
Building Portals with
the Java Portlet API

JEFF LINWOOD, DAVE MINTER



Building Portals with the Java Portlet API 
Copyright © 2004 by Jeff Linwood, Dave Minter

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher. 

ISBN (pbk): 1-59059-284-0

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin

Technical Reviewer: Carsten Ziegeler

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis,
John Franklin, Jason Gilmore, Chris Mills, Steve Rycroft, Dominic Shakeshaft, Jim Sumser,
Karen Watterson, Gavin Wray, John Zukowski

Project Manager: Kylie Johnston

Copy Edit Manager: Nicole LeClerc

Copy Editor: Liz Welch

Production Manager: Kari Brooks

Production Editor: Ellie Fountain

Compositor: Kinetic Publishing Services, LLC

Proofreader: Nancy Sixsmith

Indexer: James Minkin

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Manager: Tom Debolski

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, e-mail orders@springer-ny.com, or visit
http://www.springer-ny.com. Outside the United States: fax +49 6221 345229, e-mail
orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219,
Berkeley, CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work. 

The source code for this book is available to readers at http://www.apress.com in the Downloads
section.



Contents at a Glance

Foreword  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

About the Authors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii

About the Technical Reviewer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiv

Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii

Chapter 1 Introduction to Portals and Portlets . . . . . . . . . . . . . . 1

Chapter 2 Portlet Basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 3 The Portlet Life Cycle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 4 Portlet Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapter 5 Using Servlets and JavaServer Pages 

with Portlets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Chapter 6 Packaging and Deployment Descriptors . . . . . . . . . . . . 159

Chapter 7 Portal and Portlet Configuration  . . . . . . . . . . . . . . . . 185

Chapter 8 Security and Single Sign-On  . . . . . . . . . . . . . . . . . . . . . . 209

Chapter 9 RSS and Syndication  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Chapter 10 Integrating the Lucene Search Engine  . . . . . . . . . . . 255

Chapter 11 Personalization and User Attributes  . . . . . . . . . . . . . 281

Chapter 12 Web Services for Remote Portlets (WSRP) 

and Application Syndication  . . . . . . . . . . . . . . . . . . . . . . 295

Chapter 13 Exposing an Existing Application As 

a Portlet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Chapter 14 Charting with JFreeChart  . . . . . . . . . . . . . . . . . . . . . . . . . 339

Chapter 15 Content Management Systems  . . . . . . . . . . . . . . . . . . . . . . . 359

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

iii





Contents

Foreword  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

About the Authors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii

About the Technical Reviewer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiv

Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii

Chapter 1 Introduction to Portals and Portlets . . . . . 1

Providing a Solution with Portals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Designing the Portal’s Information Architecture  . . . . . . . . . . . . . . . . 2
Portal Application Architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Building Portlets with the Portlet API  . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Providing Technical Solutions with Portals . . . . . . . . . . . . . . . . . . . . . . 7
Security and Single Sign-On  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Content Syndication and RSS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Searching Content from the Portal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Portals and Web Services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Integrating Existing Applications into the Portal . . . . . . . . . . . . . . 9
Using Charts in the Portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Content Management and Portlets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Portlet Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

First Portlet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Building the Portlet Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Packaging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Deploying  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Portlet Programming 101  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
GenericPortlet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Portlet Requests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Portlet Response  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Enhancing the Portlet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Web.xml Deployment Descriptor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



Packaging and Deploying  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 3 The Portlet Life Cycle . . . . . . . . . . . . . . . . . . . . . . . 41

The Portlet Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Creation of the Portlet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Request Handling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Destroying the Portlet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Threading Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 4 Portlet Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Portlet Requests  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Render Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Action Request and File Uploading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Portlet Response  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Render Response  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Action Response  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Portlet Context  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Sessions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Sessions and Interportlet Communication  . . . . . . . . . . . . . . . . . . . . . . . 102
Content Markup Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Portlet Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Window States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Style Sheets and the User Experience  . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter 5 Using Servlets and JavaServer Pages 
with Portlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Portlets, Servlets, and JSP Design Goals  . . . . . . . . . . . . . . . . . . . . . . 119
Portlet Request Dispatcher  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Request and Response Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Session Management Between a Portlet and a Servlet 

or JSP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Creating a Form in JSP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Using the Portlet JSP Tag Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
To-Do List Portlet Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Contents

vi



The web.xml Deployment Descriptor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Directory Structure of the Application  . . . . . . . . . . . . . . . . . . . . . . . . 153
Complete Code Listing for the To-Do List Portlet  . . . . . . . . . . . . 154
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Chapter 6 Packaging and Deployment 
Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Portlet Application Packaging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Versioning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Portlet Application Deployment Descriptor Structure  . . . . . . . . . 160
Web Application Deployment Descriptor  . . . . . . . . . . . . . . . . . . . . . . . . . 170
XDoclet Portlet Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Chapter 7 Portal and Portlet Configuration . . . . . . . . . 185

Using the PortalContext to Retrieve Information 
About the Portal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Using the PortletConfig Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Using Portlet Preferences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Chapter 8 Security and Single Sign-On . . . . . . . . . . . . . . . 209

Portlet Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Chapter 9 RSS and Syndication . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Overview of RSS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
Walking Through an Example RSS File  . . . . . . . . . . . . . . . . . . . . . . . . . . 240
RSS Browsers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Displaying Syndicated Information in Portlets  . . . . . . . . . . . . . . . . 247
Syndicating Out  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Chapter 10 Integrating the Lucene 
Search Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

Overview of Lucene  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
Downloading and Installing Lucene  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Contents

vii



Lucene Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Building an Index with Lucene  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Designing a Portlet to Search the Index  . . . . . . . . . . . . . . . . . . . . . . . 270
Developing a Portlet for Lucene  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Indexing Other Types of Content  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Lucene and Different Types of Content  . . . . . . . . . . . . . . . . . . . . . . . . . 279
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Chapter 11 Personalization and User 
Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Making a Good Impression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Making Choices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

Chapter 12 Web Services for Remote Portlets 
(WSRP) and Application Syndication . . . . . . 295

WSRP Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
WSRP and the Java Portlet API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
WSRP Markup in Content Fragments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Using WSRP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Common Problems with Application Syndication  . . . . . . . . . . . . . . . . . 304
Future Directions of WSRP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Chapter 13 Exposing an Existing Application 
As a Portlet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Overview of the YAZD Forum Software  . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Deciding What to Change  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Displaying Screens in a Portlet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Getting Configuration Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Issues Encountered in Our Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Chapter 14 Charting with JFreeChart. . . . . . . . . . . . . . . . . . . . 339

Building Charts and Graphs with JFreeChart  . . . . . . . . . . . . . . . . . . . 339
Chart Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Basic JFreeChart Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Providing Data to the Chart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Contents

viii



Displaying Charts from a Portlet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Portlet Extensions to JFreeChart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Portlet Example with a 3D Pie Chart  . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

Chapter 15 Content Management Systems . . . . . . . . . . . . . . . . . 359

Overview of Content Management Systems  . . . . . . . . . . . . . . . . . . . . . . . . 359
Integration with a Content Management System  . . . . . . . . . . . . . . . . . 361
Common Problems with CMS and Portals  . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Java Content Repository API (JSR 170)  . . . . . . . . . . . . . . . . . . . . . . . . . 362
WebDAV  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
WebDAV Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Slide WebDAV Client Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
WebDAV Portlet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Contents

ix





Foreword

THE PHENOMENAL AMOUNT of information that networked computers can present to
us is both the marvel and the bane of our time. Knowledge is commonly supposed
to be power, but the reality is that we are often drowning in data, overwhelmed
rather than enabled. The inexorable rise in the volume of facts and figures at our
disposal should be A Good Thing, but unless we have the right tools to manage
this information, we will struggle to keep our heads above water, let alone take full
advantage of the data.

Arguably the single most important challenge in the computing world today is
to provide users with the means to stay on top of the information they require.
Connectivity is no longer enough—merely providing someone with a web browser
and an Internet connection is roughly akin to supplying them with a small dinghy
in order to circumnavigate the globe.

Two elements are crucial to solving this problem successfully: aggregation
and selectivity. Aggregation technologies make multiple sources of information
available in one place. Selectivity is the ability to exercise control over what is
presented, and is necessary to exploit aggregation without being overwhelmed.

Search engines are the archetypical aggregation success story—the Internet
would be orders of magnitude less useful without the ability to search the entire
Web from one place. However, search engines are weak when it comes to selec-
tivity. They necessarily cast their net very wide, which inevitably means that
searches tend to return a lot of irrelevant data. This places the burden on users
to sift through the results for data of value.

Search engines continue to improve their selection capabilities, with increas-
ingly sophisticated algorithms for determining which pages are likely to be most
relevant. However, search engines inevitably run up against the problem that dif-
ferent individuals are likely to be looking for different things when feeding in the
same query. For example, someone I know was recently looking for information
on dressage horses, and while the majority of results Google returned when she
searched for “stallion german” were equine, a few of the results were catering to
an entirely different market.

Recently, user-driven aggregation has been gaining ground, most notably
in the form of RSS aggregators. These lack the all-encompassing reach of a search
engine, but score much higher on selectivity—they retrieve information only
from sources in which users have expressed an interest. This highly selective
form of aggregation enables us to keep abreast of updates across hundreds of
web sites without having to spend all day, every day visiting those sites in the
browser.

The Java portlet architecture provides a framework for building systems that
present users with the information they need. It offers the two key ingredients

xi



for success: aggregation (portals can aggregate information from multiple
portlets) and selectivity (the architecture allows administrators and users to be
selective about their sources of information by choosing which portlets will
appear).

Moreover, portlets allow information from all kinds of sources to be aggre-
gated, so a portal’s reach is potentially much greater than that of either a web
search engine or an RSS feed. Of course, portlets are available to handle both
web content and RSS feeds, but portlets can also allow information from web
services to be added to a portal, or from legacy systems. If you can retrieve
information from a system with Java code, you can write a portlet for it.

Dave and Jeff have provided a comprehensive guide to the portlet architecture
in this book. But of course, this technology will never be used in isolation—its
basic purpose is to integrate diverse sources of information. Accordingly, they also
describe the main technologies you are likely to come across when building por-
tals. This book offers a guide to the various incompatible versions of RSS, shows
you how to integrate the Lucene search engine into your site, and discusses vari-
ous content management technologies.

Since the portlet specification is a fairly recent addition to the suite of Java
specifications, very little portal-aware software exists right now. This means that
for the time being, a lot of portlet development will involve integrating existing
code into new portal environments. This book therefore provides a fully worked
example, showing the effort required to take the open source YAZD forum soft-
ware and wrap it as a portlet.

In short, the portlet specification provides the tools for building web sites
that will enable users to exploit the potential of the information available to
them, and this book tells you all you need to know to build great portals.

Ian Griffiths
Developer, consultant, and teacher
www.interact-sw.co.uk/iangblog/

Foreword

xii



About the Authors

Jeff Linwood is a software developer and consultant
with the Gossamer Group (www.gossamer-group.com)
in sunny Austin, Texas. Jeff has been in software pro-
gramming since he had a 286 in high school. He was
caught up with the Internet when he got access to a
Unix shell account, and it has been downhill ever since.
Jeff coauthored Pro Struts Applications (Apress, 2003),
and was a technical reviewer for Enterprise Java
Development on a Budget (Apress, 2004) and Extreme

Programming with Ant (SAMS, 2003). He has a chemical engineering degree
from Carnegie Mellon University.

Dave Minter is a freelance integration consultant
and developer from rainy London, England. The first
computer that he encountered was a Wang 2200 mini-
computer, which at the time was roughly the same
size as he was. Since then, he has worked for the
largest of blue chip companies and the smallest of
startups—encountering Jeff during the dotcom frenzy
along the way. These days, he makes his living
explaining to companies how they can build systems
that “just work.” He has a computer studies degree
from the University of Glamorgan.

xiii



About the Technical
Reviewer

Carsten Ziegeler is a member of the Apache Software Foundation and as such is
involved in various open source communities, like Cocoon, Avalon, and Excalibur.
He is a member of the Apache Portals project management committee and com-
mitter of the Pluto and the WSRP4J project. 

In paid life, Carsten is the chief architect of the Open Source Group at S&N
AG, Paderborn, Germany. The focus is on Java-based middleware functionality
such as web frameworks, component architectures, and portal solutions and
technologies.

The liaison to Apache started in 2000 when Carsten became committer of
the Cocoon project and started to play an important role in designing and
developing the current architecture. A major contribution to Cocoon is the
standard-compliant Cocoon Portal.

xiv



Acknowledgments

THIS BOOK would not have been possible without the energy and enthusiasm of
the Apress staff, especially John Zukowski for his decision to let us write it; Kylie
Johnston, our project manager; and Steve Anglin, our editor. Special thanks to
Liz Welch for a superb job of copyediting our chapters. 

We owe particular thanks to Ian Griffiths (the gurus’ guru) for his foreword
to this book, and we owe a debt of gratitude to Carsten Ziegeler, our technical
reviewer, whose comments have without exception been both pertinent and
pithy.

Jeff would like to thank Karl Weinmeister, for his ideas on what should be in
a portal development book, and Skip Walker, for reviewing the Single Sign-On
material. Jeff would also like to thank his family for being supportive.

Dave would like to thank his parents for their patience with his little hobby,
and his girlfriend Kalani Seymour for her tolerance and good humor as dead-
lines came and went. Thanks also to Bruce Robinson for the mug shot.

