Neward ch05.gxd.ps 7/27/04 1:45 PM Page 225 $

5 State Management

To those searching for the truth—not the truth of dogma and darkness
but the truth brought by reason, search, examination, and inquiry,
discipline is required. For faith, as well intentioned as it may be, must be
built on facts, not fiction—faith in fiction is a damnable false hope.

—Thomas Edison

A large part of the work of an enterprise system involves handling data. In
fact, arguably, that’s the only thing an enterprise system really does.

Although this was never really apparent during the era of the two-tier
client/server system, the enterprise programmer needs to take care of two
kinds of state: transient state, which is not yet a formal part of the enter-
prise data footprint, and durable state, which needs to be tracked regard-
less of what happens.

Transient state is data that the enterprise cares little about—in the event
of a crash, nothing truly crucial has been lost, so no tears will be shed. The
classic example of transient state is the e-commerce shopping cart.
Granted, we don’t ever want the system to crash, but let’s put the objectiv-
ity glasses on for a moment: if the server crashes in the middle of a cus-
tomer’s shopping experience, losing the contents of the shopping cart,
nothing is really lost (except for the time the customer spent building it
up). Yes, the customer will be annoyed, but there are no implications to
the business beyond that.

In a thick-client or rich-client application, transient state is pretty easy to
handle: it’s just the data stored in local variables in the client-side process
that hasn’t been preserved to the durable storage layer yet. Nothing par-
ticularly fancy needs be done to handle the lifecycle around it—when the
client-side process shuts down, the transient state goes away with it.

225

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 226 $

226 Chapter 5 State Management

In a thin-client, HTML-browser-based application, on the other hand,
transient state takes on a whole new dimension. Because HTTP itself is a
stateless protocol, with no intrinsic way to store per-client state, we’ve
been forced to implement transient state mechanisms on top of the under-
lying plumbing. To most developers, this is exposed via the HttpSession
mechanism that is part of the Servlet 2.x specifications. Unfortunately,
nothing in life comes for free, and HttpSession definitely carries its
share of costs, most notably to scalability of the entire system as a whole.
Judicious use of per-client session state is crucial to a system that wants to
scale to more than five concurrent users.

Durable state, on the other hand, is that which we normally think of when
somebody starts to ask about “persistent data”—it’s the data that has to be
kept around for long periods of time. Officially, we’ll define durable state
as state that absolutely must be kept around even in the event of a JVM
termination or crash, but since we could conceivably come up with situa-
tions where we’ll want transient state to be stored in a database, it’s more
convenient to simply say that durable state is state that we care about.

Commonly, durable state has implicit legal and/or financial stakes—if,
for example, you write a system that loses the items in a book order after
the customer’s credit card has been charged, you're exposing the company
to a lawsuit, at the very least. Or, to flip it around, if you lose the fact that
the customer hasn’t been charged when the books ship, you're directly
costing the company money and will likely find yourself filling out a new
résumé pretty soon.

The distinction between the two is crucial when discussing state manage-
ment because mechanisms that are useful for keeping transient state
around won’t necessarily be suitable for tracking durable state and vice
versa. In some situations, we see some overlap, where we may want to
track users’ session state in a relational database in order to avoid any sort
of situation where a user might lose that transient state. Perhaps it’s not a
commerce site at all but a human resources process that requires a long-
running collection of forms to fill out, or a test that we don’t want stu-
dents to be able to “throw away” and start over just by closing the browser.
In such situations, the distinction between transient and durable state
may start to blur, but intuitively, it’s usually pretty easy to spot the one
from the other. Or, arguably, durable state is what we perceive at first to be
transient state, as in the case of the students’ test or the human resources

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 227 $

Item 39: Use HTTPSessionsparingly 227

forms. Either way, drawing this distinction in your mind and designs will
help keep straight which mechanisms should be used for state manage-
ment in your systems.

Iltem 39: Use HttpSession sparingly

In order to maintain transient state on behalf of clients in an HTML/
HTTP-based application, servlet containers provide a facility called ses-
sion space, represented by the HttpSession interface. The idea itself is
simple and straightforward: a servlet programmer can put any Serializ-
able object (see Item 71) into session space, and the next time that same
user issues a request to any part of the same Web application, the servlet
container will ensure that the same objects will be in the HttpSession
object when requested. This allows the servlet developer to maintain per-
client state information on behalf of a Web application on the server
across HTTP requests.

Unfortunately, this mechanism doesn’t come entirely for free. In the first
place, storing data on the server on behalf of every client reduces the
resources available on that server, meaning the maximum load capability
of the server goes down proportionally. It’s a pretty simple equation: the
more data stored into session space, the fewer sessions that machine can
handle. So, it follows that in order to support as many clients as possible
on a given machine, keep session storage to a minimum. In fact, for truly
scalable systems, whenever possible, avoid using sessions whatsoever. By
not incurring any per-client cost on the server, the machine load capacity
(theoretically) goes to infinite, able to support however many clients can
connect to it.

This suggestion to avoid sessions if possible goes beyond just simple scal-
ability concerns. For servlet containers running within a Web farm, it’s a
necessity. Sessions are an in-memory construct; because memory is
scoped to a particular machine, unless the Web farm has some mecha-
nism by which a given client will always be sent back to the same server
for every request, subsequent processing of a request will not find the ses-
sion-stored objects placed there by an earlier request.

As it turns out, by the way, pinning HTTP requests against the same
machine turns out to be frightfully hard to do. If the gateway tries to use

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 228 $

228 Chapter 5 State Management

the remote address of the client as the indicator of the client request, it
will run into issues on a couple of points. Internet service providers that
supply IP addresses to dialup consumers, proxy servers, and NATs will
offer the same IP address for multiple clients, thus accidentally putting all
those clients against the same server. For a small number of clients behind
the same proxy, this isn’t a big deal, but if the proxy server in question is
the one for AOL, this could be an issue.

The Servlet 2.2 Specification provides a potential solution to this session-
within-clusters problem, in that if a servlet container supports it, a Web
application can be marked with the <distributable /> element in the
deployment descriptor, and the servlet container will automatically
ensure that session information is seamlessly moved between the nodes in
the cluster as necessary, typically by serializing the session and shipping it
over the network. (This is why the Servlet Specification requires objects
placed in session to be Serializable.) On the surface, this seems to offer a
solution to the problem, but it turns out to be harder than it first appears.

A possible mechanism to provide this support is to designate a single
node in the cluster as a session state server, and on each request, which-
ever node is processing the request asks the session state server for the ses-
sion state for the client, and this is shipped across the network to the
processing node. This mechanism suffers from two side effects, however:
(1) every request will incur an additional round-trip to the session state
server, which increases the overall latency of the client request, but more
importantly, (2) all session state is now being stored in a centralized
server, which creates a single point of failure within the cluster. Avoiding
single points of failure is frequently the reason we wanted to cluster in the
first place, so this obviously isn’t ideal.

A second possible mechanism is to take a more peer-to-peer approach. As
a request comes into the node, the node issues a cluster-wide broadcast
signal asking other nodes in the cluster whether they have the latest ses-
sion state for this client. The node with the latest state responds, and the
state is shipped to the processing node for use. This avoids the problem of
a single point of failure, but we’re still facing the additional round-trips to
shift the session state around the network. Worse yet, as a client slowly
makes the rounds through the cluster, a copy of that client’s session state
is stored on each node in the cluster, meaning now the cluster can support
only the maximum number of clients storable on any single node in the
cluster—this is obviously less than ideal. If each node in the cluster

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 229 $

Item 39: Use HTTPSessionsparingly 229

throws away a client’s session state after sending it to another node, how-
ever, it means that any possibility of caching the session state in order
to avoid the network round-trip shipping the session state back and forth
is lost.

