is calculated using an
OSPF (Open Shortest Path First)
algorithm that corrects all the problems of
the older RIP (Routing Information
Protocol) algorithm, which is based on
hop counts. Messaging middleware using
RIP takes a long time to stabilize when a
change occurs (for example, if a machine
or process goes down) because hop counts
must be propagated throughout. Default
routing in SmartSockets uses the fewest
number of RTservers possible. When



A Guide To Selecting A Real-Time Infrastructure 18

changes occur in the network, these
changes do not need to be rippled all the
way through SmartSockets.

6. SmartSockets-enabled processes can fail-
over to new RTserver processes running
on any machine should the one they are
currently connected to fail for any reason.

7. SmartSockets-enabled programs can be
set up to connect to any one of a random
set of RTservers across a network. This
prevents an RTserver from being
overloaded with a large number of
programs connecting to it.

8. There is no single place in a SmartSockets
server cloud that has all the information
needed to resolve routes. In this way,
SmartSockets works much like the
Internet and DNS. Information about
routing and the locations of processes is
kept in a “virtual distributed real-time
database” in the SmartSockets network of
processes.

9. SmartSockets’ RTservers and programs
do not require “root” or “system”
privilege to install or run. Most other
messaging products require special
privileges to install or run. In general, this
is not realistic when deploying to
thousands of machines. In the case of
MQSeries from IBM, changes must be
made to the operating system kernel on
most supported platforms.

10. SmartSockets messages can be published
to a particular subject in the namespace or
can be published to a subject with
wildcards in it (for example, “/company-
/transportation/*”).

11. SmartSockets programs can subscribe to a
specific subject, multiple subjects, or
multiple subjects using a wildcard.

12. All SmartSockets RTserver processes do
not need to be connected to one another.
SmartSockets will dynamically
reconfigure and update its routing tables
as RTservers come and go.

13. SmartSockets can perform context
bridging, translating messages from one
protocol to another as message routing
occurs. For example, a message could be
sent down one connection via TCP/IP and
then be delivered to the receiver via SNA.
This facility includes additional protocols
that might be added by the customer.

14. SmartSockets uses a “just-in-time,
receiver makes right” approach in order to
translate the message into the proper
format. Even if a message goes through
several hops, only the final receiver does
the translation and the translation is not
done until the receiver is ready to "use"
the message. SmartSockets provides all
data translation transparently: EBCDIC-
ASCII, big endian–little endian, floating-
point numbers, and the like.

15. SmartSockets includes graphical
development tools that allow you to
visualize your entire project and its
topology. Further, the application can be
monitored in real time to watch message
traffic and quickly pinpoint any
bottlenecks.

Benefits: Maximum use of existing computer
resources and virtually unlimited expansion
capability.

SmartSockets at Credit Suisse First Boston. In late 1999, Credit Suisse First Boston
(CSFB), one of the world’s largest securities-trading firms, adopted SmartSockets as the real-time
infrastructure for its high-speed messaging system that links 4,000 equities traders around the
globe. SmartSockets powers the Global Application Intercommunication Architecture at CSFB,
enabling high-speed messaging among regional offices spread across 30 countries on six
continents using more than 500 applications. Says Raymond Mulligan, vice president of Equity
Technology at CSFB, “SmartSockets allows us to implement publish-subscribe messaging without
having to build an elaborate broadcast infrastructure around it. With clients distributed around the
globe, it would be impossible to install ancillary hardware for them all. With SmartSockets, that
problem was eliminated.”



19 Everything You Need to Know About Middleware

Benefits of
SmartSockets
Building distributed applications can be a very
complex and risky venture. For such difficult
problems, SmartSockets offers maximum power and
flexibility together with superior ease of use. The
SmartSockets programming model has several
important benefits that are outlined in the sections
that follow.

Increased Productivity
The easy-to-understand multiprocess programming
model of SmartSockets eliminates the need for
network programming skills. A single call to a
SmartSockets function is the equivalent of many lines
of complex network programming. As a result, the
cost of developing a distributed application is
significantly reduced.

Reduced Risk
SmartSockets has been used and tested as part of
mission-critical systems for years across a variety of
industries including financial, telecommunications,
process and manufacturing, and aerospace. This track
record means proven reliability and reduced risk.

Increased Scalability
As an application grows in terms of the number of
processes involved, the amount or rate of message
traffic, and the number of machines involved,
SmartSockets can grow with it. Because both the
client and server processes can be distributed across a
network within the SmartSockets programming
model, the application can make maximum use of
existing computer resources while offering virtually
unlimited expansion capability. Applications can be
built on a single machine and then deployed over a
network without changing even a single line of
source code.

Protected Investment in
Hardware and Software
SmartSockets allows IT shops to keep the
investment in software that they have already
developed. By adding calls to the SmartSockets
API within already existing software, developers
can quickly and easily integrate legacy programs
into the distributed application.

Because of SmartSockets' multiplatform support,
IT managers will be able to make use of their
existing hardware. In addition, if you wish to
change hardware vendors, your SmartSockets
application will be usable on the new platform.
SmartSockets does not require kernel
modifications or any other changes to be made to
the computer.