Any errors in the ensuing content are, of course, entirely our own doing.

xv





Introduction

IT SHOULD BE possible to build a portal by plugging components from different
vendors into a portal from any vendor. These components are portlets, and we
explain how to build them in this book.

The noble aim of the portlet specification—which arose from Sun’s Java
Community Process with the collaboration of Sun, IBM, BEA, and others—was
to simplify the process of tying applications into a portal by allowing them to
cooperate. That so many vendors have come together to standardize their exist-
ing proprietary solutions bodes well for the future of this technology.

We believe that portlets and the portlet API will become at least as impor-
tant to Java application developers as the servlet API has been because portlets
make building a truly integrated system that much easier. Any new portal devel-
opment projects should select a portal that supports the portlet API because
independent software vendors now need to write portlets for only one API, not
a dozen.

Both of us enjoy working with new technology, and there are a lot of new
standards for portals, content management systems, business rules, and web
services. We hope that you will enjoy learning about portal development as
much as we enjoyed writing this book!

Who This Book Is For

This book is for developers who already have a command of the basics of web
application development in Java. Ideally, you will have had some exposure to
servlets and JSP pages. No prior knowledge of portlets or portal development is
required. Some very basic knowledge of XML is useful.

All of our examples use standards or use open source software, so it will not
be necessary for you to purchase any software to get started with portlet devel-
opment. Because the portlet API is a standard, you can begin development on a
free, open source portal, and then migrate your applications to a commercial
portal.

This book is not an academic text—our focus is on providing extensive
examples and taking a pragmatic approach to the technology that it covers.

How This Book Is Organized

We realize that many of our readers will be familiar with servlets and some of the
core concepts of portlets when they come to this book. We recommend to such

xvii



readers that they familiarize themselves with the following chapter guide so that
they can quickly refer to the subjects they are interested in.

We have also tried to ensure that a portlet novice will find that these chap-
ters are logically ordered, with the more advanced subjects covered only when
the basics have been described in detail. 

You will find the source code for the book’s examples on the Apress web site
(www.apress.com), on the Downloads page.

Chapter 1: Introduction to Portals and Portlets

This chapter outlines the basic concepts and terms that you will encounter in
the book. We talk in broad terms about the strengths and weaknesses of portlets,
and we give you an overview of some of the technologies that we cover more
fully in later chapters.

Chapter 2: Portlet Basics

This chapter provides an example of a simple portlet, discusses how it works,
and demonstrates how to build the application. We then introduce the open
source Pluto portal and show how you can deploy the example portlet on Pluto.

Chapter 3: The Portlet Life Cycle

In this chapter, we discuss how a portlet interacts with a portal, from initializa-
tion to removal. We provide a simple example that walks you through the stages
of the portlet life cycle, as well as a more complex example that illustrates the
issues of multithreaded portlet applications.

Chapter 4: Portlet Concepts

This chapter introduces many of the basic portlet concepts for the first time, or
in more detail, and much of the API is examined in depth. An example ties many
of these concepts together to demonstrate file upload to a portlet.

Among many other topics, the chapter discusses

• Request and response objects

• Attributes and properties

• The portlet context

Introduction

xviii



• Locales and internationalization

• Logging

• The API versioning scheme

• Sessions

• Default and custom modes

• Default and custom window states

Chapter 5: Using Servlets and JavaServer Pages with Portlets

Chapter 5 demonstrates how to invoke and include content from servlets and
JSP pages. Session management, the creation and processing of HTML forms,
and the portlet tag library are all addressed. We provide an example of a to-do
list portlet to illustrate these techniques.

Chapter 6: Packaging and Deployment Descriptors

In this chapter, we show you how to use the portlet deployment descriptor. We
also demonstrate XDoclet’s portlet integration, which lets us build and deploy
portlets easily.

Chapter 7: Portal and Portlet Configuration

This chapter describes the standard configuration information available to a
portal and the portlets it contains. It discusses

• The PortalContext class

• Portal properties

• Window states and portlet modes configuration

• The PortletConfig class

• Portlet preferences

xix

Introduction



Chapter 8: Security and Single Sign-On

This chapter demonstrates how to integrate a portlet with a Single Sign-On
solution using Kerberos as an example. We also discuss many of the other
authentication and authorization technologies that are available to a portlet
developer.

Chapter 9: RSS and Syndication

You’ll learn how a portlet can incorporate syndicated links from other sites and
how an application can present its own links to similarly capable external sites.

Chapter 10: Integrating the Lucene Search Engine

Lucene is a powerful, open source search engine. We show you how to create an
index with Lucene, and then how to build a portlet that searches content in that
index.

Chapter 11: Personalization and User Attributes

This chapter examines the information available to personalize portlets for the
current user, and we describe the limited but useful facility for persisting user
data. We discuss the use of a rules engine to govern portlet content decisions.

Chapter 12: Web Services for Remote Portlets (WSRP) and
Application Syndication

We discuss the Web Services for Remote Portlets (WSRP) specification, and then
tie WSRP into the broader problem of application syndication.

Chapter 13: Exposing an Existing Application As a Portlet 

This chapter demonstrates how an existing real-world application, the YAZD
forum software, can swiftly be converted into a portlet application using the
techniques described in earlier chapters.

Introduction

xx



Chapter 14: Charting with JFreeChart

We apply the open source JFreeChart project to provide professional data-charting
capabilities within a portlet. 

Chapter 15: Content Management Systems

In our final chapter, we discuss integrating content management systems (CMSs)
into portlets. We provide an overview of the new JSR 170 Java Content Repository
API specification for CMS integration. WebDAV is a standard protocol for working
with content management systems, and we build a portlet client for a WebDAV
server.

Introduction

xxi





1

CHAPTER 1

Introduction to
Portals and Portlets

THIS BOOK IS FOR SOFTWARE developers and designers who develop Java applica-
tions for portals. We cover version 1.0 of the Java portlet API, also known as Java
Specification Request (JSR) 168. Portlets are the individual components that pro-
vide content for a portal. Portals aggregate one or more portlets into web pages,
which are usually personalized or customized for individual users or groups of
users. Some portals also support mobile devices and voice support.

Before the release of this portlet API, each portal had a different API for develop-
ing portlets. Most Java portal vendors will support the JSR 168 standard in addition
to their existing proprietary API. If you develop your portlets to the new portlet API
standard, you can deploy them on any JSR 168-compatible server, just as any com-
patible servlet container can deploy servlets.

You may use the open source portal server Apache Pluto to run the portlets
we write in this book. You are able to deploy your portlets on any other portals
that support the standard, because none of the portlets will use any proprietary
features. We use several open source software components to provide additional
functionality beyond the portlet API.

Some of the problems we provide solutions for in later chapters are person-
alization, portal deployment, Single Sign-On (SSO), content syndication, and the
porting of an existing application into a portal infrastructure. In this chapter, we
discuss portals, information architecture, and background on the portlet API.

Providing a Solution with Portals

Usually, the decision to build a portal environment is made at a high level within
an organization after users become frustrated with using applications that are not
integrated and are not immediately visible. Other times, a project involving an
extranet for suppliers and customers gets started, and the easiest way to aggregate
security for all of these new users is through a portal’s SSO feature. In this book, we
do not discuss the business case for a portal within an organization. We wrote this
book for developers and architects who have chosen to use a portal server that
implements the Java portlet API and need to solve technical problems.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 1

2

From a technical perspective, a portal provides a solution for aggregating con-
tent and applications from various systems for presentation to the end user. The
users do not need to know how the content or functionality is provided; they just
want to enjoy the benefits of a single web site and all of its services. Typically,
a portal has an integrated user interface and an SSO approach for security. The
software developer’s job is to take all of the systems that provide these services and
add interfaces to them to work with the portal. Portlets are the individual compo-
nents displayed in the portal. Prior to the introduction of the standardized portlet
API, portlets had to be custom-developed for each portal server because the API
was different for each server. The leading portal vendors joined to create a standard
to promote portal technology. Inside the Java Community Process (JCP), the name
of the standard for the first version of the Java portlet API is JSR 168. Future versions
of the portlet API will have different JSR numbers.

One of the problems for the designer or architect in charge of the portal proj-
ect is that the existing systems do not always separate cleanly into presentation
and business logic layers. Also, consider portal security and personalization when
examining existing applications. In this book, we port an existing web application
into a portlet application, so you can learn from some of our portlet integration
problems. New software projects that integrate with the portal can use a services-
oriented architecture with exposed web services, a stand-alone web application,
or a portlet. 

Portal projects have two major technical components designed in parallel:
application architecture and information architecture. Both of these will flow
from business requirements, and they require an integrated approach. If the por-
tal applications do not support the common information architecture, the users
will have a substandard experience. We discuss creating an information architec-
ture for a portal environment in the next section. 

Designing the Portal’s Information Architecture

Moving all of your applications into a portal does not accomplish anything if your
users are not able to solve their problems. One of the first steps for deploying a por-
tal solution effectively is to gather requirements from the users and design the
information architecture for your portal project. The information architecture
includes the content displayed through the portal, the user interface, the available
portlets, metadata, a search engine, and a classification system or taxonomy. The
portal’s information architecture defines the user-centered approach to the portal,
while the technical architecture is what the developers use to build the portal.
Aligning these two forces is a difficult task, but it is necessary for a successful project. 

If you have not identified all of the users of the portal system yet, try to account
for at least the three main types of users for a portal project: customers, suppliers,

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Introduction to Portals and Portlets

3

and employees. Most portal projects utilize phases or stages, with the initial phases
usually being deployed only to a smaller group of users, usually side by side with
existing systems. This will lower the risk profile for the project and cut initial
support costs. 

Identifying Content for the Portal

The business requirements for the portal determine the different collections of
content. The content could be in content management or document management
systems, in a database, on another web server, on the file system, or in any num-
ber of other places. Not all of your content is going to be web-ready, and you may
need to write adapters to translate legacy content to XML or HTML. Some portal
content may be syndicated using Rich Site Summary (RSS) feeds.

Another set of requirements determines who has access to what content. This
can be set up with access rights, with pieces of content mapped into content col-
lections, and users assigned into groups that can access these collections. Your
content management system may already have all of this access control built in,
and part of the portal project could be to integrate the portal authentication with
the content management system security. Other implementations may have to build
content security functionality on top of the portal’s security model.

Identifying the Metadata for the Content

Most organizations do not have an enterprise-wide standard for their content
metadata yet. Creating one makes the portal project much easier. Metadata is
any descriptive information about content that can provide context, such as the
title, creator, timestamp, or description. Traditionally, content cataloging has been
a field where librarians excel, but it is certainly possible for content creators to
learn how to provide correct metadata.

One standard for metadata is the Dublin Core Metadata Element Set
(www.dublincore.org/documents/dces/). This set of 15 metadata elements contains
fields for

• Title

• Creator

• Subject

• Description

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 1

4

• Publisher

• Contributor

• Date

• Type

• Format

• Identifier

• Source

• Language

• Relation

• Coverage

• Rights

The metadata can be stored inside the HTML document within <META> tags,
as elements in an XML document, in a database, or in a Resource Description
Framework (RDF) file that is separate from the content file.

If your content repositories do not have this information, you will need to
create the metadata from the existing content. This can be a time-consuming
manual process, but commercial tools for metadata extraction are available.

Designing the User Interface

Most portals (including the open source Apache Jetspeed 2 portal) are customiz-
able using a set of skins, or themes, that provide look and feel. The HTML and
style sheets for the portal are contained in the skin. The layout of the initial por-
tal page the users will get when they log in is usually customizable through the
administration tool. Many users will not customize the layout of this page, even
if allowed, so an effective design is important. Determine which applications or
content sources are going to be used most often (e-mail, human resources, engi-
neering documents, etc.). Build prototypes of the proposed screens, and let users
interact with the portal functionality.

From a technical perspective, changing the portal layout or look and feel after
deployment is very simple, but the end users may require additional training and

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Introduction to Portals and Portlets

5

notification that the site layout is going to change. Some end users will always be
resistant to change, even if it would improve their productivity, and this affects
possible redesigns.

Creating an Effective Search Engine

We look at integrating the open source Jakarta Apache search engine Lucene
with a portlet in Chapter 10. Your search engine should index as many of your
content sources as possible, but it will probably need to be broken down into dif-
ferent collections for different classes of users. The metadata for the content will
become fields in Lucene’s search index for advanced searching. Commercial
search engine vendors should provide portlets that plug into any portal server
that implements the standard.

Portal Application Architecture

The information architecture leads to the technical architecture of a portal project.
Part of the portal architect’s job is to link the two together into a coherent design.
For instance, if the business users require a natural language search engine or
a structured view of all content in the system, the technical components used to
build the portal must reflect this.

All portals that are compatible with the portlet API will have a similar structure.
The portal will need to run inside a servlet container such as IBM WebSphere or
Apache Tomcat. Because each portlet application deployed on the portal is also
a web application, the servlet environment serves any web resources such as
servlets or JavaServer Pages (JSP) files. The portal is responsible for providing
administrative functionality, a layout for the portlets on the portal page, and the
execution of the portlets within a portlet container. The portlet container may be
a separate piece of software, but most portal implementations will integrate the
container into the portal. Just as a servlet container is responsible for executing
servlets, the portlet container will execute any portlets. The portlets have an exe-
cution life cycle that we will discuss in Chapter 3.

In this book, we use the terms portal and portal server interchangeably to
reference the server-side application that runs the portlets, manages users, and
displays portal pages.