The upshot of all this is that trying to build this functionality is not an
easy task; few servlet containers have undertaken it. (Several of the EJB
containers that are also servlet containers, such as WebLogic and Web-
Sphere, support distributable Web applications, but this is typically done
by building on top of whatever cluster support they have for stateful ses-
sion beans. Needless to say, clustered stateful session bean state has the
same issues.) Before trusting a servlet container to handle this, make sure
to ask the vendors exactly how they do it, in order to understand the costs
involved.

In the event that some kind of distributed session state mechanism is
needed but the servlet container either doesn’t provide it or provides a
mechanism that is less than desirable for your particular needs, all is not
lost. Thanks to the power of the Servlet 2.3 Specification, and filters, you
can create your own distributable session mechanism without too much
difficulty. The key lies in the fact that filters can nominate replacements
for the HttpServletRequest and HttpServletResponse objects used
within the servlet-processing pipeline.

The idea here is simple—create a filter that replaces the default
HttpServletRequest with one that overrides the standard getSession
method to return a customized HttpSession object instead of the stan-
dardized one. Logistically, it would look something like this:

import javax.servlet.*;

import javax.servlet.http.*;

public class DistributableSessionFilter

implements Filter

public void doFilter(ServletRequest request,
ServletResponse response,
FilterChain chain)

throws ServletException

HttpServletRequest oldReq =
(HttpServletRequest)request;

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 230 $

230 Chapter5 State Management

HttpServletRequestWrapper newRequest =
new HttpServletRequestWrapper(oldReq)

public HttpSession getSession(boolean create)
{
if (create)
return new DistributedHttpSession(oldReq, response);
else
{
// If user has created a distributed session already,

// return it; otherwise return null

¥
}s

chain.doFilter(newRequest, response);

3

In this code, DistributedHttpSession is a class that implements the
HttpSession interface and whose getAttribute/setAttribute (and
other) methods take the passed objects and store them to someplace
“safe,” such as the RDBMS or the shared session state server, and so on.
Note that because the standard HttpSession object is no longer being
used, it will be up to you, either in this filter or in the Distributed
HttpSession, to set the session cookie in the HTTP response headers.
Normally the servlet container itself handles this, but since we’re not
using its default session mechanism anymore, we have to pick up the
slack. Use large random numbers for session identifiers, to prevent
attackers from being able to guess session ID values, and make sure not to
use the standard JSESSIONID header in order to avoid accidental con-
flicts with the servlet container itself.

The actual implementation of this fictitious DistributedHttpSession
class can vary widely. One implementation is to simply store the session
data into an RDBMS with hot replication turned on (to avoid a single-
point-of-failure scenario); another is to use an external shared session
state server; a third is to try the peer-to-peer approach. Whatever the
implementation, however, the important thing is that by replacing the
standard session system with your own version, you take control over

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 231 $

Item 39: Use HTTPSessionsparingly =231

the exact behavior of the system, thus making this tunable across Web
applications if necessary. This is a practical application of Item 6 at work.

Another session-related concern to be careful of is the accidental use of ses-
sions. This isn’t a problem within servlets written by hand by developers—
a session isn’t created until explicitly asked for via the call to getSession
on the HttpServletRequest. However, this isn’t the case with JSP pages.
The JSP documentation states, quite clearly, that the directive to “turn on”
session for a given JSP page (the @page directive with the session attri-
bute) is set to true by default, meaning that the following JSP page has a
session established for it, even though session is never used on the page:

<%@ page import="java.util.*">

<html>

<body>

Hello, world, I'm a stateless JSP page.
It is now <%= new Date() %>.

</body>

</html>

Worse yet, it takes only one JSP page anywhere in the Web application to
do this, and the session (and the commensurate overhead associated with
it, even if no objects are ever stored in it) will last for the entire time the
client uses the Web application. As a result, make sure your JSPs all have
session turned off by default, unless it’s your desire to use sessions. I wish
there were some way to establish session = false as the default for a
given Web application, but thus far it’s not the case.

Lest you believe otherwise, 'm not advocating the complete removal of all
session use from your application; in fact, such a suggestion would be ludi-
crous, given that HTTP offers no reasonable mechanism for providing
per-user state. When used carefully, HttpSession provides a necessary
and powerful mechanism for providing per-user state within a Web appli-
cation, and this is often a critical and necessary thing. (How else could I
ensure that the user has successfully authenticated or track his or her
progress through the application?) The danger is in overusing and abusing
the mechanism, thereby creating additional strain on the servlet container
when it’s not necessary. Don’t use sessions unless you need to, and when
you do use them, make them lean and mean in order to keep the resources
consumed on the servlet container machine as light as possible.

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 232 $

232 Chapter 5 State Management

Iltem 40: Use objects-first persistence to preserve your domain model

You've spent weeks, if not months, designing an elegant object model rep-
resenting your application’s business domain objects, searching for just the
right combination of inheritance, composition, aggregation, and other
object-modeling techniques to build it. It has taken quite a while, but
you're finally there—you have an object model the team can be proud of.
Now it’s time to preserve that domain data into the database, and you
want to keep your object model in place; after all, what good is an object
model if you’re just going to have to turn around and write a whole bunch
of ugly SQL to push the data back out to the database?

In an objects-first approach to persistence, we seek to keep the view of
objects during persistence; this means either the objects know how to
silently persist themselves without any prompting from us or they pro-
vide some kind of object-centric API for doing the persistence and
retrieval. Thus, in the ideal world, writing code like the following would
automatically create an entry in the database containing the person data
for Stu Halloway, age 25:

Person p = new Person("Stu", "Halloway", 25);
System.out.println(p);
// Prints "Stu Halloway, age 25"

Writing these next lines of code would automatically update the existing
row created in the first snippet to bump Stu’s age from 25 to 30:

Person p = Person.find("Stu", "Halloway");
System.out.println(p);

// Prints "Stu Halloway, age 25"
p.setAge(30);
System.out.println(p);

// Prints "Stu Halloway, age 30"

Notice one of the great benefits of the objects-first persistence approach:
no ugly SQL, no worries about whether we need to do an INSERT or an
UPDATE, and so on. All we see are objects, and we like it that way.

An objects-first approach tends to break down fairly quickly when trying
to retrieve objects, however. Generally speaking, an objects-first approach
takes one of two possible methods: either we issue queries for objects by
creating objects that contain our criteria in pure object-oriented fashion
or we use some kind of “query language” specific to object queries.

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 233 $

Item 40: Use objects-first persistence to preserve your domain model =~ 233

In a strictly purist objects-first environment, we never want to see any-
thing but objects, so we end up building Query Objects [Fowler, 316']
that contain the criteria we’re interested in restricting the query around.
Unfortunately, building a complex query that executes by using criteria
other than the object’s primary key (sometimes called an OID, short for
object identifier, in the parlance of OODBMSs is often complicated and/or
awkward:

QueryObject g = new QueryObject(Person.class);
q.add(Criteria.and(
Criteria.greaterThan("dependents", 2)),
Criteria.lessThan("income", 80000)));
g.add(Criteria.and(
Criteria.greaterThan("dependents", 0)),

Criteria.lessThan("income", 60000)));
Here, we're trying to build the equivalent of the following lines:

SELECT * FROM person p
WHERE ((p.dependents > 2 AND p.income < 80000)
OR (p.dependents > 0 AND p.income < 60000))

Which is easier to read? Things get exponentially worse if we start doing
deeply nested Boolean logic in the query, such as looking for “people
making less than $80,000 with more than 2 dependents who in turn claim
them as parents, or people making less than $60,000 with any dependents
who in turn claim them as parents.” In fact, it’s not uncommon to find
that an objects-first purist query approach has much stricter restrictions
on what can be queried than a general-purpose query language, like SQL.