Reduced Maintenance Cost
SmartSockets reduces software maintenance
costs by virtually eliminating the need for
network programming skills. SmartSockets
allows a software engineer to write distributed
applications without going through the tedious
and expensive process of writing low level
network software. Furthermore, as updates to the
operating system occur, SmartSockets is also
updated to mask those operating system changes
from the user. Finally, moving all or part of an
application to another platform can be done
transparently with SmartSockets.

Increased Application
Availability
SmartSockets offers several capabilities that
greatly increase the availability of a distributed
application. SmartSockets offers easily
configurable options for responding to network
failures, hot failover to parallel processes when a
process or machine goes down, guaranteed



A Guide To Selecting A Real-Time Infrastructure 20

message delivery, error callbacks when an exception
occurs, and sophisticated real-time monitoring tools
to keep an eye on what is happening. All these
sophisticated features allow developers to build
applications that are robust and reliable.

More Productive Use of
Resources
SmartSockets means computers spend less time
waiting and more time working. It also gives IT
managers the flexibility to match the technology to
the business need. For example, a shop may have
specific message types that cause control action to be
taken by the SmartSockets client processes. Messages
associated with other less critical needs can be sent
and added to the queue, to be worked on after the
higher priority messages have been processed.



21 Everything You Need to Know About Middleware

Getting Started with
SmartSockets
You can get started with SmartSockets by simply
using the API (a C library, C++ class library, or Java
JAR file) in the parts of your C/C++ or Java
programs that need to communicate with other
programs in your network. You can also replace the
communication sections of your existing programs
for a more rapid implementation and faster return on
investment. Or, like many SmartSockets customers,
you may decide the benefits are too good to be
postponed and redesign your existing application to
incorporate this exciting new technology.

Example C Programs
To demonstrate how easy SmartSockets is to use,
this section contains two heavily commented C
programs. The first program simply publishes a
message to a subject (it requires only two lines of
actual code). The second program subscribes to
the subjects, reads the message, and prints out its
contents (it is only five lines of code).
Note that all SmartSockets API calls start with
"T"
(for Talarian).

/* Program 1: send.c */

#include <rtworks/ipc.h>

int main( int argc, char **argv)
{

/* This one function call will perform the following tasks:

1. Since there was no explicit call to connect to RTserver, the
process will first establish a connection to RTserver (this
might including auto-starting RTserver if it is not already
running).

2. A message of type INFO will be created.

3. The data part of the message will contain the text string
"Hello World".

4. The message will be sent to the RTserver process to be
delivered to the subject "/ss/tutorial/lesson 1"; any process
that has subscribed to this subject will receive the message.

5. The message will then be destroyed. */

TipcSrvMsgWrite("/ss/tutorial/lesson1",
TipcMtLookupByNum(T_MT_INFO), TRUE, T_IPC_FT_STR,
"Hello World!", NULL);

TipcSrvFlush(); /* ensures message is sent immediately */
}



A Guide To Selecting A Real-Time Infrastructure 22

/* Program 2: receive.c */

#include <rtworks/ipc.h>
int main(argc, argv)
int argc; char **argv;
{

T_IPC_MSG msg; T_STR MsgText;

/* The following function call performs two tasks:

1. Since there was no explicit call to connect to RTserver,
the

process will first establish a connection to RTserver (this
might include auto-starting RTserver if it is not already
running).

2. Inform RTserver to forward any message which has been sent to the subject "ss/tutorial/lesson
1" by any client in the application. */

TipcSrvSubjectSetSubscribe("ss/tutorial/lesson 1", TRUE);

/* This function calls gets the next message from its message
queue; The T_TIMEOUT_FOREVER constant specifies that the function
will block (wait) forever for a message. You can specify an
actual time-out period for this argument; for example, 10.0 would
mean the function would return with a failure code after 10
seconds. */

msg = TipcSrvMsgNext(T_TIMEOUT_FOREVER);

/* We now have a message to work with.
The following call sets the message
pointer (i.e., the current field) to
the first field in the data part
of the message. */

TipcMsgSetCurrent(msg, 0);

/* The next call gets the string from
the data part of the message.*/

TipcMsgNextStr(msg, &MsgText);

/* Finally, print out information retrieved from the message. */

TutOut("Message Text = %s\n", MsgText);

}

Could network programming this easy help your business? Find out more about Talarian SmartSockets at
http://www.talarian.com. You may also contact us by e-mail at info@talarian.com, or call toll-free,
(800) 883-8050.



© 2000 Talarian Corporation. All Rights Reserved. Talarian, “The world works in real-time,” SmartSockets, RTserver and RTmonitor are
trademarks of Talarian Corporation that may be registered or pending in certain jurisdictions. Other product names may be trademarks of
their respective companies. WPMW 1001 1000

TALARIAN CORPORATE HEADQUARTERS
333 Distel Circle
Los Altos, CA 94022-1404
(800) 883-8050
FAX (800) 883-8057

TALARIAN LIMITED
68 Lombard Street
London EC3V 9LJ
+44 (0) 20 7868 1630
FAX +44 (0) 20 7868 1752

E-Mail info@talarian.com
www.talarian.com