Each visitor to the portal will receive a portal page, which will contain one or
more portlets in a customizable layout. These portlets could be commercial portlets
that integrate with your existing systems, open source portlets customized for your
installation, or custom portlets you have created. Portlets are as easy to create as
servlets, and your servlet programming background will help in creating effective
portlets.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 1

6

Building Portlets with the Portlet API

Portlets are components written in Java against the portlet API. The Java classes
in the portlet API are in the javax.portlet package. Each portlet takes a request
from the portal container and returns a response. The response contains content
that the portal container will display as part of the portal page sent to the end user.
Portlets may include JSP pages, Velocity templates, or another presentation layer
technology. Just as with servlets, few developers will put any content directly into
the Java code for any nontrivial portlets. In this book, we will use HTML inside of
the portlet’s Java code until we explain how to use JSP pages inside a portlet in
Chapter 5.

The portlet container is responsible for sending requests from the portal to
the portlet, and then passing the portlet response back to the portal. It also man-
ages the initialization of the portlet, along with other life cycle events. The portal
is responsible for taking the content from the portal container for each portlet and
building a web page for the end user. The portal handles the layout, aggregation,
and any personalization or SSO security features.

The portlet application is a standard Java 2 Enterprise Edition (J2EE) web
application, with the addition of portlet classes and a portlet deployment descrip-
tor named portlet.xml. The directory structure of the portlet application is the same
as a web application’s layout. A web application archive (WAR) file is also the for-
mat used for packaging the portlet application. The portal vendor is responsible
for providing deployment and administration tools. 

The standard build and packaging tools provided with your choice of Java
programming environment or integrated development environment (IDE) for web
applications are usable for building portlet applications. We are using the open
source Java build tool Ant in this book. If you are not familiar with Ant, we rec-
ommend you check out Java Development with Ant by Erik Hatcher and Steve
Loughran (Manning, 2002) or Extreme Programming with Ant by Glenn Niemeyer
and Jeremy Poteet (Sams, 2003). Another source to check is the Apache Ant Manual
on the Ant web site (http://ant.apache.org/).

Our example portlets deploy into the open source portal Apache Pluto (http://
jakarta.apache.org/pluto), although they will work on any compatible implemen-
tation of the portal. Apache Jetspeed (http://portals.apache.org/jetspeed-2/) is
a full-featured open source portal from Apache. There are currently two versions
of Jetspeed: Jetspeed 1 does not support the Java portlet API, and Jetspeed 2 does
support JSR-168. EXO (www.exoplatform.org) is another open source portal that
supports the new Java portlet API, and it also supports Struts and JavaServer
Faces (JSF). Most of the commercial Java portal vendors will have implementations
of the Java portlet API out already or shortly. Some bundle JSR-168 support into
a new version, and others are releasing support as an add-on module.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Introduction to Portals and Portlets

7

Providing Technical Solutions with Portals

Portal implementations usually involve a wide variety of interesting technical
problems. Because they are generally systems for integrating a range of business
systems, content stores, and web applications, the goals for the portal project are
usually specific to the installation. Some of the goals that typically come up are inte-
grating a search engine with the portal and providing an SSO interface for security.
Other common development tasks for portal projects include extending person-
alization across all of the portal’s applications, integrating content management
systems, and creating portlets for systems that were not designed for portals.

In this book, we discuss all of these problems, plus several others, and provide
solutions that work within a portal environment. Our hope is that you will be able
to take our solutions and make them work for your problems.

Security and Single Sign-On

The portlet API has a basic security model based on the servlet security model.
Security is an area that is going to depend heavily either on the proprietary features
of your chosen portal, or on leveraging a third-party product that can handle
a unified security model.

Single Sign-On is a key requirement for most portal projects, and we cover the
different strategies that can be used for SSO projects. We cover SSO in Chapter 8.

Content Syndication and RSS

One common requirement for a portal deployment is to implement content syn-
dication on the portal for multiple sources of content. This content could be from
a content management system; from an internal groupware application; or from
external sources like Reuters, Yahoo!, or CNN. In this book, we discuss using the
RSS format for syndicating content on channels. The RSS portlet can consume
RSS feeds that other sites publish. 

We also discuss the mechanics of publishing an RSS feed for an existing con-
tent store. Our search engine integrates with RSS, so a content feed constantly
updates a list of the top hits for a given search. This is useful for creating ad hoc
knowledge management systems within your organization.

We will discuss RSS and content syndication in more detail in Chapter 9.

Searching Content from the Portal

In this book, we use the open source search engine Lucene from the Jakarta Apache
project to create a portlet for searching content in a Lucene index. Our Lucene

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 1

8

Portal

Student Info
Portlet

Course
Add/Drop
Portlet

Available
Classes
Portlet

Student
Service

Course Schedule
Service

Web-Based
Course Service

Mainframe
Application

AS/400
Application

Desktop
Application

Figure 1-1. Example web services and portal architecture

search portlet is compatible with any content indexed with Lucene. We demonstrate
how to create a simple index from content on the file system. We also deliver the
content for the search results inside the portlet.

We create the Lucene search portlet in Chapter 10.

Portals and Web Services

Portals are a natural fit for a services-oriented architecture. Portlets contain the
user interface and controller logic, and call out to a service to retrieve information
or execute a transaction. These services run on any platform that supports a Simple
Object Access Protocol (SOAP) web services API, and the portlet calls out to them
using a Java SOAP toolkit like Axis from the Web Services Apache project, or Glue
from webMethods. These services can interface with existing mainframe or client
server applications, and new enterprise applications should expose a SOAP web
services API. 

Figure 1-1 shows an example of a portal and web services architecture for
a school or university. The enterprise systems for student information and course
scheduling have a web services layer that exposes core functionality to the portlets.
The web-based courseware service acts as a stand-alone service that can supply
content to users of the portal. A desktop application uses SOAP to access the
course scheduling system.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Introduction to Portals and Portlets

9

Web Services for Remote Portals (WSRP)

Another approach is to create a distributed portal infrastructure. A portal that sup-
ports the Web Services for Remote Portals (WSRP) standard can display portlets
from other WSRP-enabled portals. The producer portal publishes its available portlets
to a registry, and a consumer portal can display a remote portlet from the registry.
The protocols for displaying a portlet from a remote location were standardized with
the WSRP specification from the Organization for the Advancement of Structured
Information Standards (OASIS). We will cover WSRP in Chapter 12.

Integrating Existing Applications into the Portal

There are several approaches to bringing existing applications into a portal envi-
ronment. The application can have a WSRP layer written on top, and host itself
as a portlet producer. Another approach that uses SOAP is to completely write
a thin web services layer on top of the core functionality, and then develop a portlet
for that application.

For Java applications that do not have a services layer to expose, or where the
value of the application is in the user interface, it makes sense to consider rewrit-
ing the application as a portlet or set of portlets. The business logic and persistence
can be factored out of the existing application as it is rewritten. This creates
a common base layer for both the new portlet user interface and the existing user
interface. 

Non-Java applications will have to be exposed using SOAP or another cross-
platform API. For mainframe and AS/400 character mode applications, several
commercial screen scraper products can translate a terminal interface into calls
to and from a Java application. The portal may use a proxy portlet to serve existing
web-based applications through the portal. The proxy portlet receives a request
from the portal’s end user and translates it into a web request for the existing
application. The existing application responds to the proxy portlet’s request with
a response, which the proxy portlet then translates into a response for the portal.
The portal aggregates that response with the rest of its content to produce a page
for the end user. Some of the issues to consider when designing a proxied system
like this one are SSO and security, personalization, a consistent look and feel, and
the ability to keep track of sessions at the proxy portlet level.

We convert a web-based open source message board to use portlets in
Chapter 13. We used the open source forums package YAZD as the beginning of
our project. YAZD is built on a servlet and JSP architecture. We built a controller
portlet that dispatches requests to the appropriate JSP page.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 1

10

Using Charts in the Portal

Business intelligence and other analytical applications often use charts to commu-
nicate information. Some portal projects create “digital dashboards” that represent
the current state of the organization for managers—for instance, a sales manager
could see outstanding sales calls for each salesperson, sales margins for products,
and profit projections for the quarter. We use the open source charting product
JFreeChart to develop charts for portlets in Chapter 14. 

Content Management and Portlets

In Chapter 15, we discuss two standards for communicating with content manage-
ment systems: the Java Content Repository API and the WebDAV protocol. We
create a portlet that uses the WebDAV protocol to integrate with a content man-
agement system. In this chapter, we use the open source WebDAV client library
from the Apache Slide project to build our portlet.

Summary

Portal projects that use standards are going to be easily portable to new portal
containers, and developers can use portlets from third-party vendors to create
their portals. Before starting work on the production version of your portal, develop
an information architecture from the user’s perspective. It should show how the
portal is going to look, what it is going to do, and what problems it solves. Start
small, with a prototype or deployment to a limited number of users, and build
out from there, to ensure that your portal deployment scales.

NOTE The authors created a web site for this book at www.portalbook.com. We
will have interesting articles, sample portlets, and more information about
upcoming portal standards and APIs.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



1

CHAPTER 3

The Portlet Life Cycle

AS WE’VE SEEN IN earlier chapters, portlets are conceptually very similar to servlets.
Like servlets, they can only operate within a container. Both have obligations that
their design must satisfy to allow them to interact with their container, and both
demand clearly specified behavior from their containers.

The portlet’s obligations are, broadly speaking, to provide implementations
of specific methods, to respond appropriately when these are invoked by the
container, and to handle error conditions gracefully.

This chapter describes the container’s interactions with a portlet, starting with
its creation and concluding with its destruction. It also considers the constraints
that are incumbent upon both the portlet and the container at each step in this life
cycle.

The Portlet Interface

To demonstrate the basic steps in the life cycle, let’s first look at a simple portlet
that implements the Portlet interface directly. Portlets need to implement this
interface, either directly, or indirectly by extending a class that has already imple-
mented the interface.

Here is a devastatingly simple portlet example:

package com.portalbook.crawler;

import java.io.*;

import javax.portlet.*;

public class SimplePortlet

implements Portlet {

public SimplePortlet() {

}

public void destroy() {

portletCounter--;

}

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

2

public void init(PortletConfig config) 

throws PortletException

{

portletCounter++;

}

public void processAction(

ActionRequest request, 

ActionResponse response)

throws PortletException, IOException

{

actionCounter++;

}

public void render(

RenderRequest request, 

RenderResponse response)

throws PortletException, IOException

{

renderCounter++;

response.setTitle("Simple Portlet");

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.write("The server has instantiated " + 

portletCounter + 

" copies of the portlet<br>");

out.write("This portlet has been rendered " + 

renderCounter + 

" times (including this one)<br>");

out.write("This portlet has received " + 

actionCounter + 

" action requests<br>");

PortletURL action = response.createActionURL();

out.write("Click <a href=\"");

out.write(action.toString());

out.write("\">here</a> to trigger an action.<br>");

}

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

3

private static int portletCounter = 0;

private int renderCounter = 0;

private int actionCounter = 0;

}

The portlet.xml file for the simple portlet follows:

<?xml version="1.0" encoding="UTF-8"?>

<portlet-app 

xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd" 

version="1.0" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd

http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">

<portlet>

<description>PortletBook Simple Portlet</description>

<portlet-name>simple</portlet-name>

<display-name>Simple Portlet</display-name>

<portlet-class>com.portalbook.crawler.SimplePortlet</portlet-class>

<expiration-cache>-1</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>VIEW</portlet-mode>

</supports>

<supported-locale>en</supported-locale>

<portlet-info>

<title>Simple Portlet</title>

<short-title>Simple</short-title>

<keywords>Simple, Example</keywords>

</portlet-info>

</portlet>

</portlet-app>

This portlet tracks the number of instances of the class that are being main-
tained by the portlet container at any given time, it counts the number of times
that the specific instance has been rendered, and it counts the number of action
requests that have been handled by the specific instance.

In the last section of this chapter, we will build a more realistic portlet appli-
cation that demonstrates some of the issues involved in a threading application,
and that builds upon the GenericPortlet class to make more complex portlet
reactions possible.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

4

Overview

It shouldn’t come as much of a surprise to find that the life cycle of a portlet is
broadly the same as that of a servlet. Servlets are generally responsible for render-
ing complete pages, and portlets are generally responsible for rendering fragments
of pages, so there’s an obvious correlation.

The life cycle of a portlet therefore breaks down into the following stages:

1. Creation of the portlet

2. Processing of a number of user requests (or possibly none)

3. Removal and garbage collection of the portlet

Creation of the Portlet

The creation of the portlet is probably the most complex “phase” in the life cycle
since it involves three quite distinct steps. However, two of them—loading and
instantiation—are very familiar Java concepts.

Loading the Classes

The container is able to load the classes required by the portlet at any point prior
to invocation of the constructor.

A portlet application often consists of many classes and libraries, for which
the actual portlet class is a relatively minor part of the whole. However, the port-
let represents the user’s way of interacting with the application. As such, it must
have access to the rest of the application. The specification therefore demands
that the portlet be loaded by the same classloader as the rest of the portlet
application.

This guarantees that the servlets and other resources of the application may
be accessed by the portlet that integrates it into the portal.

As with any class, at load time the class attributes will be initialized to their
default values, so our variable portletCounter will be set to zero.

Invoking the Constructor

A portlet is required to provide a public default constructor—that is to say, a con-
structor taking no parameters.

Loading and instantiation (invoking the constructor) can take place either
when the container starts the portlet application or when the container determines
that the portlet is needed to service a request. 