Which leads us to the second approach, that of creating some kind of
“query language” for more concisely expressing queries without having
to resort to overly complex code. All of the objects-first technology ap-
proaches in Java have ultimately fallen back to this: EJB 2.0 introduced
EJBQL, a query language for writing finders for entity beans; JDO intro-
duced JDOQL, which does the same for JDO-enhanced persistent classes;
and going way back, OODBMSs used OQL, the Object Query Language.
These languages are subtly different from each other, yet all share one
defining similarity: they all look a lot like SQL, which is what we were

1. By the way, if you use Fowler’s implementation of the Query Object found in his book, note
that as written, the code could be vulnerable to a SQL injection attack (see Item 61).

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 234 $

234 Chapter 5 State Management

trying to get away from in the first place. (JDOQL is technically a lan-
guage solely for describing a filter, which is essentially just the predicate
part of the query—the WHERE clause—while still using a Query Object—
style API.) Worse, EJBQL as defined in EJB 2.0 lacks many of the key fea-
tures of SQL that make it so powerful to use for executing queries. The 2.1
release will address some of this lack, but several features of SQL are still
missing from EJBQL.

Another unfortunate side effect of using an objects-first approach is that
of invisible round-trips; for example, when using the entity bean below,
how many trips to the database are made?

PersonHome ph =

(PersonHome)ctx.lookup("java:comp/env/PersonHome");

// Start counting round-trips from here
//
Collection personCollection = ph.findByLastName("Halloway");
for (Iterator i = personCollection.iterator(); i.hasNext();)
{

Person p = (Person)i.hasNext();

System.out.println("Found " + p.getFirstName() +

+ p.getLastName());
¥

Although it might seem like just one round-trip to the database (to
retrieve each person whose last name is Halloway and to populate the
entity beans from the PersonBean pool as necessary), in fact, this is
what’s called the N+1 query problem in EJB literature—the finder call
will look only for the primary keys of the rows matching the query crite-
ria, populate the Collection with entity bean stubs that know only the
primary key, and lazy-load the data into the entity bean as necessary.
Because we immediately turn around and access data on the entity bean,
this in turn forces the entity bean to update itself from the database, and
since we iterate over each of the items in the Collection, we make one
trip for the primary keys plus N more trips, where N equals the number of
items in the collection.

Astute developers will quickly point out that a particular EJB entity bean
implementation isn’t necessarily required to do something like this; for
example, it would be possible (if perhaps nonportable—see Item 11) to
build an entity bean implementation that, instead of simply pulling back

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 235 $

Item 40: Use objects-first persistence to preserve your domain model = 235

the OIDs/primary keys of the entity as the result of a query, pulls back the
entire data set stored within that entity, essentially choosing an eager-
loading implementation rather than the more commonly used lazy-
loading approach (see Items 47 and 46, respectively). Unfortunately, this
would create a problem in the reverse—now we will complain about too
much data being pulled across, rather than too little.

The crux of the problem here is that in an objects-first persistence sce-
nario, the atom of data retrieval is the object itself—to pull back some-
thing smaller than an object doesn’t make sense from an object-oriented
perspective, just as it doesn’t make sense to pull back something smaller
than a row in an SQL query. So when all we want is the Person’s first
name and last name, we’re forced to retrieve the entire Person object to
get it. Readers familiar with OQL will stand up and protest here, stating
(correctly) that OQL, among others, allows for retrieval of “parts” of an
object—but this leads to further problems. What exactly is the returned
type of such a query? I can write something like the following lines:

SELECT p.FirstName, p.LastName
FROM Person p
WHERE p.LastName = 'Halloway';

But what, exactly, is returned? Normally, the return from an object query
is an object of defined type (in the above case, a Person instance); what
are we getting back here? There is no commonly accepted way to return
just “part” of an object, so typically the result is something more akin to a
ResultSet or JavaMap (or rather, a List of Map instances).

Even if we sort out these issues, objects-first queries have another prob-
lem buried within them: object-to-object references. In this case, the diffi-
culty occurs not so much because we can’t come up with good modeling
techniques for managing one-to-many, many-to-many, or many-to-one
relationships within a relational database (which isn’t trivial, by the way),
but because when an object is retrieved, the question arises whether it
should pull back all of its associated objects, as well. And how do we
resolve the situation where two independent queries pull back two identi-
cal objects through this indirect reference?

For example, consider the scenario where we have four Person objects in
the system: Stu Halloway is married to Joanna Halloway, and they have
two children, Hattie Halloway and Harper Halloway. From any good
object perspective, this means that a good Person model will have a field

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 236 $

236 Chapter 5 State Management

for spouse, of type Person (or, more accurately, references to Person), as
well as a field that is a collection of some type, called children, contain-
ing references to Person again.

So now, when we execute the earlier query and retrieve the first object
(let’s use Stu), should pulling the Stu object across the wire mean pulling
Joanna, Hattie, and Harper across, as well? Again, should we eager-load
the data—remember, these objects are referenced from fields in the Stu
object instance—or lazy-load it? And when we move to the next result in
the query, Joanna, which in turn references Stu, will we have one Stu
object in the client process space or two? What happens if we do two sep-
arate queries, one to pull back stu alone, and the second to pull back
Joanna?! This notion of object identity is important because in Java,
object identity is established by the this pointer (the object’s location),
and in the database it’s conveyed via the primary key—getting the two of
them to match up is a difficult prospect, particularly when we throw
transactions into the midst. It’s not an impossible problem—an Identity
Map [Fowler, 195] is the typical solution—but as an object programmer,
you need to be aware of this problem in case your objects-first persistence
mechanism doesn’t take care of it.

The ultimate upshot here is that if you're choosing to take an objects-first
persistence approach, there are consequences beyond “it’s easier to work
with.” In many cases, the power and attractiveness of working solely with
objects is enough to offset the pain, and that’s saying a lot.

Item 41: Use relational-first persistence to expose the
power of the relational model

For years (if not decades), the undisputed king of the data storage tier has
been the relational database; despite a valiant run by OODBMS:s in the
mid-1990s, the relational database remains in firm control of enterprise
data, and relational vendors appear unwilling to part with that position
any time soon. We developers want to continue to use object-oriented
languages, since we’ve found them to be most convenient for us to solve
our problems, but businesses want to continue their investments in rela-
tional databases. So it seems natural that we would want to “hide” the
messy details of persisting object data to the relational database. Unfortu-
nately, therein lies a problem: objects and relations don’t mix well. The

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 237 $

Item 41: Use relational-first persistence to expose the power of the relational model = 237

difficulty in achieving a good mapping between these two technologies
even has its own name, the object-relational impedance mismatch.

Part of the problem of working with relational access technologies (like
JDBC) from an object-oriented language is simply that the two technol-
ogy bases view the world in very different ways. An object-oriented lan-
guage wants to work with objects, which have attributes (fields) and
behaviors (methods), whereas a relational technology sees the world as
tuples, collections of data items grouped into a logical “thing”—what Date
referred to as “relations” [Date]. In essence, a relational model deals with
collections of relations, which we commonly refer to as tables; each rela-
tion is a row, each item in the tuple is a column, and an entire language
built around the idea of manipulating data in this relational format pro-
vides access.

While a full treatise on the problems inherent in an object-relational
mapping layer is well beyond the scope of this book, a brief look at just
one of the problems involved may help explain why object-relational
mapping is such a common problem in J2EE systems. Consider, for a
moment, a simple domain object model:

public class Person

{
private String firstName;
private String lastName;

private int age;

/7.

public class Employee extends Person
{

private long employeelD;

private float monthlySalary;
¥

This is probably the world’s simplest domain model, but how should we
persist this out to a relational database?

One approach is to create two tables, PERSON and EMPLOYEE, and use a
foreign-key relationship to tie rows from one to the other. This requires
a join between these two tables every time we want to work with a given

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 238 $

238 Chapter 5 State Management

Employee, which requires greater work on the part of the database on
every query and modification to the data. We could store both Person
and Employee data into a single EMPLOYEE table, but then when we create
Student (extending Person) and want to find all Person objects whose
last name is Smith, we’ll have to search both STUDENT and EMPLOYEE
tables, neither of which at a relational level have anything to do with one
another. And if this inheritance layer gets any deeper, we’re just com-
pounding the problem even further, almost exponentially.