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

5

The option for delayed loading presents a benefit when a portlet will be used
infrequently and consumes substantial resources, since they will not be acquired
until they are actually needed. The trade-off is against performance, since the time
taken by the portlet to service a request will be increased by the time taken to
initialize its resources—but this will affect only the first user of the portlet. Where
a portlet is initialized with the portlet application, the hit is taken “up front” when
the application starts.

Our (minimal) constructor looks like this:

public SimplePortlet() {

}

It’s hard to say anything interesting about our sample constructor. The normal
instance initialization will take place, so that before the invocation of the construc-
tor the attributes renderCounter and actionCounter will be set to zero, but then it
does nothing, and, in fact, this is completely normal for a portlet implementation. 

Initializing the Portlet

The container is required to initialize the portlet once it has been loaded and
instantiated.

Although there’s nothing to prevent you from doing useful initialization in the
constructor, the configuration information isn’t available to you until the init()
method is called. As well as simplifying the implementation of the container, this
allows the complete API of the portlet to be defined by the Portlet interface (inter-
faces don’t allow the signature of the constructor to be specified):

public void init(PortletConfig config) throws PortletException

The init() method is passed an object implementing the PortletConfig inter-
face. This object will be unique to the portlet definition and provides access to the
initialization parameters and the ResourceBundle configured for the portlet in the
portlet definition.

The init() method on a portlet instance is called only once by a portlet
container.

Until the init() method has been invoked successfully, the portlet will not be
considered active, so static initialization of the class should not trigger any methods
that make this assumption. For example, the static (class rather than object scope)
initializers of your class should not invoke connections to a database.

In our example, the init() method increases the number of portlet instances
noted in the portletCounter attribute:

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

6

public void init(PortletConfig config)

throws PortletException

{

portletCounter++;

}

In a larger application, this method would be populated with code to extract
configuration information in order to establish resources such as database con-
nections and background threads. Our crawler example in the final section will
demonstrate the initialization of a background thread in its init() method.

Exceptions During Initialization

The initialization process is error-prone. You are likely to be making connections
to resources that may be unavailable and over which you have no control. For
example, your database server might be unavailable. Without a mechanism for
handling such errors, your portlet could end up in an invalid state. As you would
expect, the usual exception-handling mechanism comes into play here.

The init() method is permitted to throw a PortletException. If it does so, the
container is allowed to reattempt to load the portlet at any later time.

When constructing an UnavailableException, the portlet can provide a mes-
sage describing the problem. In this case, the portlet must not be restarted. Use
this exception if a configuration setting of the portlet will have to be changed to
get the portlet work to properly. For instance, the portlet may require version 9
of a database to connect to, but the database it tried connecting to was version 7.

public UnavailableException(String text)

For example:

throw new UnavailableException("The database has been decommissioned");

Alternatively, you can specify a minimum period of time (in seconds) during
which no attempt must be made to restart the portlet:

public UnavailableException(String text, int seconds)

For example:

throw new UnavailableException("The database is not currently available",5);

If the duration of the resource unavailability cannot be determined but is
still considered to be a temporary problem, the portlet should return a zero or
negative time.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

7

For example:

throw new UnavailableException("A website resource could not be reached",0);

If any other PortletException is thrown, the container is allowed to attempt
to restart the portlet at any time after the error. The container may either reuse
the original instance, or discard the original and re-create it.

If a portlet needs to throw an exception from its initialization method, it must
free any resources that it successfully acquired up to that point before doing so—
this is because the destroy() method will not subsequently be called, as the portlet
is considered to be uninitialized.

Request Handling

Once the portlet has been initialized, it is waiting for interactions with the users
of the portal.

The container translates requests from the users of the portal into invocations
of the render() and processAction() methods, thus elegantly breaking down the
user requests into actions that command the portlet to change the state of its
underlying application and render requests that display the application in its cur-
rent state at any given point.

Users trigger actions by clicking on action URLs or submitting HTML forms
that post data to an action URL. Upon receiving the action request from the user,
the portal must invoke (via the container) the appropriate portlet’s processAction()
method. Once this method has completed, it must call the render() method for all
of the portlets on the page. It is not required to invoke the render() methods in any
particular order.

Users trigger render requests by either triggering action URLs as described
previously, or by triggering a render URL. Again, upon receiving a request for
a render URL from a user, the portal must invoke the render() method on all of
the portlets in the page but is not obliged to follow any particular order.

The only exception to the invocations of the render() method as described is
(optionally) for portlets that are cached by the portal and for which the state has
not changed.

Since a single portlet is generally handling requests from multiple users, it
must be able to handle simultaneous requests on different threads in each of
these methods. In addition, it must not rely on any particular ordering of the
calls to these methods.

Because the portlet cannot maintain all of the state information for a session,
it is the container’s responsibility to manage this and provide it when these meth-
ods are called. 

Both action requests and render requests are similar, but each takes different
classes for arguments. The action request cannot write any content to the portlet’s
response, because its ActionResponse does not have access to the output. The

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

8

signatures of the two methods are very similar. First, here is the processAction()
method signature:

public void processAction( 

ActionRequest request, 

ActionResponse response)

throws PortletException, IOException

And here is the render() method signature:

public void render(

RenderRequest request, 

RenderResponse response)

throws PortletException, IOException

Each method receives a request object and a response object tailored to its
function. In each case, the request represents the state of the session for the user,
and the response object allows the method to interact with the portlet’s response.

The RenderRequest object will not generally need to change the state of the
underlying portlet application, so it provides the portlet with the information
necessary to produce a view of it in its current state.

Specifically, these include

• The state of the portlet window (minimized, maximized, etc.)

• The mode of the portlet (e.g., VIEW mode)

• The context of the portlet

• The session associated with the portlet (including authorization information)

• The preferences information associated with the portlet

• Any render parameters that have been set on a render URL from a posted
Form, or that have been set during the processAction() method

The ActionRequest object represents an opportunity to change the state of
the portlet based on its current state, so this provides everything offered by the
PortletRequest along with direct access to the content of the HTTP request made
by the user of the portal.

Note that ActionRequest and RenderRequest are both interfaces, so it is the
responsibility of the container to provide concrete implementation classes giving
access to the appropriate information

To respond to processAction() the portlet should update its ActionResponse
object. This provides methods to

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

9

• Redirect the client to a new page

• Change the mode of the portlet

• Add or modify rendering parameters for the user’s session

You change the state of the portlet’s container window in the portal. To
respond to render(), the portlet should update its RenderResponse object. This
provides methods to

• Render content into the container window displayed in the user’s view of
the portal

• Render URLs into that content, which will invoke actions on the portlet

Again, ActionResponse and RenderResponse are interfaces, and the container
must provide a suitable implementation to be used by the portlet.

Here is our sample processAction() method:

public void processAction(

ActionRequest request, 

ActionResponse response)

throws PortletException, IOException

{

actionCounter++;

}

The example processAction() makes only a trivial change to the state of the
portlet; it increments the counter of actions handled, so it does not have to inform
the container of any changes via the response.

Our sample render() method looks like this:

public void render(

RenderRequest request, 

RenderResponse response)

throws PortletException, IOException

{

renderCounter++;

response.setTitle("Simple Portlet");

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.write("The server has instantiated " + 

portletCounter + 

" copies of the portlet<br>");

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

10

out.write("This portlet has been rendered " + 

renderCounter + 

" times (including this one)<br>");

out.write("This portlet has received " + 

actionCounter + 

" action requests<br>");

PortletURL action = response.createActionURL ();

out.write("Click <a href=\"");

out.write(action.toString());

out.write("\">here</a> to trigger an action.<br>");

}

Because our sample portlet does not need to tailor its view to the different
users of the system, it is able to ignore the request parameter, which contains the
user-specific (session) state information. It does, however, need to render its current
state to the browser, and must specify the type of content that it will produce.

Our sample portlet demonstrates an important relationship between the
portlet and the portal: one portlet can be rendered multiple times on a single
page. If an instance of the portlet is placed in a portal page in two distinct places,
the portlet will be loaded once, rendered multiple times (twice each time the por-
tal page as a whole is rendered), and destroyed once.

The last few lines of this example method are of particular interest, since they
demonstrate how to provide a mechanism by which actions (and thus calls by the
container to processAction()) can be rendered:

PortletURL action = response.createActionURL ();

This retrieves an object from the response object provided in the parameters
of the render() method, which can render a URL representing a specific action. Our
example has only one type of action, but methods such as addParameter() can be
called on the PortletURL object to differentiate between calls to the various actions
that you want to implement.

Again, PortletURL is an interface, and it is the responsibility of the container
to provide a suitable implementation.

It is not appropriate to hardcode a URL into your portlet since the precise
details of the mappings between URLs and portlets are configurable by the admin-
istrator of the portal. In addition, portlet URLs distinguish between different
instances of a portlet running inside of a portlet. The portlet URLs are usually
prefixed with a namespace or another unique ID. These details will be specific to
the portal in which your portlet is running, so if you want to make your portlet
compatible between portals (and even between versions of the same portal) you
should always rely on the createActionURL() method.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

11

Destroying the Portlet

The destroy() method will not be invoked until all other initialization or processing
threads on the instance have completed. It will be invoked when the container
determines that the portlet is no longer required—the container is not required
to keep the portlet in service for any specific period of time.

The container invokes the destroy() method to release any resources that
have been retained by the portlet. The portlet will then be de-referenced by the
container and the garbage collector will be free to remove the portlet object from
memory.

The destroy() method is guaranteed to be called (unless initialization failed
with an exception), so this is also an appropriate place in which to notify other
parts of the application that the portlet is becoming unavailable.

Finalizers should not be used since their invocation is not guaranteed.
Destroying our example portlet looks like this:

public void destroy() {

portletCounter--;

}

Our example portlet uses the destroy() method to reduce the count of its
running instances in the class attribute portletCounter.

Threading Issues

In this final section, we demonstrate the life cycle of a portlet that uses background
threads of execution in a web crawler application.

Handling Concurrent Requests

Because the portlet container will handle concurrent requests from clients by
invoking the methods on the portlet on separate threads of execution, your port-
let must be able to handle any combination and number of simultaneous calls to
render() and/or processAction().

You must therefore implement your portlet to handle these concurrent
requests safely. In practice this is not usually too tricky—all the information you
need to process a request is provided in a thread-safe manner in the parameter
list, so if your portlets don’t use instance variables and they don’t access other
resources external to the portlet, your application will automatically be thread-safe.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

12

It is guaranteed that your init() method will be called only once at the begin-
ning of the life cycle and that no other methods will be invoked by the container
until init() completes successfully, so your init() method does not have to be
thread safe.

Your render() and processAction() methods will be invoked with request and
response objects. These are guaranteed to be unique to that invocation of the
method during the lifetime of the method. Containers are likely to recycle these
objects once the method in question has completed, so retaining a reference to
them outside the scope of the method to which they were passed may result in
unexpected behavior.

Our Thread-Safe Crawler

Our crawler class is implemented to be thread safe. It implements Runnable so it
can be created and started within a background thread.

Once the crawler is running, it can be queried at any time. The get methods
return unmodifiable sets so it is not possible for the client to externally alter their
state.

The crawler can be stopped by an external thread by calling the stopCrawler()

method. This is essential so that our portlet can be unloaded safely.
Our crawler implementation follows, with a running commentary. Although

this illustrates the functionality that’s needed in a web crawler, you should note
that it is a demonstration application only. We make a lot of assumptions and take
shortcuts that would not be acceptable in a commercial product.

package com.portalbook.crawler;

import java.io.*;

import java.net.*;

import java.util.*;

public class Crawler

implements Runnable

{

Our simplest constructor creates an instance to crawl a given path. This will
search only within the host of the path specified:

public Crawler(String path)

throws MalformedURLException

{

this(path,DEFAULT_LINK_DEPTH);

}

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

13

This more complex constructor creates an instance to crawl a given path. It
will search within the host of the path specified, and up to the specified number
of sites (depth) away. If depth is 2, the crawler will look within the host of the path
specified and within the hosts of sites referenced directly from this site, but no
further:

public Crawler(String path, int depth)

throws MalformedURLException

{

this(new HashSet(

Arrays.asList(

new Object[]

{ new URL(path) })),

new HashSet(),

new HashSet(),

new HashSet(),

new HashSet(),

depth);

}

This internal constructor is used directly or indirectly by the public ones to
create the instance to crawl a given set of paths. It will search within the hosts
specified, and up to the specified number of sites away from those sites. It will
not search forbidden hosts, failed hosts, or already visited hosts:

protected Crawler( Set links,

Set visited,

Set visitedHosts,

Set forbidden,

Set failed,

int depth )

{

this.links        = links;

this.visited      = visited;

this.visitedHosts = visitedHosts;

this.forbidden    = forbidden;

this.failed       = failed;

this.currentHost  =

(URL)links.iterator().next();

this.depth        = depth;

}

Our crawler is designed to run as a thread, so it implements the Runnable
interface. It can therefore be passed in as a parameter to a new Thread object.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

14

When the start() method of the containing Thread object is called, the following
run() method will be started on the background thread of execution:

public void run() {

This code flags that work is in progress:

setStopped(false);

try {

until we instruct the thread to stop, or it runs out of links to search, or it reaches
the edge of the network of links that we’re allowing it to search:

while( !isStopped() &&

(links.size() > 0) &&

(depth > 0) ) {

This code gets the first link from the queue of links to search:

URL link =

(URL)links.iterator().next();

If the link is on a different host

if( !isCurrentHost(link) ) {

this code goes to that host and searches the link (if we’re allowed):

crawlNewHost(link);

} else {

This code crawls the link:

crawl(link);

}

}

Normal or abnormal termination should flag that work has completed
regardless:

} finally {

setStopped(true);

}

}

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

15

TIP Most of the work of the crawler is carried out from within private meth-
ods. As with all good object-oriented designs, these hide the implementation
details from the user of the class—this is particularly important with a multi-
threaded design, since you will need to carefully isolate any code that might
cause problems if two different threads were to execute it simultaneously.

This private method processes a buffer containing the contents of a robots.txt
file and adds forbidden URLs to the appropriate list. The link for the robots.txt file
is required to convert the relative disallowed paths into absolute URLs:

private void processRobotBuffer(

StringBuffer buffer,

URL link)

{

Now we prepare to gather up potential URL strings:

List disallows = new ArrayList();

and look for DISALLOW tokens. Any token immediately following a DISALLOW is
presumed to be (potentially) a path:

StringTokenizer tokenizer =

new StringTokenizer(buffer.toString());

while(tokenizer.hasMoreElements()) {

String element = tokenizer.nextToken();

if( element.equalsIgnoreCase(DISALLOW) &&

tokenizer.hasMoreElements() ) {

String path = tokenizer.nextToken();

disallows.add(path);

}

}

The following code iterates over the disallow tokens gathered and converts
them into absolute paths and then URLs to forbid access:

Iterator i = disallows.iterator();

while(i.hasNext()) {

String path = (String)i.next();

try {

URL disallowedURL = new URL(link,path);

forbidden.add(disallowedURL);

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

16

} catch( MalformedURLException e ) {

// Couldn't form a URL from this. 

// No point disallowing access to a

// link we can't access anyway.         

}

}

}

This private method determines the robots.txt file that governs access to the
host on which the link resides, parses, and then disallows access to links as
required by the robots specification; however, we’re polite and assume that any
link that’s disallowed to anybody must be forbidden to us. This makes the logic
slightly simpler but would not normally be done in a production system. The
robots.txt information is cached with the host as the key, so we look it up only
when we encounter the first link from a site:

private void processRobots(URL link) {

If the host has been visited before, we’re not obliged to reread the robots.txt
file. If this is the first visit, however, we need to determine which paths to
discard:

HttpURLConnection connection = null;

try {

if( !visitedHosts.contains(link.getHost()) ) {

This code creates an HTTP connection to the link:

URL robotLink = new URL(link,"/robots.txt");

connection =

(HttpURLConnection)robotLink.openConnection();

This code gets the page:

connection.setRequestMethod(GET);

connection.setRequestProperty(

USER_AGENT,AGENT_IDENTIFIER);

And this reads the page into a buffer:

InputStream input =

(InputStream)connection.getContent();

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

17

BufferedReader reader =

new BufferedReader(

new InputStreamReader(input));

int i = 0;

StringBuffer buffer = new StringBuffer();

String line = null;

while((line = reader.readLine()) != null) {

i++;

buffer.append(line);

buffer.append('\r');

}

We now close the connection to the page and discard held resources:

reader.close();

connection.disconnect();

connection = null;

Next we process the buffer to determine what links are permitted:

processRobotBuffer(buffer,link);

}

} catch( IOException e ) {

Good. There is no robots.txt file, and we’re allowed to view the site.
To ensure that the connection is always closed correctly, we use the following:

} finally {

if( connection != null ) {

connection.disconnect();

}

}

}

This private method crawls a specified URL and adds all valid HREF entries
to the queue of links to be crawled (unless they are denied by the appropriate
robots.txt file or have already been crawled):

private void crawl(URL link) {

HttpURLConnection connection = null;

try {

Now let’s check to see what is or isn’t permitted on this host:

processRobots(link);

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

18

This code creates an HTTP connection to the link:

connection =

(HttpURLConnection)link.openConnection();

Now we get the page:

connection.setRequestMethod(GET);

String contentType = connection.getContentType();

if( (contentType != null) &&

contentType.startsWith(TEXT_HTML) ) {

InputStream input =

(InputStream)connection.getContent();

And read the page into a buffer:

BufferedReader reader =

new BufferedReader(new InputStreamReader(input));

int i = 0;

StringBuffer buffer = new StringBuffer();

String line = null;

while((line = reader.readLine()) != null) {

i++;

buffer.append(line);

}

To close the connection to the page and discard held resources, we use
this code:

reader.close();

connection.disconnect();

connection = null;

The next step is to process the page. This code assumes that the page is small
enough to manage in memory:

processBuffer(buffer,link);

} else {

connection.disconnect();

connection = null;

}

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

19

We’ve handled the item, so let’s remove it from the queue of links:

visited(link);

} catch( IOException e ) {

The item caused a problem, so let’s remove it from the queue:

links.remove(link);

failed.add(link);

} finally {

To ensure that the connection is closed correctly, we use the following:

if( connection != null ) {

connection.disconnect();

}

}

}

This private method carries out actions once a link has been crawled. It
removes the link from the queue of links to visit, adds it to the set of visited links,
and adds its host to the set of visited hosts:

private void visited(URL link) {

links.remove(link);

visited.add(link);

visitedHosts.add(link.getHost());

}

This private method processes a buffer containing an HTML page. The context
is provided so that relative URLs can be resolved to their absolute URLs. HREFs
within the HTML are extracted, converted to absolute URLs, and added to the
queue of links to be crawled (if they have not already been visited and have not
been forbidden by a robots.txt file):

private void processBuffer(StringBuffer buffer, URL url) {

Let’s now prepare to gather up potential URL strings:

List foundHREFs = new ArrayList();

And look for HREF tokens. Any token immediately following an HREF is presumed
to be (potentially) a URL:

StringTokenizer tokenizer =

new StringTokenizer(buffer.toString(),DELIM);

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

20

while(tokenizer.hasMoreElements()) {

String element = tokenizer.nextToken();

if( element.equalsIgnoreCase(HREF) &&

tokenizer.hasMoreElements() ) {

String path = tokenizer.nextToken();

foundHREFs.add(path);

}

}

Now let’s boil them down to absolute URLs:

Set absolute = new HashSet();

Iterator i = foundHREFs.iterator();

while(i.hasNext()) {

String path = (String)i.next();

try {

URL toAdd = new URL(url,path);

if( !toAdd.getProtocol().equalsIgnoreCase("http") ) {

If it’s not a link beginning with “http” then it’s not a protocol we’re inter-
ested in:

} else {

absolute.add(toAdd);

}

} catch( MalformedURLException e ) {

If we encounter a MalformedURLException, then the crawler must have tried to
load an invalid path. We should ignore the URL as it’s probably a typo:

}

}

Let’s now remove all the URLs that we’re not allowed to visit for one reason
or another:

absolute.removeAll(forbidden);

And remove all the URLs that we’ve already visited anyway:

absolute.removeAll(visited);

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

21

We’ll add the remainder to the visit queue:

links.addAll(absolute);

}

The following private method crawls a link that is on a host other than the
one currently being processed. The simplest way to effect this is to instantiate
a new crawler specifying the appropriate URL, but to pass it the information on
visited and forbidden hosts so that already crawled links can be ignored. Note
that we reduce the permitted depth by 1 for this next crawler so that it can’t creep
too far away from the original link. Eventually we’ll reach 0, and there’s no point
in instantiating the crawler because it would simply complete immediately.

private void crawlNewHost(URL url) {

Set links = new HashSet();

links.add(url);

if( depth > 1 ) {

Now let’s create a new crawler to crawl the external link:

Crawler crawler =

new Crawler(links,

visited,

visitedHosts,

forbidden,

failed,

(depth - 1));

The new crawler should be stopped whenever this crawler is stopped:

addListener(crawler);

This code flags that the URL has been visited:

crawler.run();

}

this.links.remove(url);

}

This private method adds a crawler to a set of crawlers that are children of
this crawler so that they can all by stopped when this one is stopped:

private void addListener(Crawler crawler) {

stopListeners.add(crawler);

}

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

22

This private method stops all the crawlers that are children of this crawler:

private void notifyStopCrawlers() {

Iterator i = stopListeners.iterator();

while(i.hasNext() && depth > 0) {

Crawler crawler = (Crawler)i.next();

crawler.setStopped(true);

}

}

This method allows the owner of the crawler to test to see if the crawler is
currently running:

public boolean isStopped() {

return stopped;

}

This method allows the owner to stop the crawler:

public void stopCrawler() {

setStopped(true);

}

The following private method sets the flag that causes the crawler to stop,
and if it’s set to true, it instructs any child crawler threads to stop as well:

private void setStopped(boolean stopped) {

if(stopped) notifyStopCrawlers();

this.stopped = stopped;

}

The next method allows the owner of the crawler to retrieve the set of links
(as URL objects) that the crawler has encountered so far and that were valid.
Access to the set of visited URLs is synchronized, and a copy is returned, so that
it is not possible for two threads to try to access the set simultaneously. By pur-
suing this policy for all of the publicly accessible stores of data provided by the
crawler, we make it thread safe with very little use of synchronization. Judicious
use of the synchronized keyword is important because it carries a significant per-
formance penalty. While this isn’t a big deal for our crawler (which is not limited
by processing speed so much as by bandwidth), getting good responsiveness is
often the primary goal when using threads:

public Set getVisitedURLs() {

synchronized(this.visited) {

return new HashSet(this.visited);

}

}

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

23

Similarly, this code allows the owner to retrieves the set of hosts (as Strings)
that the crawler has encountered so far:

public Set getVisitedHosts() {

synchronized(this.visitedHosts) {

return new HashSet(this.visitedHosts);

}

}

The following code retrieves the set of links as URLs that the crawler was for-
bidden to search by their associated robots.txt files:

public Set getForbiddenURLs() {

synchronized(this.forbidden) {

return new HashSet(this.forbidden);

}

}

Next we retrieve the set of invalid links as URLs that the crawler could not
search (usually because of a network problem of some sort, such as “404 Host
Not Found”):

public Set getFailedURLs() {

synchronized(this.failed) {

return Collections.unmodifiableSet(this.failed);

}

}

This private method determines if a given link falls within the set of links being
crawled by this crawler’s instance:

private boolean isCurrentHost(URL url) {

return currentHost.getHost().equalsIgnoreCase(url.getHost());

}

This field identifies the host that this crawler is searching:

private URL currentHost;

These fields are used to stop this thread and its child threads:

private Set stopListeners = new HashSet();

private boolean stopped = true;

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

24

These fields maintain information on where we’ve been so far:

private Set links;

private Set visited;

private Set visitedHosts;

private Set forbidden;

private Set failed;

private int depth;

The following are String constants required by the application mostly during
tokenization or protocol negotiation:

private static final String DELIM      =  "\t\r\n\" <>=";

private static final String TEXT_HTML  =  "text/html";

private static final String GET        =  "GET";

private static final String HREF       =  "HREF";

private static final String HTTP       =  "HTTP:";

private static final String DISALLOW   =  "DISALLOW:";

private static final String USER_AGENT =  "User-Agent";

This is the “official” name of this agent for identification in the logs of the
servers we’re searching:

private static final String AGENT_IDENTIFIER="WoolGatherer";

Finally, we specify the default search depth to be used if the single-argument
constructor is used:

private static final int DEFAULT_LINK_DEPTH = 1;

}

Here is the portlet.xml file for the crawler portlet:

<?xml version="1.0" encoding="UTF-8"?>

<portlet-app 

xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd" 

version="1.0" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd

http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">

<portlet>

<description>Link Crawler</description>

<portlet-name>crawler</portlet-name>

<display-name>Link Crawler</display-name>

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

25

<portlet-class>

com.portalbook.crawler.CrawlerPortlet

</portlet-class>

<init-param>

<name>crawlPath</name>

<value>http://localhost:8080/</value>

</init-param>

<expiration-cache>-1</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>VIEW</portlet-mode>

</supports>

<supported-locale>en</supported-locale>

<portlet-info>

<title>Link Crawler Portlet</title>

<short-title>Crawler</short-title>

<keywords>Crawler, Link, Checker</keywords>

</portlet-info>

</portlet>

</portlet-app>

The GenericPortlet Abstract Class

Portlets are allowed to be displayed in the three standard modes—VIEW, EDIT,
and HELP. They do not have to support any of them except VIEW. Many do not
require any action handling. This results in a lot of boilerplate code to handle the
requests for each of these modes and render the response.

The GenericPortlet abstract class therefore provides an initial framework
around which you can build your custom portlet. At its simplest, a portlet derived
from GenericPortlet must implement a constructor, a getTitle() method, and
a doView() method. GenericPortlet then provides your application with a variety
of helper methods that you will make frequent use of. It is generally recommended
that you override GenericPortlet rather than directly creating your own implemen-
tation of the Portlet interface.

GenericPortlet’s render() method calls the doDispatch() method. This method
determines the current mode of the portlet render request, and calls doView(),
doEdit(), and doHelp() as appropriate (the modes that are permissible for a portlet
are configured in its deployment descriptor). The processAction() method throws

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

26

an exception if invoked, so your class must override this if you wish to handle any
actions.

Since our crawler portlet provides only a view method and does not accept
any actions, GenericPortlet provides the perfect starting point.

Our Threaded Crawler Portlet

Our crawler overrides GenericPortlet; this will simplify the implementation of our
very conventional design.