As if this weren’t enough, more frequently than not, the enterprise devel-
oper doesn’t have control over the database schema—it’s already in use,
either by legacy systems or other J2EE systems, or the schema has been
laid down by developers in other groups. So even if we wanted to build a
table structure to elegantly match the object model we built, we can’t
arbitrarily change the schema definitions.

From an entirely different angle, there may be other, far more practical rea-
sons to abandon an objects-first approach. Perhaps no object-relational
mapping product on the planet can deal with the relational database
schema you inherited as part of your project, or you're simply more com-
fortable working with the relational model and SQL than an object model
(although that would likely imply you started life as a database adminis-
trator and later became a Java programmer).

For these reasons and more, frequently it’s easier to take a relational view
of your data and embrace that fully by not hiding the relational access
behind some other kind of encapsulatory wall, be it object-, procedural-,
or hierarchical-oriented.

To understand what I mean by the idea of taking a relational-first approach,
we need to take a step back for a moment and revisit what exactly the
relational approach itself is. According to Chris Date, who along with
E. E Codd is considered to be one of the great fathers of the relational
model, “relational systems are based on a formal foundation, or theory,
called the relational model of data” [Date, 38, emphasis added]. For mathe-
maticians, a relational model is based on set theory and predicate logic; for
the rest of us, however, in simple terms, the relational model of data is seen
as nothing but tables. Accessing data yields nothing but tables, and the
operators (SQL) for manipulating that data produce tables from tables.

While this may seem like a pretty redundant discussion—after all, it takes
about thirty seconds of looking at a relational database to figure out that

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 239 $

Item 41: Use relational-first persistence to expose the power of the relational model = 239

it’s all about the tables—it’s the “relation” in the relational model that
provides much of the power. Because the end product of a relational data
access (SQL statement) is a table, which is in turn the source of a rela-
tional data operator such as JOIN, SELECT, and so on, relational data
access achieves what Date calls closure: results of one access can serve as
the input to another. This gives us the ability to write nested expressions:
expressions in which the operands themselves are represented by general
expressions, instead of just by table names. This is where much of the
power of SQL comes from, although we tend not to use it that much (typ-
ically because we keep trying to go for objects-first persistence approaches,
and SQL nested expressions don’t fit so well in an object-relational map-
ping layer).

Why is this such a big deal? Because SQL is a powerful language for
accessing data out of a relational database, and thanks to the fact that
everything produced by a SQL query is a table, we can have a single API
for extracting however much, or however little, data from any particular
query we need. We don’t have the “smaller than an object” problem raised
in Item 40 because everything comes back as a table, even if it’s a table one
column wide. We do face the problem that the relational model fre-
quently won’t match the object model programmers would rather work
with, but we can address that in a bit. Let’s first look at making the
relational access itself easier.

Before you shrink in horror at the thought of being condemned to
low-level JDBC access for the rest of your life, take a deep breath—a
relational-first approach doesn’t mean abandoning anything at a higher
level than JDBC. Far from it, in fact. We can use several mechanisms to
make relational access much easier from Java than just raw JDBC (which
still remains as an option in many cases, despite its relatively low-level
nature).

First, there’s more to JDBC than just Connection, Statement, and
ResultSet objects. RowSet, and in particular Sun’s CachedRowSet im-
plementation, frequently makes it much easier to work with JDBC by
encapsulating the act of issuing the query and harvesting the results. So,
assuming you’re without a JDBC DataSource, issuing a query can be as
easy as this:

RowSet rs = new WebRowSet();

// Or use another RowSet implementation

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 240 $

240 Chapter5 State Management

// Provide RowSet with enough information to obtain a
// Connection
rs.setUrl("jdbc:dburl://dbserver/PEOPLE");
rs.setUsername("user");

rs.setPassword("password");

rs.setCommand("SELECT first_name, last_name FROM person "
"WHERE last_name=7");

+
rs.setString(l, "Halloway");
rs.execute();

// rs now holds the results of the query

Most of the calls to the RowSet could be hidden behind an object factory
interface (see Item 72 for details on object factories), so that client code
could be reduced to the following:

RowSet rs = MyRowSetFactory.getRowSet();
rs.setCommand(. . .);
rs.setString(l, "Halloway");

rs.execute();

If you ask me, that’s about as simple as you’re going to get for direct SQL-
based access. The factory itself is not difficult to imagine:

public class MyRowSetFactory

{
public static getRowSet()

{
RowSet rs = new WebRowSet(); // Or some other
// implementation

// This time, use JNDI DataSource
// rather than url/username/password

rs.setDataSourceName("java:comp/env/jdbc/PEOPLE_DS");

return rs;

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 241 $

Item 41: Use relational-first persistence to expose the power of the relational model = 241

The RowSet API has methods to control the details of how the query will
be executed, including the fetch size of the ResultSet (which should be
set as high as possible, preferably to the size of the rows returned by the
query, to avoid round-trips at the expense of one giant “pull” across the
network), and the transaction isolation level (see Item 35) of this call.

However, the RowSet API still requires that you author the SQL query
you're interested in every time you want to use it, and it can get awfully
tiring to type SELECT blah blah blah FROM table WHERE baz=?
every time you want to pull some data back, particularly if youre using
PreparedStatement objects in order to avoid falling into the traps of
doing simple string concatenation and opening yourself to injection
attacks (see Item 61). So you get tempted to either blow off the possibility
of the injection attack—bad idea, mate—or you start cheating in other
ways, like SELECT * FROM table, which pulls every column in the table
across, rather than just the data you're interested in, which means you're
wasting bandwidth. That might not be an issue on your development
machine or network, but in production that could easily max out the pipe
if 1,000 users execute that command simultaneously.? If you don’t need it,
you shouldn’t ask for it across the wire. So what are self-respecting pro-
grammers, seeking to do the right thing while saving their poor hands
from carpal tunnel syndrome, to do? (And if you're thinking this is a
pretty frivolous example, take another approach to the problem: What
happens if we change the table definitions, which in turn means changing
the SQL statements now scattered all over the codebase?)

One approach is to keep a table-oriented view of the database but put a bit
more scaffolding between you and the data access technology itself, through
a Table Data Gateway [Fowler, 144]. Essentially, each table becomes a class,
which in turn serves as the point of access to any rows in that table:

public class PersonGateway

{

private PersonGateway() { /* Singleton-can't create */ }

public static Person[] findAll()

2. OK, it would have to be an awfully wide table, but you get the idea.

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 242 $

242 Chapter 5 State Management

ArrayList al = new ArraylList();

RowSet rs = MyRowSetFactory.getRowSet();
rs.setCommand("SELECT first_name,last_name,age "+
"FROM person");
rs.execute();
while (rs.next())
al.add(new Person(rs.getString(l),

rs.getString(2),
rs.getInt(3));

return (Person[])al.toArray(new Person[0]);

¥
public static void update(Person p)
{

// And so on, and so on, and so on
¥

}

Note that when done this way, a Table Data Gateway looks a lot like a pro-
cedural-first approach to persistence (see Item 42); the key difference is
that a Table Data Gateway is per-table and focuses exclusively on manipu-
lating that table’s data, whereas a procedural-first approach provides a
single point of access for all persistence logic in a table-agnostic way (since
the underlying data store may not even be relational tables anymore).