The constructor is empty:

public CrawlerPortlet() {

super();

}

The init() method retrieves the path from which the crawler will start from
the portlet configuration:

String path = (String)config.getInitParameter("crawlPath");

It then creates a new crawler object, and invokes it on a background thread:

crawler = new Crawler(path);

Thread background = new Thread(crawler);

background.start();

Our code does not need to retain a reference to the thread object, since this
will not be manipulated directly, but it does retain a reference to the crawler object,
since it will need to access its methods in order to retrieve information and ulti-
mately stop the crawler.

When the portlet is eventually unloaded by the container, the destroy()
method will be invoked:

public void destroy() {

crawler.stopCrawler();

crawler = null;

}

This method cleans up the portlet’s resources by stopping the crawler. The crawler’s
thread will exit, and no further action will be necessary (the container will manage
the removal of the portlet from memory).

When running, the portlet may be required to render itself into its container
and then onto the portal itself. This process would typically be triggered by the user
browsing to a page on which the portlet is configured to be displayed.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

27

The render() method of the Portlet interface will be invoked. This is caught by
the GenericPortlet implementation, and it instead sets the title (which it determines
by invoking getTitle()) and then invokes doDispatch(). The default implementa-
tion gets the title from the ResourceBundle of the PortletConfig of the portlet, but
we will override this to return a specific string without requiring configuration:

protected String getTitle(RenderRequest request) {

return "Link Crawler";

}

doDispatch() is provided as a default implementation by GenericPortlet.
It determines the mode of the portlet (VIEW, EDIT, or HELP) and then calls
the doView(), doEdit(), or doHelp() method as appropriate in order to render
the portlet in its appropriate mode.

Our sample provides only a VIEW mode, so all render requests must result in
a call to doView():

protected void doView( RenderRequest request, RenderResponse response)

throws   PortletException,

IOException

{

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.write("<table><tr><td>");

out.write("<h2>Crawler</h2>");

out.write("<table cellspacing=\"0\"")

out.write("border=\"1\">");

out.write("<tr><td align=\"right\">")

out.write("<i>Status</i></td><td><b>");

out.write(

crawler.isStopped() ? "stopped" : "running");

out.write("</b></td></tr>");

out.write("</table>");

renderCollection(out, "Hosts Crawled",

crawler.getVisitedHosts());

renderCollection(out, "Links Visited",

crawler.getVisitedURLs());

renderCollection(out, "Failed Links",

crawler.getFailedURLs());

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

28

renderCollection(out, "Forbidden Links",

crawler.getForbiddenURLs());

out.write("</td></tr></table>");

}

Whenever doView() is invoked, we render a simple set of tables demonstrating
the current state of the crawler running in the background. Appropriate headers
for the response are rendered, and then the output print writer is retrieved from
the response object and all output is generated using this.

Both of our examples have used inline HTML to render output to the portlet
window. Although this is straightforward, you can see with this example that it
rapidly makes the structure of the page difficult to follow. In Chapter 5, we discuss
the option of delegating the rendering of the page to a servlet or JavaServer Pages
(JSP) page instead.

The full implementation of our threaded portlet follows. Because our crawler
implementation is thread safe, we have only to ensure that we start the crawler
thread in the init() method, and stop it in the destroy() method, and that we don’t
start any additional threads during the lifetime of our portlet.

Here is the threaded crawler portlet in full:

package com.portalbook.crawler;

import java.io.*;

import java.net.*;

import java.util.*;

import javax.portlet.*;

public class CrawlerPortlet

extends GenericPortlet

{

public CrawlerPortlet() {

super();

}

public void init(PortletConfig config)

throws PortletException

{

String path =

(String)config.getInitParameter("crawlPath");

try {

crawler = new Crawler(path);

// Here we create and kick off the background

// thread of execution.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

29

Thread background = new Thread(crawler);

background.start();

} catch( MalformedURLException e ) {

throw new PortletException(

"Portlet could not be initialised",e);

}

}

public void destroy() {

// Here we ensure that the background

// thread is terminated safely.

crawler.stopCrawler();

crawler = null;

}

private void renderCollection(

PrintWriter out,

String title,

Collection collection )

throws IOException

{

out.write("<table cellspacing=\"0\"");

out.write("border=\"0\">");

out.write("<tr><td><b>");

out.write(title);

out.write("</b></td></tr>");

Iterator i = collection.iterator();

while(i.hasNext()) {

out.write("<tr><td>");

out.write(i.next().toString());

out.write("</td></tr>");

}

out.write("</table><br>");

}

protected void doView(

RenderRequest request,

RenderResponse response)

throws   PortletException,

IOException

{

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 3

30

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.write("<table><tr><td>");

out.write("<h2>Crawler</h2>");

out.write("<table cellspacing=\"0\"");

out.write("border=\"1\">");

out.write("<tr><td align=\"right\">");

out.write("<i>Status</i></td><td><b>");

out.write(

crawler.isStopped() ? "stopped" : "running");

out.write("</b></td></tr>");

out.write("</table>");

// Note that while we can access an object running 

// in a background thread from the doView method,

// we must not create a new thread of execution here.

renderCollection(out, "Hosts Crawled",

crawler.getVisitedHosts());

renderCollection(out, "Links Visited",

crawler.getVisitedURLs());

renderCollection(out, "Failed Links",

crawler.getFailedURLs());

renderCollection(out, "Forbidden Links",

crawler.getForbiddenURLs());

out.write("</td></tr></table>");

}

protected String getTitle(RenderRequest request) {

return "Link Crawler";

}

private Crawler crawler;

}

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



The Portlet Life Cycle

31

Summary

In this chapter, we have discussed the life cycle of a portlet. The portlet container
calls the init() method on the portlet to initialize the portlet, the portlet handles
any requests from the user, and the portlet is destroyed. The user can send either
action or render requests, and we discussed the order in which these requests are
handled. We also discussed error handling from the portlet’s initialization phase.

Our web crawler example demonstrates how a portlet can create and manage
a background thread. We discussed which methods on the portlet need to be made
thread safe, and which objects are guaranteed to be unique during processing.

In the next chapter, we discuss the concepts that underlie the design of the
portlet API and that account for the specifics of the portlet life cycle that we have
just described.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



89

CHAPTER 6

Packaging and
Deployment Descriptors

PORTLET APPLICATION ASSEMBLERS need to package each portlet application into
a web application archive (WAR) file for distribution and deployment. Each portlet
application contains a web and a portlet deployment descriptor, and we discuss
the formats used for each in this chapter. Several tools assist with the portlet
assembly and packaging process. We briefly discuss the Ant build tool, and cover
the XDoclet portlet extensions in more detail.

Portlet Application Packaging

The portlet application consists of the portlet classes, any libraries or resources,
a web application deployment descriptor, and a portlet application deployment
descriptor. Both deployment descriptors are contained in the portlet application’s
WEB-INF directory. 

The application assembler packages the portlet application into a WAR file.
The portlet application’s WAR file structure is identical to that of a standard Java
2 Enterprise Edition (J2EE) web application, with the addition of a portlet.xml
portlet application deployment descriptor and the portlet classes.

Versioning

Versioning each release of a portlet application can help you manage your portlet
distributions. If you are releasing the WAR file to other groups or other organiza-
tions, the version can help you track down specific bugs for a release. You can
also provide other information about the portlet application implementation, such
as the title and vendor name.

The versioning standard for a portlet application WAR archive is the same
one used for Java Archive (JAR) files. The versioning information belongs in the
WEB-INF/MANIFEST.MF file in the WAR archive. There are six different pieces of
metadata that describe the versioning for a portlet application: title, vendor, and
version both for the implementation and for the specification. It is up to you to
specify the titles, versions, and vendors. Some portals may have tools that track

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

90

these versions for you, and they can be useful if there is no other version infor-
mation in the WAR file.

Here is an example MANIFEST.MF file for a portlet application:

Manifest-Version: 1.0

Name: DocumentManagementPortlet

Specification-Title: WebDAV

Specification-Vendor: WebDAV

Specification-Version: 1.0

Implementation-Title: DocumentationManagementPortlet

Implementation-Vendor: PortalBook.com

Implementation-Version: 0.9.3

Portlet Application Deployment Descriptor Structure

An XML Schema named portlet-app_1_0.xsd specifies the structure of the portlet
application deployment descriptor. Your portal should include a copy of this
schema, either as documentation or for deployment descriptor documentation.
The full schema is too large to reprint in this book (over 15 pages), but we used
Altova’s XML Spy XML editor to generate diagrams from the schema. We discuss
each element in the schema, and give a pointer to the relevant chapter of this
book. Future versions of the portlet API may extend or change elements of this
schema, so when you upgrade to a portal that supports a newer version, check
the release notes to see what changed.

portlet-app

The root element of the portlet application deployment descriptor is the
<portlet-app> element. The <portlet-app> element contains any portlet defini-
tions, custom portlet modes or window states, the supported user attributes
for the portlet application, and the security constraints. This element represents
a distinct portlet application that is self-contained and can be deployed on a por-
tal with no dependencies. Figure 6-1 shows the XML Schema for this element.

There are two attributes on the <portlet-app> element. The first attribute
is named version, and it is required. The value of the version attribute is the version
of the portlet API that this portlet application supports. The deployment descrip-
tor must be valid with that version of the portlet application deployment descriptor
schema, but it may be invalid with future releases. Until a new version of the
portlet API is released, this value will be 1.0. The other attribute, id, is optional. 

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

91

portlet:portlet-appType

portlet-app

0..∞

portlet

— —

+

0..∞

custom-portlet-mode +

0..∞

custom-window-state +

0..∞

user-attribute +

0..∞

security-constraint +

Figure 6-1. The <portlet-app> XML Schema

The <portlet-app> element may contain <portlet> elements, which represent
portlet classes, <custom-portlet-mode> elements, <custom-window-state> elements,
<user-attribute> elements, or <security-constraint> elements.

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd" ➥

version="1.0" ➥

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ➥

xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd ➥

http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd">

<portlet>

...

</portlet>

</portlet-app>

portlet

The <portlet> element (see Figure 6-2) represents a portlet class and all of its
metadata. The only attribute on the <portlet> element is id, and it is optional. 

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

92

portlet:portletType

0..∞

description

0..∞

display-name

portlet-name

0..∞

init-param

0..∞

supported-locale

0..∞

portlet

0..∞

security-role-ref

1..∞

supports

portlet-class

expiration-cache

resource-bundle

+

portlet-info +

+

portlet-preferences +

portlet-info +

— —

+

—

—

Figure 6-2. The <portlet> XML Schema

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

93

Each portlet may have an optional description, which is specified in the
<description> element. Portal administration tools use the description to give
some context about the portlet to a portlet application deployment. 

TIP The <description> element is a child of many of the tags in the portlet
deployment descriptor. Its use is optional, but it is very handy for documenta-
tion or portlet deployment tools.

The <portlet-name> element is required for the portlet. Each portlet’s name
in the portlet application has to be unique. This name should not contain any
spaces or non-web-friendly special characters.

The <display-name> element provides a human-readable name for portal admin-
istration tools. It is optional.

The class name of the portlet belongs in the <portlet-class> element, which
takes a fully qualified Java class name, as shown here:

<portlet>

<description>Preferences Validation Portlet</description>

<portlet-name>PreferencesValidationPortlet</portlet-name>

<display-name>Preferences Validation Portlet</display-name>

<portlet-class>

com.portalbook.portlets.PreferencesValidationPortlet</portlet-class>

....

</portlet>

Each portlet may have zero or more portlet initialization parameters, which
are used to provide configuration information for all users. The <init-param>
element (see Figure 6-3) has three child elements: <description>, <name>, and
<value>. The <name> and <value> elements are required. For more on initialization
parameters, see Chapter 7.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

94

portlet:init-paramType

0..∞

description

name

0..∞

init-param — —

value

Figure 6-3. The <init-param> XML Schema

<init-param>

<name>indexPath</name>

<value>/java/index</value>

</init-param>

<init-param>

<name>repository</name>

<value>engineering</value>

</init-param>

The portlet container may cache the output of a portlet. The portlet defines
the timeout it expects for the cache in the <expiration-cache> element. If the
value is -1, the cached output is always valid:

<expiration-cache>0</expiration-cache>

The portlet may support more than one Multipurpose Internet Mail Extensions
(MIME) type, and for each MIME type, the portlet needs to tell the portlet container
which portlet modes are valid. These could be any of the standard portlet modes
(VIEW, EDIT, HELP), or custom modes that are specified later in the deployment
descriptor. Each MIME type should be specified only once, and there must be at
least one MIME type for each portlet. The <supports> element (see Figure 6-4) groups
MIME types, <mime-type>, and portlet modes, <portlet-mode>. The portlet modes
should be a comma-delimited list of valid portlet modes. For more on portlet modes,
see Chapter 4.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

95

portlet:supportsType

0..∞

portlet-mode
1..∞

supports — —

mime-type

Figure 6-4. The <supports> XML Schema

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>edit</portlet-mode>

<portlet-mode>help</portlet-mode>

<portlet-mode>view</portlet-mode>

</supports>

You may specify which locales the portlet supports with the <supported-locale>
element. The element should contain the name of a valid Java locale. There can
be more than one supported locale for a portlet. The portal may use these values
to localize content for the end user:

<supported-locale>en</supported-locale>

The portlet metadata can also be localized with a resource bundle. The resource
bundle should contain the information from the <portlet-info> tag (Figure 6-5),
specified as javax.portlet.title, javax.portlet.short-title, and javax.portlet.keywords.
The <resource-bundle> tag should contain the class name of the resource bundle.
The bundle should be in the portlet application’s classpath:

<resource-bundle>com.portalbook.Messages</resource-bundle>

portlet:portlet-infoType

title

short-titleportlet-info — —

keywords

Figure 6-5. The <portlet-info> XML Schema

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

96

portlet:portlet-preferencesType

preferences-validator

portlet-preferences — — 0..∞

preference +

Figure 6-6. The <portlet-preferences> XML Schema

The <portlet-info> element represents the portlet metadata. There are three
XML child elements that contain information: <title>, <short-title>, and
<keywords>. The portlet’s title bar uses the value in the <title> element, although
some portlets will change the title dynamically. The short title is for mobile phones,
PDAs, or other portal clients that do not have a lot of room for a title to display.