“This works for tables,” you may be tempted to say, “but I need to do a lot
of queries that aren’t restricted to a single table—what then?” In fact,
thanks to the closure property of relational data access mentioned earlier,
the Table Data Gateway can be extended to be a new variant, say, the
Query Data Gateway, where instead of wrapping around a single table, we
wrap it around a query instead:

public class ChildrenGateway
{
private ChildrenGateway() { }

// Singleton, can't create

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 243 CF

Item 41: Use relational-first persistence to expose the power of the relational model = 243

public static Person[] findKidsForPerson(Person p)

{
ArrayLlist al = new ArrayList();

RowSet rs = MyRowSetFactory.getRowSet();
rs.setCommand("SELECT first_name,last_name,age "+

"FROM person p, parent_link pp "+
"WHERE p.id = pp.child_id "+
"AND p.last_name=?");

rs.setInt(l, p.getPersonID());

rs.execute();

while (rs.next())

al.add(new Person(rs.getString(l),

rs.getString(2),
rs.getInt(3));

return (Person[])al.toArray(new Person[0]);

}

Ironically, it turns out that this approach was commonly used within the
relational world, long before we upstart Java programmers came along, so
databases support this intrinsically: it’s called a view. The database basi-
cally pretends that a query looks and acts just like a table:

CREATE VIEW children AS
SELECT first_name, last_name, age
FROM person p, parent_link pp
WHERE p.id = pp.child_id

This creates a pseudo-table called children that contains all Person
objects that have parents. We then issue queries against children by
restricting against last_name.

What’s the advantage here? All we’ve done is create something that looks
like a table that isn’t, and won’t that create some kind of performance
scariness inside the database? For some of the older database products,
yes—but that problem was pretty much corrected some years ago. While
there are some restrictions on views, such as on updates to a view—some
database products don’t allow updates at all, others allow updates only to
one table if there’s a multi-table join in the view, and so on—as a means

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 244 $

244 Chapter 5 State Management

by which to make queries more readable, and in some cases more effi-
cient, views are a powerful tool.

If none of these approaches seem particularly what youre looking for
because they still seem like too much work and are too awkward to work
with from within Java, another approach is to make use of the recently
standardized SQL/J, or “embedded SQL for Java,” Specification recently
approved as part of the SQL-99 Specification. As with other embedded
SQL technologies, SQL/] allows a programmer to write SQL statements
directly within the Java code, which is then preprocessed by a SQL/]J pre-
processor, turned into regular Java code, and fed to javac as a normal
compilation step. The SQL/J preprocessor takes care of any of the call-
level interface logic in your Java code—you just focus on writing the SQL
when you want to talk to the database and on Java when you want to do
anything else.

The easiest way to use SQL/J is to write static SQL statements embedded
in the code directly, known as SQL/J clauses, as shown here:

public static float averageAgeOfFamily(String lastName)

throws Exception

#sql iterator Ages (int individualAge);

Ages rTs;
#sql rs =
{ SELECT age FROM person
WHERE last_name = :lastName };

int totalAge = 0;
int numPersons = 0;
while (rs.next())

{

numPersons++;

totalAge += rs.individualAge();

return ((float)totalAge) / ((float)numPersons);
¥

It looks and feels like a standard Java method, with the exception of the
#sql blocks, setting off the code that will be handled by the preprocessor,

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 245 $

Item 41: Use relational-first persistence to expose the power of the relational model = 245

and the Ages type introduced by the #sql iterator clause early in the
method body. This isn’t the place to discuss the ins and outs of SQL/J syn-
tax; download the reference implementation and documentation from
http://www.sqlj.org.

The thing to recognize here is that SQL/J essentially hides almost all of the
data access plumbing from sight, leaving only the barest minimum of
scaffolding in place to make it easy to write the SQL itself—in many
respects, it’s the absolute inverse of an objects-first technology like JDO,
which tries so hard to hide the relational access from the programmer’s
perspective. On top of this “get right to the relational data access” idea,
SQL/J also offers a major improvement over any other data access tech-
nology to date: if the database schema is available at the time of compila-
tion, a SQL/J preprocessor/translator can actually check, in compile time,
the SQL in the Java code against the schema, catching typos and syntax
errors without having to rely on runtime SQLException instances to find
them. This alone is a compelling reason to take a hard look at SQL/J.

One major drawback to SQL/J, however, is its relative lack of support
within the J2EE community. Although the J2EE and EJB Specifications do
mention it by name as a possible data access technology layer, it receives
almost no attention beyond that. Oracle is the only major database ven-
dor to have a SQL/] implementation available as of this writing, and there
seems to be little support from the community as a whole, which is a
shame because in many respects this is the epitome of a relational-first
persistence approach.

As with the objects-first persistence approach, the relational-first
approach has its share of strengths and weaknesses. It exposes the power
and grace that SQL itself encompasses, but at the expense of having to
abandon (to at least a certain degree) the beauty of the object model in
obtaining and updating data. It means having to write code that takes
data out of the relational API, be that JDBC or SQL/J, and puts it into
your object model, but the tradeoff is that you get to control the exact
SQL produced, which can be a powerful optimization because not all SQL
is created equal (see Item 50).

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 246 $

246 Chapter 5 State Management

Item 42: Use procedural-first persistence to create
an encapsulation layer

Prior to the object-oriented takeover of the programming language com-
munity, prior to the almost universal sweep of data storage options in the
late 1970s and early 1980s that made relational databases ubiquitous,
another approach quickly made its way through the ranks of IT.

Instead of directly accessing the data storage layer through SQL, middle-
ware products (TP Monitors and the like) provided well-known entry
point routines, what we would call procedures today. These procedures
accepted a set of input (parameters) and guaranteed that they would store
the data to the system, returning some kind of result indicating success or
failure of the action. The details of the actual storage schema and mecha-
nism were hidden behind these opaque walls of the procedure’s entry
point—so long as the middleware layer ensured that the data was stored
appropriately (and could be retrieved, usually via another procedure), no
further knowledge was necessary. Later, these procedures were extended
to also provide certain kinds of processing, such as providing transac-
tional semantics as a way to guarantee that the entire procedure could
execute with ACID properties in place. Even later this processing was
made available directly within the database, via what we now call stored
procedures.

In the beginning, the goal was to provide an encapsulation layer protect-
ing the raw data from programs manipulating it, which eventually set the
stage for transactional processing, and later, the database management
system itself. In many respects, SQL was an outgrowth of this idea, pro-
viding a declarative language that allowed operators to simply say what
data they were interested in, based on a set of constraints expressed as
part of the SQL statement. This approach, aside from being extremely
powerful in the right hands, also proved difficult for programmers famil-
iar with procedural (and later, object-oriented) languages to understand.

Like other declarative languages (Prolog and the more modern XSLT),
SQL requires that users state only what data they’re interested in, not how
to approach obtaining that data. This fits well with the overall “flow” of
the relational model but feels awkward to procedural programmers first
learning SQL—they keep wanting to “start with this table over here, then
go get this data element over here based on . ..,” and so on. Declarative
and procedural languages are two very different beasts (just as objects and

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 247 $

Item 42: Use procedural-first persistence to create an encapsulation layer =~ 247

relations are). This has prompted relational experts like Joe Celko to state,
“The single biggest challenge to learning SQL programming is unlearning
procedural programming” [Henderson03, 1].

Rather than adopt one of the other models, then, what works best in some
cases is to simply bury the details of persistence behind another layer of
software, such that the messy details of doing the persistence can be hid-
den away from the programmer’s view—true encapsulation. Doing this
can be as simple as the following code:

public class DataManager

{
private DataManager ()

{ /* Prevent accidental creation */ %}

public Person findPersonByLastName(String lastName)

{
// Open a Connection, create a Statement, execute
// SELECT * FROM person p WHERE
// p.last_name = (lastName)
// Extract data, put into new Person instance,
// return that
}
public void updatePerson(Person p)
{
// Open a Connection, create a Statement, execute
// UPDATE person p SET .
}

}

Note that the DataManager is a Singleton but runs locally in the client’s
virtual machine; it relies on the database access layer (in this case, JDBC)
to protect it from any concurrency concerns in order to avoid being a
Remote Singleton (see Item 5).