<portlet-info>

<title>Taxonomy Portlet</title>

<short-title>Taxonomy</short-title>

<keywords>Taxonomy,Lucene</keywords>

</portlet-info>

The <portlet-preferences> element (Figure 6-6) contains zero or more
<preference> elements and an optional <preferences-validator> element. The
<preferences-validator> value should be the class name for a validator class.
The <preference> element has a child <name> element, which is required, and
zero or more optional initial values. There is also a read-only flag for preferences
that cannot be modified. The preference value must be set in the deployment
descriptor.

Each portlet preference name must be unique for the portlet. You may have
portlet preferences with the same name for two or more portlets in a portlet
application. For more on portlet preferences, see Chapter 7.

<portlet-preferences>

<preference>

<name>bookmark</name>

<value>/content/marketing</value>

</preference>

<preferences-validator>

com.portalbook.portlets.TaxonomyValidator

</preferences-validator>

</portlet-preferences>

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

97

The <security-role-ref> element (Figure 6-7) maps portlet security roles to
web application security roles. For more on portlet application security, see
Chapter 8.

<security-role-ref>

<role-name>Administrator</role-name>

<role-link>admin</role-link>

</security-role-ref>

custom-portlet-mode

The <custom-portlet-mode> element (Figure 6-8) defines a custom portlet mode that
this portlet supports. Each portlet application can have as many custom portlet
modes as it needs. The <custom-portlet-mode> element has a <portlet-mode> ele-
ment that contains the name of the portlet mode, such as PRINT. The <description>
element is optional. 

portlet:security-role-refType

role-link

role-name

— 0..∞

description

0..∞

security-role-ref —

Figure 6-7. The <security-role-ref> XML Schema

portlet:custom-portlet-modeType

portlet-mode

— 0..∞

description

0..∞

custom-portlet-mode —

Figure 6-8. The <custom-portlet-mode> XML Schema

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

98

portlet:custom-window-stateType

window-state

— 0..∞

description

0..∞

custom-window-state —

Figure 6-9. The <custom-window-state> XML Schema

For more on custom portlet modes, see Chapter 4.

<custom-portlet-mode>

<portlet-mode>PRINT</portlet-mode>

</custom-portlet-mode>

custom-window-state

The <custom-window-state> element (Figure 6-9) defines a custom window state
supported by this portlet. The portlet application can have zero or more custom
window states. The <custom-window-state> element has a <window-state> element
that contains the name of the window state, such as ICON. The <description>
element is optional. 

For more on custom window states, see Chapter 4.

<custom-window-state>

<window-state>docked</window-state>

</custom-window-state>

user-attribute

The portlet application can access information about the user, but the requested
attributes must be explicit in the portlet deployment descriptor. Each user attribute
the portlet requires needs to be defined in portlet.xml as a <user-attribute> element
(Figure 6-10). The user attributes are optional, and there may be an unlimited num-
ber of them.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

99

portlet:user-attributeType

name

— 0..∞

description

0..∞

user-attribute —

Figure 6-10. The <user-attribute> XML Schema

The <user-attribute> tag has a <name> child element, which must be unique
for the portlet application. The <description> element is optional.

For more on user attributes, see Chapter 11.

<user-attribute>

<name>user.name.given</name>

</user-attribute>

<user-attribute>

<name>user.name.suffix</name>

</user-attribute>

<user-attribute>

<name>user.home-info.postal.country</name>

</user-attribute>

security-constraint

The <security-constraint> element (Figure 6-11) has an optional display name,
a portlet collection, and a user data constraint. The <portlet-collection> element
has a set of <portlet-name> elements that reference portlets defined in the portlet
application. The <user-data-constraint> element has a <transport-guarantee>

element and an optional description.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

100

portlet:security-constraintType

portlet:portlet-collectionType

portlet:user-data-constraintType

portlet-
collection

—

0..∞

display-name

0..∞

security-constraint —

transport-
guarantee

— 0..∞

description

——

user-data-
constraint

—

1..∞

portlet-name

Figure 6-11. The <security-constraint> XML Schema

The <transport-guarantee> element may have a value of NONE, CONFIDENTIAL,
or INTEGRAL. If the value is NONE, the portlets in the portlet collection do not
require any transport-level security. The CONFIDENTIAL guarantee means that
the data transmitted between the user and the portal cannot be seen by third
parties. The INTEGRAL guarantee requires that another party cannot alter traffic
between the user and the portal.

<security-constraint>

<portlet-collection>

<portlet-name>TaxonomyPortlet</portlet-name>

</portlet-collection>

<user-data-constraint>

<transport-guarantee>INTEGRAL</transport-guarantee>

</user-data-constraint>

</security-constraint>

Web Application Deployment Descriptor

Each portlet application needs a web application deployment descriptor named
web.xml that resides in the WEB-INF directory. Three portlet application settings
are common to the web application and belong in web.xml. The description

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

101

should be specified in the <description> element. The <display-name> tag con-
tains the name of the portlet application. Portlet security is controlled with
the <security-role> tag, although the portlet application deployment descriptor
also contains the <security-role-ref> tag for mapping roles.

In addition, any servlets or JSP pages descriptions belong in the web.xml file.
We covered servlets and JSP in Chapter 5.

Some portlet containers will rewrite your portlet application’s web.xml file as
part of the deployment process, but this should not affect your portlet development.
The following code snippet is from a web.xml deployment descriptor created
during the Apache Pluto deployment process:

...

<servlet>

<servlet-name>ContentPortlet</servlet-name> 

<display-name>ContentPortlet Wrapper</display-name> 

<description>Automated generated Portlet Wrapper</description> 

<servlet-class>org.apache.pluto.core.PortletServlet</servlet-class> 

<init-param>

<param-name>portlet-guid</param-name> 

<param-value>myapp.ContentPortlet</param-value> 

</init-param>

<init-param>

<param-name>portlet-class</param-name> 

<param-value>com.portalbook.portlets.content.ContentPortlet</param-value> 

</init-param>

</servlet>

...

The web.xml deployment descriptor was generated from the values in the
portlet.xml deployment descriptor.

XDoclet Portlet Support

XDoclet is an open source Java code-generation tool, with an Apache-style license.
The XDoclet home page is located at http://xdoclet.sourceforge.net/. You need
to download and install the XDoclet 1.2 package from SourceForge (http://
sourceforge.net/projects/xdoclet/) to run the examples in this section. You also
need Apache Ant 1.5 or greater (http://ant.apache.org) to run XDoclet. If you are not
familiar with Ant, the online Apache Ant manual (http://ant.apache.org/manual/
index.html) is a good place to start, as is Enterprise Java Development on a Budget
by Christopher M. Judd and Brian Sam-Bodden (Apress, 2004).

We are going to use XDoclet to generate the portlet.xml deployment descriptor
from our Java portlet class source code. Craig Walls wrote the portlet deployment
descriptor integration for XDoclet, which speeds up the portlet application

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

102

development process. To use XDoclet, you need to mark up your portlet classes
with custom JavaDoc tags. XDoclet processes the JavaDoc tags and creates the
deployment descriptor. The advantage is that the portlet description information
belongs with the source code for the portlet class, so when you create or modify
your portlet, it is easy to change the deployment descriptor information. For
instance, if the class or package name changes, the generated deployment descrip-
tor will contain the new name without any additional work on your part.

TIP Keep the XDoclet-generated files out of source control. Re-create any
generated files during the build process, because they will be derived from
source files that may have changed.

After working through the XDoclet example in this section, you should have
some idea of whether using XDoclet is worth integrating into your build process.
The portlet application deployment descriptor is not so complicated that automat-
ing its generation with XDoclet saves a lot of time on a normal project. For complex
development projects with many portlet applications and portlet classes, standard-
ization on XDoclet makes more sense. 

NOTE The main reason most developers use XDoclet is for generating
Enterprise JavaBeans (EJB) classes. XDoclet cuts down on the number of Java
classes that must be created and maintained for each EJB, so it can be a real
time-saver. If you are interested in using XDoclet for EJB code generation,
check out Enterprise Java Development on a Budget (Apress, 2004).

We will show you how to set up a portlet class with XDoclet tags and then how
to create an Ant build file that will generate a portlet.xml deployment descriptor. If
you had more than one portlet class in your project with XDoclet tags, XDoclet will
add all of them to the portlet.xml deployment descriptor.

XDoclet Tags for Portlets

We are going to reuse the SessionPortlet class from Chapter 4 for our XDoclet exam-
ple. None of the Java code in the portlet needs to be modified for XDoclet support;
we only have to add the XDoclet portlet tags to the class.

The first XDoclet tag we will use for SessionPortlet will be @portlet.portlet.
This tag represents one portlet class in the portlet application. There are four param-
eters on the @portlet.portlet tag: description, display-name, expiration-cache,
and name. These parameters correspond to several of the child elements of the

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

103

<portlet> tag in the deployment descriptor. The name parameter is required, and
it corresponds to the <portlet-name> tag. The name of the portlet must be unique
within the web application.

Here is the source code to the marked-up SessionPortlet class, with the
@portlet.portlet tag. Notice that the XDoclet tag looks like the @author and @version

JavaDoc tags in the source code. The @portlet.portlet tag takes up to four param-
eters, which can be specified on the same line as the tag name, or spread out over
multiple lines. Each parameter has a name and a value—for this tag, all of the val-
ues are plain text.

package com.portalbook.xdoclet;

import java.io.IOException;

import java.io.PrintWriter;

import javax.portlet.GenericPortlet;

import javax.portlet.PortletException;

import javax.portlet.PortletSession;

import javax.portlet.RenderRequest;

import javax.portlet.RenderResponse;

/**

* XDoclet example portlet

*

* @portlet.portlet

*          description="This portlet demonstrates the use of the portlet session."

*          display-name="Session Example"

*          expiration-cache="0"

*          name="SessionPortlet"

*

* @portlet.supports

*          mime-type="text/html"

*          modes="VIEW"

*

* @author Jeff Linwood and David Minter

* @version 1.0

*/

public class SessionPortlet extends GenericPortlet

{

public void doView(RenderRequest req, RenderResponse resp)

throws PortletException, IOException

{

String newMessage = null;

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

104

//set up for output

resp.setContentType("text/html");

PrintWriter writer = resp.getWriter();

//get the session, or create it if needed

PortletSession session = req.getPortletSession();

//if there is already a value in the session, get it

Object message = session.getAttribute("message");

if (message == null)

{

//This is nothing in the session stored by the name 'message'

newMessage = "Hi, This is the first visit to the portlet.";

}

else if (message instanceof String)

{

//change the message for repeat visitors

newMessage = "Welcome back to this portlet!";

}

//Store it in the portlet session

session.setAttribute("message", newMessage);

//write it out

writer.write(newMessage);

}

}

As you can see, we now specify some of the metadata about the portlet in the
Java class. We do not have to maintain this metadata in two different places; instead,
we can just generate the portlet.xml deployment descriptor from the Java class.

Creating the Ant Build File with XDoclet Support

We’ve updated one of our standard portlet application Ant build files with XDoclet sup-
port. XDoclet can be run only from an Ant build file, because XDoclet is implemented
as a set of Ant tasks. Here is a list of several of the available XDoclet Ant tasks:

• EJBDoclet: Used for generating local interfaces, home interfaces,
application-server specific deployment files, and Struts/EJB integration code

• WebDoclet: Used for generating a web application deployment descrip-
tor, JSP tag lib TLD files, struts-config.xml files for Struts, and servlet
container-specific deployment files

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

105

• HibernateDoclet: Generates the bean to database mapping files for the
open source persistence layer Hibernate

• PortletDoclet: Creates the portlet.xml deployment descriptor for a portlet
application

To use any of these XDoclet tasks in an Ant build file, you will need to define
the task in the build file with the <taskdef> element. We will use <taskdef> in our
Ant build file to define the <portletdoclet> task. The <portletdoclet> task will use
the xdoclet.modules.portlet.PortletDocletTask class from the XDoclet 1.2.x distri-
bution. You will need to have downloaded and unzipped the XDoclet 1.2.x binary
distribution somewhere on your file system so we can load the task. The portlet
XDoclet task also requires the Java portlet API JAR file (portlet-api-1.0.jar) in the
task’s classpath. In our build file, we set up a classpath called xdoclet.portlet.classpath
that references the JAR files in our XDoclet distribution and the portlet API JAR
file. You will need to edit this classpath to point to these locations on your machine.

The <portletdoclet> task takes several attributes, the most important of which
is destdir. The destdir attribute specifies the directory where XDoclet will generate
the portlet.xml file. By default, XDoclet will not overwrite existing files, but if you
set the <portletdoclet> element’s force attribute to true, the new portlet.xml will
overwrite an old portlet.xml. The mergedir attribute is the location of any additional
XML files that will be merged into the generated portlet.xml. The portlet XDoclet
supports custom window states, custom portlet modes, user attributes, and security
constraints in the portlet deployment descriptor, if they are included in the XDoclet
merge directory as XML files.

You will need to specify a set of Java source files for XDoclet to use to gener-
ate the portlet.xml. The <portletdoclet> task needs an Ant file set for the project’s
Java source code files. These can be anywhere, but in our Java build file, we used
the regular source directory, with all Java classes. If your portlets are in one or two
packages, or all of your portlet class names end in Portlet, you can use a more
specific filter for the Ant file set include. Alternatively, you may also exclude cer-
tain classes from the file set if you have portlets with XDoclet markup that are not
going to be deployed on the portal in this build. This could be useful in a scenario
where you make different portlet application builds for production servers and
development machines with the same Ant build file and source control repository.

The only subtask for the <portletdoclet> task is the <portletxml> subtask. The
<portletxml> subtask will generate the portlet.xml from the XDoclet tags in the Java
source code. Behind the scenes, it is filling in an XDoclet template with the correct
information. The XDoclet template for portlet.xml is called portlet_xml.xdt, and it
is available in the XDoclet source distribution or in the XDoclet portlet module
JAR file. You do not ever need to edit this template, but if you are curious about
how XDoclet works, the template is easy to understand.

The create-portlet-xml target is a dependency of our default Ant target,
build-war, and it runs after compilation. That way, if our compilation fails, the
build file does not generate a portlet.xml:

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

106

<?xml version="1.0" encoding="UTF-8"?>

<project default="build-war" name="xdoclet-build" basedir=".">

<property file="build.properties"/>

<property name="src.dir" value="src"/>

<property name="build.dir" value="build"/>

<property name="dist.dir" value="dist"/>

<property name="classes.dir" value="${build.dir}/classes"/>

<property name="lib.dir" value="lib"/>

<property name="web-inf.dir" value="WEB-INF"/>

<property name="web-inf.generated.dir" value="generated"/>

<property name="war.name" value="xdocletexample"/>

<property name="xdoclet.merge.dir" value="merge"/>

<path id="xdoclet.portlet.classpath">

<fileset dir="${xdoclet.install.dir}/lib">

<include name="*.jar"/>

</fileset>

<fileset dir="${tomcat.shared.lib.dir}">

<include name="*.jar"/>

</fileset>        

</path>

<target name="init">

<mkdir dir="${build.dir}"/>

<mkdir dir="${classes.dir}"/>

<mkdir dir="${dist.dir}"/>

<mkdir dir="${lib.dir}"/> 

<mkdir dir="${web-inf.generated.dir}"/>

</target>

<target name="compile" depends="init">

<javac destdir="${classes.dir}" deprecation="true" debug="true" optimize="false">

<src>

<pathelement location="${src.dir}"/>

</src>

<classpath>

<fileset dir="${lib.dir}">

<include name="*.jar">

</include>

</fileset>

<fileset dir="${tomcat.shared.lib.dir}">

<include name="*.jar">

</include>

</fileset>        

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

107

</classpath>

</javac>

</target>

<target name="create-portlet-xml">

<taskdef name="portletdoclet"

classname="xdoclet.modules.portlet.PortletDocletTask"

classpathref="xdoclet.portlet.classpath"

/>

<portletdoclet destdir="${web-inf.generated.dir}" 

mergedir="${xdoclet.merge.dir}"

force="true"

>

<fileset dir="${src.dir}">

<include name="**/*.java"/>

</fileset>

<portletxml/>

</portletdoclet>

</target>

<target name="copy-portlet-xml">

<copy file="${web-inf.generated.dir}/portlet.xml"

todir="${web-inf.dir}"

/>

</target>

<target name="build-war" depends="compile,create-portlet-xml,copy-portlet-xml">

<war destfile="${dist.dir}/${war.name}.war" webxml="WEB-INF/web.xml">

<classes dir="${classes.dir}"/>

<lib dir="${lib.dir}"/>

<webinf dir="${web-inf.dir}"/>

</war>

</target>

<target name="clean">

<delete dir="${build.dir}"/>

<delete dir="${dist.dir}"/>

<delete dir="${web-inf.generated.dir}"/>

</target>

</project>

You will need to edit the build.properties file referenced at the top of this Ant
build file to correspond to your installation directories for the Tomcat shared

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

108

library folder where you have the portlet API JAR (this could be any directory, not
just Tomcat). You also need to update the XDoclet installation directory reference.
Here is our example build.properties:

xdoclet.install.dir=/java/xdoclet

tomcat.shared.lib.dir=/java/tomcat/shared/lib

If the portlet API JAR is not in the task’s classpath, the portlet XDoclet
task will throw an error when the build is run. The API is necessary because
XDoclet checks to see if the annotated class is an implementation of the
javax.portlet.Portlet interface.

Running the Ant Build File

Once you have edited the build file to point to your portlet API JAR and XDoclet
directory, you can run Ant to generate your portlet.xml and package your WAR file.

On a Windows XP machine with JDK 1.4 and Ant 1.5.1, the output looks
like this:

C:\apress\packaging>ant -verbose -f xdoclet-build.xml create-portlet-xml

Apache Ant version 1.5.1 compiled on October 2 2002

Buildfile: xdoclet-build.xml

Detected Java version: 1.4 in: C:\java\j2sdk1.4.1_01\jre

Detected OS: Windows XP

parsing buildfile xdoclet-build.xml with URI = file:C:/apress/packaging/xdoclet-

build.xml

Project base dir set to: C:\apress\packaging

Build sequence for target 'create-portlet-xml' is [create-portlet-xml]

Complete build sequence is [create-portlet-xml, clean, init, compile, copy-portl

et-xml, build-war]

create-portlet-xml:

[portletdoclet] (XDocletMain.start               47  ) Running <portletxml/>

[portletdoclet] Generating portlet.xml.

BUILD SUCCESSFUL

Total time: 3 seconds

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

109

Here, we ran Ant in verbose mode to show extra information. We also set the
verbose attribute to have the value "true" on the <portletdoclet> task in the Ant
build file, but that did not give us any extra information about the portlet.xml
generation.

Generated Portlet.xml Deployment Descriptor

The generated portlet.xml deployment descriptor follows. As you can see, the
generated XML has placeholders for the custom portlet modes, custom window
states, user attributes, and security constraints:

<?xml version="1.0" encoding="UTF-8"?>

<portlet-app version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" ➥

xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd ➥

http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd" ➥

xmlns="http://java.sun.com/xml/ns/portlet">

<portlet>

<description>This portlet demonstrates the use of the portlet session.

</description>

<portlet-name>SessionPortlet</portlet-name>

<display-name>Session Example</display-name>

<portlet-class>com.portalbook.xdoclet.SessionPortlet</portlet-class>

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>VIEW</portlet-mode>

</supports>

<portlet-info>

<title></title>

</portlet-info>

<portlet-preferences>

</portlet-preferences>

</portlet>

<!--

To add custom portlet modes to the portlet.xml file, add a file to your

XDoclet merge directory called custom-portlet-modes.xml that contains the

<custom-portlet-mode></custom-portlet-mode> markup.

-->

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

110

<!--

To add custom window states to the portlet.xml file, add a file to your

XDoclet merge directory called portlet-custom-window-states.xml that contains the

<custom-window-state></custom-window-state> markup.

-->

<!--

To add user attributes to the portlet.xml file, add a file to your

XDoclet merge directory called portlet-user-attributes.xml that contains the

<user-attribute></user-attribute> markup.

-->

<!--

To add security constraints to the portlet.xml file, add a file to your

XDoclet merge directory called portlet-security.xml that contains the

<security-constraint></security-constraint> markup.

-->

</portlet-app>

NOTE There is a bug in XDoclet 1.2 with the portlet.xml generation module.
The XML Schema location is not specified correctly, and the generated port-
let.xml will not deploy properly on Pluto (and probably most other portlet
containers). If this is not fixed in a release when this book goes to print, we
will make a working XDoclet portlet module available from our web site
(www.portalbook.com/).

The generated portlet.xml file in this chapter uses the correct XML Schema
location, xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/
portlet-app_1_0.xsd http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd".

Other Portlet XDoclet Tags

In addition to @portlet.portlet, the other XDoclet tags for portlets are

• @portlet.portlet-info

• @portlet.portlet-init-param

• @portlet.preference

• @portlet.preferences-validator

• @portlet.security-role-ref

• @portlet.supports

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

111

All of these tags are for a portlet class, and are specified in the same place in
the source code as the @portlet.portlet tag. None of them is required. All of the
values for all of the parameters should be plain text.

The @portlet.portlet-info tag has three optional parameters: title, keywords,
and short-title. There can be only one or none of each of these tags.

The @portlet.portlet-init-param tag takes two required parameters: name
and value. The description parameter is optional. You may have zero or more
portlet initialization parameters as XDoclet tags.

The @portlet.preference tag specifies portlet preferences. Any number of
preferences is allowed, including none. There are two required parameters: name
and value. The read-only parameter is optional.

There can be zero or one @portlet.preferences-validator XDoclet tags. This
tag only requires one parameter, class, which is a Java class name.

The @portlet.security-role-ref tag has two required parameters: role-link
and role-name. The description parameter is optional. A class may have zero or
more of these tags.

The @portlet.supports tag specifies portlet mode to MIME type mappings.
The tag has two required parameters: mime-type and modes. The modes parameter
is a comma-delimited list of portlet modes. There may be zero or more of these
tags in a class.

Extended XDoclet Example

We used the preceding XDoclet portlet tags to build a sample generated portlet.xml
file for a taxonomy portlet. Here is the JavaDoc comment that belongs at the top of
the class:

/**

* @portlet.portlet

*   name="TaxonomyPortlet"

*   description="Browse Organized Content"

*   display-name="Taxonomy Portlet"

*   expiration-cache="0"

*

* @portlet.portlet-info

*   title="Taxonomy Portlet"

*   keywords="Taxonomy,Lucene"

*   short-title="Taxonomy"

*

* @portlet.portlet-init-param

*   name="indexPath"

*   value="/java/index"

*

* @portlet.portlet-init-param

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

112

*   name="repository"

*   value="engineering"

*

* @portlet.preference

*   name="bookmark"

*   value="/content/marketing"

*

* @portlet.preferences-validator

*   class="com.portalbook.portlets.TaxonomyValidator"

*

* @portlet.security-role-ref

*   role-link="admin"

*   role-name="Administrator"

*

* @portlet.supports

*   mime-type="text/html"

*   modes="edit,help,view"

*

*/

Here is the generated portlet.xml deployment descriptor from those JavaDoc
XDoclet tags:

<?xml version="1.0" encoding="UTF-8"?>

<portlet-app version="1.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"➥

xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd ➥

http://java.sun.com/xml/ns/portlet/portlet-app_1_0.xsd" ➥

xmlns="http://java.sun.com/xml/ns/portlet">

<portlet>

<description>Browse Organized Content</description>

<portlet-name>TaxonomyPortlet</portlet-name>

<display-name>Taxonomy Portlet</display-name>

<portlet-class>com.portalbook.xdoclet.SessionPortlet</portlet-class>

<init-param>

<name>indexPath</name>

<value>/java/index</value>

</init-param>

<init-param>

<name>repository</name>

<value>engineering</value>

</init-param>

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Packaging and Deployment Descriptors

113

<expiration-cache>0</expiration-cache>

<supports>

<mime-type>text/html</mime-type>

<portlet-mode>edit</portlet-mode>

<portlet-mode>help</portlet-mode>

<portlet-mode>view</portlet-mode>

</supports>

<portlet-info>

<title>Taxonomy Portlet</title>

<short-title>Taxonomy</short-title>

<keywords>Taxonomy,Lucene</keywords>

</portlet-info>

<portlet-preferences>

<preference>

<name>bookmark</name>

<value>/content/marketing</value>

</preference>

<preferences-validator>

com.portalbook.portlets.TaxonomyValidator

</preferences-validator>

</portlet-preferences>

<security-role-ref>

<role-name>Administrator</role-name>

<role-link>admin</role-link>

</security-role-ref>

</portlet>

<!--

To add custom portlet modes to the portlet.xml file, add a file to your

XDoclet merge directory called custom-portlet-modes.xml that contains the

<custom-portlet-mode></custom-portlet-mode> markup.

-->

<!--

To add custom window states to the portlet.xml file, add a file to your

XDoclet merge directory called portlet-custom-window-states.xml 

that contains the <custom-window-state></custom-window-state> 

markup.

-->

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships



Chapter 6

114

<!--

To add user attributes to the portlet.xml file, add a file to your

XDoclet merge directory called portlet-user-attributes.xml that contains the

<user-attribute></user-attribute> markup.

-->

<!--

To add security constraints to the portlet.xml file, add a file to your

XDoclet merge directory called portlet-security.xml that contains the

<security-constraint></security-constraint> markup.

-->

</portlet-app>

Summary

Portlet application packaging is similar to web application packaging—both use
web application archive (WAR) files and web.xml web application deployment
descriptors. Portlet applications add the portlet.xml portlet application deployment
descriptor and portlet classes.

XDoclet is a code-generation tool that generates the portlet application deploy-
ment descriptor from JavaDoc tags in the portlet source code. The <portletdoclet>
XDoclet Ant task is straightforward, and the XDoclet tags in the portlet correspond
to the elements in the deployment descriptor. The XDoclet portlet module also sup-
ports portlet application-wide deployment descriptor information: custom portlet
modes, custom window states, user attributes, and security role references.

Please note that the chapters included are in their "beta" form, and are subject to modification and correction before the final book ships