While this makes the DataManager a relatively large class to work with, it
does have a number of advantages that make it an attractive option.

m Data access experts can tune the data access logic (which we’ll
assume is SQL) as necessary to achieve optimal results.

m If necessary, changing data storage systems means changing this
one class. If we want to change from a relational back end to an

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 248 $

248 Chapter 5

State Management

OODBMS, client code doesn’t have to change to do the persistence
work (even if it is potentially unnecessary, depending on the
OODBMS in use and its underlying persistence semantics).

» Since we know that all the persistence logic for this request is brack-
eted within this function, clients don’t have to worry about transac-
tional semantics or transactions being held open any longer than
necessary; this is important to minimize lock windows (see Item 29).

m We can use whatever data access APIs make the most sense for imple-
menting the methods in this one class without changing any client
code. If we start by using JDBC and find that JDBC is too low-level to
use effectively (not an uncommon opinion), we can switch to SQL/J
for this one class only, and clients are entirely ignorant of the change.
If we find that SQL/] is easier to work with but doesn’t generate opti-
mal JDBC-based access, we can switch back with impunity.

m We could keep back-end portability by making DataManager an
interface and creating DataManager derivatives that specialize in
doing storage to one or more different back-end storage layers—an
OracleDataManager, an HSQLDataManager (for in-process relational
data storage), a generic JDBCDataManager (for generic nonoptimized
JDBC-SQL access), and so on. This allows us to tune for a particular
back end without sacrificing overall system portability, but at the
expense of a lot of work to build each one, including maintenance
when the DataManager interface needs to change.

m New access requires modifying the centralized class. This may seem
like a disadvantage at first—after all, who wants to go back and mod-
ify code once it’s “done”?*—but the fact that somebody wants a new
query or update gives the DataManager developer an opportunity to
revisit the data access code and/or the actual storage of the data. We
can use this to add a few optimizations based on the new usage, such
as creating new indexes in the relational model. It also serves as a san-
ity check to prevent looking up data by invalid criteria (“Well, since
everybody knows that only men are programmers, I was going to do
the programmer lookup by adding criteria to restrict by gender=
male; that should speed up the query, right?”).

In essence, the DataManager class serves as our sole point of coupling
between the data storage tier and the Java code that wants to access it.

Procedural access isn’t always done at the Java language level, how-
ever. Most commercial databases offer the ability to execute procedural
code directly within the database itself, a stored procedure in DBMS

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 249 $

Item 43: Recognize the object-hierarchical impedance mismatch = 249

nomenclature. While all the major database vendors offer vendor-specific
languages for writing stored procedures, many are starting to support the
idea of writing Java stored procedures (an unfortunate overload of the
acronym JSP), meaning Java programmers don’t have to learn another
language. However, one of the brightest advantages of using the stored-
procedure-as-persistence model is that we can pass the implementation
of the stored procedure to the database staff, leaving the entire data model
in their hands to be designed, implemented, and tuned as necessary. As
long as the definitions of the stored procedures don’t change (we’ll get
runtime SQLException instances if they do) and the stored procedure
implementations do what we expect them to (like store or retrieve the
data), we can remain entirely ignorant of the underlying data model—
which, if you're as good at relational design and execution as I am (that is
to say, not at all), is a good thing.

By the way, if you’re thinking that the procedural model is a horrible idea,
and you would never consider using anything like it, stop and have another
look at the Session Facade [Alur/Crupi/Malks, 341], Domain Store
[Alur/Crupi/Malks, 516], and other data access patterns. In order to avoid
round-trips to the database, recall that current EJB “best practice” thinking
has clients calling session beans, passing either Data Transfer Objects
[Fowler, 401] or other data in bulk (see Item 23) as parameters to the ses-
sion bean method, to be extracted and inserted into the local entity bean for
storage in the database. This is no different than the DataManager pre-
sented earlier, except that now DataManager is a session bean. The same
will be true of just about any Web service-based data access model.

Item 43: Recognize the object-hierarchical impedance mismatch

XML is everywhere, including in your persistence plans.

Once we’d finally gotten around to realizing that XML was all about data
and not a language for doing markup itself as HTML was, industry pun-
dits and writers started talking about XML as the logical way to represent
objects in data form. Shortly thereafter, the thought of using XML to
marshal data across the network was introduced, and SOAP and its
accompanying follow-up Web Service specifications were born.

The problem is that XML is intrinsically a hierarchical way to represent
data—look at the XML Infoset Specification, which requires that data be

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 250 $

250 Chapter5 State Management

well formed, meaning the elements in an XML document must form a
nice tree of elements (each element can have child elements nested within
it, each element has a single parent in which it’s nested, with the sole
exception of the single “root” node that brackets the entire document,
and so on). This means that XML is great for representing hierarchical
data (hence the title of this item), and assuming your objects form a neat
hierarchy, XML is a natural way to represent that data (hence the natural
assumption that XML and objects go hand in hand).

But what happens when objects don’t form nice, natural trees?

Hierarchical data models are not new; in fact, they’re quite old. The rela-
tional data model was an attempt to find something easier to work with
than the database systems of the day, which were similar in concept, if not
form, to the hierarchical model we see in XML today. The problem with
the hierarchical model at the time was that attempting to find data within
it was difficult. Users had to navigate the elements of the tree manually,
leaving users to figure out “how” instead of focusing on “what”—that is,
how to get to the data, rather than what data they were interested in.

With the emergence of XML (and the growing interest in “XML data-
bases,” despite the inherent ambiguity in that term), it would seem that
hierarchical data models are becoming popular once again. While a full
discussion of the implications of a hierarchical data model are beyond the
scope of this book, it’s important to discuss two things here: when we’re
likely to use a hierarchical data model in J2EE, and what implications that
will have for Java programmers.

While the industry currently doesn’t recognize it, mapping objects to
XML (the most common hierarchical storage model today) is not a
simple thing, leading us to wonder whether an object-hierarchical imped-
ance mismatch—in other words, a mismatch between the free-form object
model we're all used to and the strictly hierarchical model the XML
Infoset imposes—is just around the corner.’ In fact, given that we now
have vendors offering libraries to map objects to XML for us, as well
as the more recent Java API for XML Binding (JAXB) standard to help

3. Let’s not even consider the implications of objects stored in relational databases being trans-
formed into XML: the idea of an object-relational-hierarchical impedance mismatch is
enough to move the strongest programmer to tears.

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 251 $

Item 43: Recognize the object-hierarchical impedance mismatch = 251

unify the various implementations that do so, it may be fair to infer that
mapping objects to XML and back again isn’t as simple as it seems—
granted, simple object models map to XML pretty easily, but then again,
simple object models map pretty easily to relational tables, too, and we all
know how “easy” it is to do object-relational mapping.

Much of the problem with mapping objects to a hierarchical model is the
same problem that occurs when mapping objects to a relational model:
preserving object identity. To understand what I mean, let’s go back for a
moment to the same Person object we’ve used in previous items:

public class Person
{
// Fields public just for simplicity
//
public String firstName;
public String lastName;
public int age;

public Person(String fn, String 1ln, int a)
{ firstName = fn; lastName = 1ln; age = a; }

3

Again, simple and straightforward, and it’s not overly difficult to imagine
what an XML representation of this object would look like:

<person>
<firstName>Ron</firstName>
<lastName>Reynolds</lastName>
<age>30</age>

</person>

So far, so good. But now, let’s add something that’s completely reasonable
to expect within an object-oriented model but completely shatters a hier-
archical one—cyclic references:

public class Person

{
public String firstName;
public String lastName;
public int age;

public Person spouse;

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 252 $

252 Chapter 5 State Management

public Person(String fn, String 1n, int a)
{ firstName = fn; lastName = 1ln; age = a; }

}

How do you represent the following set of objects?

Person ron = new Person("Ron", "Reynolds", 31);
Person lisa = new Person("Lisa", "Reynolds", 25);
ron.spouse = lisa;

lisa.spouse = ron;

A not-unreasonable approach to serializing ron out to XML could be
done by simply traversing the fields, recursively following each object as
necessary and traversing its fields in turn, and so on; this is quickly going
to run into problems, however, as shown here:

<person>

<firstName>Ron</firstName>

<lastName>Reynolds</lastName>

<age>31</age>

<spouse>

<person>
<firstName>Lisa</firstName>
<lastName>Reynolds</lastName>
<age>25</age>
<spouse>
<person>
<firstName>Ron</firstName>

<lastName>Reynolds</lastName>

<age>31</age>
<spouse>
<!-- Uh, oh . . . -—>

As you can see, an infinite recursion develops here because the two
objects are circularly referencing one another. We could fix this prob-
lem the same way that Java Object Serialization does (see Item 71), by
keeping track of which items have been serialized and which haven't,
but then we’re into a bigger problem: Even if we keep track of iden-
tity within a given XML hierarchy, how do we do so across hierarchies?
That is, if we serialize both the ron and 1isa objects into two separate
streams (perhaps as part of a JAX-RPC method call), how do we make
the deserialization logic aware of the fact that the data referred to in

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 253 $

Item 43: Recognize the object-hierarchical impedance mismatch =~ 253

the spouse field of ron is the same data referred to in the spouse field
of 1isa?

String paraml = ron.toXML(); // Serialize to XML
String param2 = lisa.toXML(); // Serialize to XML
sendXMLMessage("<parameters>" + paraml + param2 +

"</parameters>");

/* Produces:
paraml =
<person id="idl">
<firstName>Ron</firstName>
<lastName>Reynolds</lastName>
<age>31</age>
<spouse>
<person id="id2">
<firstName>Lisa</firstName>
<lastName>Reynolds</lastName>
<age>25</age>
<spouse><person href="idl" /></spouse>
</person>
</spouse>
</person>
param2 =
<person id="idl">
<firstName>Lisa</firstName>
<lastName>Reynolds</lastName>
<age>25</age>
<spouse>
<person id="id2">
<firstName>Ron</firstName>
<lastName>Reynolds</lastName>
<age>25</age>
<spouse><person href="idl" /></spouse>
</person>
</spouse>
</person>

:'c/

// . . . On recipient's side, how will we get

// the spouses correct again?

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 254 $

254 Chapter 5 State Management

(By the way, this trick of using id and href to track object identity is not
new. It’s formally described in Section 5 of the SOAP 1.1 Specification, and
as a result, it’s commonly called SOAP Section 5 encoding or, more simply,
SOAP encoding.) We're managing to keep the object references straight
within each individual stream, but when we collapse the streams into a
larger document, the two streams have no awareness of one another, and
the whole object-identity scheme fails. So how do we fix this?

The short but brutal answer is, we can’t—not without relying on mecha-
nisms outside of the XML Infoset Specification, which means that
schema and DTD validation won’t pick up any malformed data. In fact,
the whole idea of object identity preserved by SOAP Section 5 encoding is
entirely outside the Schema and/or DTD validator’s capabilities and has
been removed in the latest SOAP Specification (1.2). Cyclic references,
which are actually much more common in object systems than you might
think, will break a hierarchical data format every time.

Some will point out that we can solve the problem by introducing a new
construct into the stream that “captures” the two independent objects, as
in the following code:

<marriage>
<person>
<!-- Ron goes here -->
</person>
<person>
<!-- Lisa goes here -->
</person>

</marriage>

But that’s missing the point—in doing this, you've essentially introduced
a new data element into the mix that doesn’t appear anywhere in the
object model it was produced from. An automatic object-to-XML seriali-
zation tool isn’t going to be able to make this kind of decision, and cer-
tainly not without some kind of developer assistance.

So what? It’s not like we’re relying on XML for data storage, for the
most part—that’s what we have the relational database for, and object-
relational mapping layers will take care of all those details for us. Why
bother going down this path of object-hierarchical mapping?

If you're going to do Web Services, youre going to be doing object-
hierarchical mapping: remember, SOAP Section 5 encoding was created

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 255 $

Item 43: Recognize the object-hierarchical impedance mismatch =~ 255

to solve this problem because we want to silently and opaquely transform
objects into XML and back again without any work on our part. And the
sad truth is, just as object-relational layers will never be able to silently and
completely take care of mapping objects to relations, object-hierarchical
layers like JAXB or Exolab’s Castor will never be able to completely take
care of mapping objects to hierarchies.

Don’t think that the limitations all go just one way, either. Objects have
just as hard a time with XML documents, even schema-valid ones, as
XML has with object graphs. Consider the following schema:

<xsd:schema xmlns:xsd='http://www.w3.0rg/2001/XMLSchema’
xmlns:tns="http://example.org/product’
targetNamespace="http://example.org/product' >
<xsd:complexType name='Product' >
<xsd:sequence>
<xsd:choice>
<xsd:element name='produce'
type='xsd:string'/>
<xsd:element name='meat' type='xsd:string' />
</xsd:choice>
<xsd:sequence minOccurs="'1"
maxOccurs="unbounded'>
<xsd:element name='state'
type="'xsd:string' />
<xsd:element name='taxable'
type='xsd:boolean'/>
</xsd:sequence>
</xsd:sequence>
</xsd:complexType>
<xsd:element name='Product' type='tns:Product' />

</xsd:schema>
Here is the schema-valid corresponding document:

<groceryStore xmlns:p='http://example.org/product'>
<p:Product>
<produce>Lettuce</produce>
<state>CA</state>
<taxable>true</taxable>
<state>MA</state>

<taxable>true</taxable>

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 256 $

256 Chapter 5 State Management

<state>CO</state>
<taxable>false</taxable>
</p:Product>
<p:Product>
<meat>Prime rib</meat>
<state>CA</state>
<taxable>false</taxable>
<state>MA</state>
<taxable>true</taxable>
<state>CO</state>
<taxable>false</taxable>
</p:Product>
</groceryStore>

Ask yourself this question: How on earth can Java (or, for that matter, any
other traditional object-oriented language, like C++ or C#) represent this
repeating sequence of element state/taxable pairs, or the discrim-
inated union of two different element types, produce or meat? The clos-
est approximation would be to create two subtypes, one each for the
produce and meat element particles, then create another new type, this
time for the state/taxable pairs, and store an array of those in the
Product type itself. The schema defined just one type, and we have to
define at least four in Java to compensate.

Needless to say, working with this schema-turned-Java type system is
going to be difficult at best. And things get even more interesting if we
start talking about doing derivation by restriction, occurrence constraints
(minOccurs and maxOccurs facets on schema compositors), and so on.
JAXB and other Java-to-XML tools can take their best shot, but they’re
never going to match schema declarations one-for-one, just as schema
and XML can’t match objects one-for-one. In short, we have an imped-
ance mismatch.

Where does this leave us?

For starters, recognize that XML models hierarchical data well but can’t
effectively handle arbitrary object graphs. In certain situations, where
objects model into a neat hierarchy, the transition will be smooth and
seamless, but it takes just one reference to something other than an
immediate child object to seriously throw off object-to-XML serializers.
Fortunately, strings, dates, and the wrapper classes are usually handled in
a pretty transparent manner, despite their formal object status, so that’s

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 257 $

Item 43: Recognize the object-hierarchical impedance mismatch = 257

not an issue, but for anything else, be prepared for some weird and semi-
obfuscated results from the schema-to-Java code generator.

Second, take a more realistic view of what XML can do for you. Its ubiq-
uity makes it a tempting format in which to store all your data, but the
fact is that relational databases still rule the roost, and we’re mostly going
to use XML as an interoperability technology for the foreseeable future.
Particularly with more and more RDBMS vendors coming to XML as a
format with which to describe data, the chances of storing data as XML in
an “XML database” are slight. Instead, see XML as a form of “data glue”
between Java and other type systems, such as .NET and C++.

A few basic principles come to mind, which I offer here with the huge
caveat that some of these, like any good principles, may be sacrificed if the
situation calls for it.

m Use XML Schema to define your data types. Just as you wouldn’t realis-
tically consider doing an enterprise project storing data in a rela-
tional database without defining relational constraints on your data
model, don’t realistically consider doing enterprise projects storing
data in XML without defining XML data types. Having said that,
however, at times, a more flexible model of XML will be useful, such
as when allowing for user extensions to the XML data instances. Be
prepared for this by writing your types to have extension points
within the type declarations, via judicious use of any-type elements.
And, although this should be rare within the enterprise space, in
some cases some XML data needs to be entirely free-form in order to
be useful, such as Ant scripts. In those situations, be strong enough
to recognize that you won’t be able to (or want to) have schema types
defined and that they will require hand-verification and/or parsing.

m Prefer a subset of the schema simple types. XML Schema provides a
rich set of simple types (those that most closely model primitive
types in Java), such as the yearMonth and MonthDay types for dates,
but Java has no corresponding equivalent—a schema-to-Java toll
will most likely model both of those, as well as many others, as a
simple integer field. Unfortunately, that means you can store any-
thing you want into that field, thus losing the type definition
intended by the schema document in the first place. To avoid this sit-
uation, prefer to stick to the types in XSD schema that most closely
model what Java (and .NET and any other language you may end up
talking to) can handle easily.

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 258 $

258 Chapter 5 State Management

» Use XML Schema validating parsers to verify instances of your schema
types when parsing those instances. The parser will flag schema-
invalid objects, essentially acting as a kind of data-scrubbing and
input-validating layer for you, without any work on your part. This
will in turn help enforce that youre using document-oriented
approaches to your XML types, since straying from that model will
flag the validator. Be aware, though, that schema-validating parsers
are woefully slow compared to their non-schema-validating counter-
parts. More importantly, schema-validating parsers will only be able
to flag schema-invalid objects, and if you're taking an object-based
approach to your XML types that uses out-of-band techniques (like
SOAP encoding does), schema validators won’t pick it up, so you'll
know there’s a problem only when the parser buys off on the object
but your code doesn’t. That’s a hard scenario to test for.

» Understand that type definitions are relative. Your notion of what
makes a Person is different from my notion of what makes a
Person, and our corresponding definitions of Person (whether in
object type definitions, XML Schema, or relational schema) differ
accordingly. While some may try to search for the Universal Truth
regarding the definition of Person, the fact is that there really isn’t
one—what’s important to your organization about Person is dif-
ferent from what’s important to my organization, and no amount
of persuasion on your part is going to change that for me, and
vice versa. Instead of going down this dead-end road, simply agree
to disagree on this, and model schema accordingly if the docu-
ments described by this schema are to be used by both of us. In other
words, use schema to verify data being sent from one system to
another, rather than trying to use it to define types that everybody
agrees on.

m Avoid HOLDS-A relationships. As with the Person example, in-
stances that hold “references” to other instances create problems.
Avoid them when you can. Unfortunately, that’s a lot easier said than
done. There is no real way to model Person in a document-oriented
fashion if Person needs to refer to the spouse and still preserve
object identity. Instead, you're going to have to recognize that the
Person’s spouse is an “owned” data item—so instead of trying to
model it as a standalone Person, just capture enough data to uniquely
identify that Person from some other document (much as a rela-
tional table uses a foreign key to refer to a primary key in another

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 259 $

Item 44: Use in-process or local storage to avoid the network = 259

table). Unfortunately, again, XML Schema can’t reflect this* and it
will have to be captured in some kind of out-of-band mechanism;
no schema constraints can cross documents, at least not as of this
writing.

Most importantly, make sure that you understand the hierarchical data
model and how it differs from relational and object models. Trying to use
XML as an objects-first data repository is simply a recipe for disaster—
don’t go down that road.

Item 44: Use in-process or local storage to avoid the network

Most often, when J2EE developers begin the design and architectural lay-
out of the project, it’s a foregone conclusion that data storage will be done
in a relational database running on a machine somewhere in the data cen-
ter or operations center.

Why?

There’s no mystical, magical reason, just simple accessibility. We want the
data to be accessible by any of the potential clients that use the system.

In the old days, before n-tier architectures became the norm, clients con-
nected directly to servers, so the data needed to be held directly on the
server, in order to allow all the clients access to all the data; networks
hadn’t yet achieved widespread ubiquity, and wireless access technology,
which makes networking even simpler, hadn’t arrived. Connecting ma-
chines to a network was a major chore, and as a result, the basic concepts
of peer-to-peer communication were reserved for discussions at the low-
est levels of the networking stack (the IP protocol, for example).

In time, we realized that putting all of the data on a central server had the
additional advantage of putting major load on the server, thereby taking
it off the clients. Since the server was a single machine, it was much more
cost-effective (so we believed) to upgrade or replace that single machine,
rather than all of the clients that connected to it. So not until well after we

4.1f this XML document is a collection of Person instances, and the spouse is guaranteed to
be within this collection someplace, that’s a different story, but that also changes what we’re
modeling here and becomes a different problem entirely.

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 260 $

260 Chapter5 State Management

had established the idea of the centralized database did we started putting
our databases on the heaviest iron we could find, loading them up with
maximal RAM footprints and huge gigabyte (and later, terabyte) drive
arrays.

The point of this little digression into history is that the centralized,
remote database server exists simply to provide a single gathering point
for data, not because databases need to run on servers that cost well
into five, six, or seven digits. We put the data on the server because it was
(a) a convenient place to put it, and (b) an easy way to put processing in
one central place for all clients to use without having to push updates out
(zero deployment), and (c) a way to put the data close to the processing
(see Item 4).

Transmitting all this data across the wire isn’t cheap, however, nor is it
without its own inherent share of problems. It’s costly both in terms of
scalability and performance (since each byte of bandwidth consumed to
transfer data around the network is a byte of bandwidth that can’t be used
for other purposes), and the time it takes to shuffle that data back and
forth is not trivial, as Item 17 describes. So, given that we put data on the
centralized database in order to make it available to other clients and that
it’s not cheap to do the transfer, don’t put data on the remote database un-
less you have to; that is, don’t put any data on the remote database unless
it’s actually going to be shared across clients.

In such cases, running a relational database (or another data storage
technology—here we can think about using an object database or even
an XML database if we choose to) inside the same process as the client
application can not only keep network round-trips to a minimum but
also keep the data entirely on the local machine. While running Oracle
inside of our servlet container is probably not going to happen any time
soon, running an all-Java RDBMS implementation is not so far-fetched;
for example, Cloudscape offers this functionality, as do PointBase and
HSQLDB (an open-source implementation on Sourceforge), essentially
becoming a database masquerading as a JDBC driver. Or, if you prefer an
object-based approach, Prevayler, another open-source project, stores any
Java object in traditional objects-first persistence fashion. If you'd rather
see the data in a hierarchical fashion, Xindice is an open-source XML
database from the Apache Group.

One simple in-process data storage technique is the Rowset itself.
Because the RowSet is entirely disconnected from the database, we can

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 261 $

Item 44: Use in-process or local storage to avoid the network = 261

create one around the results of a query and keep that RowSet for the
lifetime of the client process without worrying about the scalability ef-
fects on the database. Because the RowSet is Serializable, we can store it
as is without modification into any OutputStream, such as a file or a
Preferences node; in fact, if the RowSet is wrapped around configura-
tion data, it makes more sense to store it in a Preferences node thanina
local file in some ways (see Item 13). It won’t scale to thousands of rows, it
won’t enforce relational integrity, but if you need to store that much data
or to put relational constraints around the local data, you probably want a
“real” database, like HSQLDB or a commercial product that supports
“embedding” in a Java process.

There’s another side to this story, however—the blindingly obvious real-
ization that a remote database requires a network to reach it. While this
may seem like an unnecessary statement, think about that for a moment,
and then consider the ubiquitous sales-order application tied into the
inventory database for a large manufacturing company. We release the
application onto the salesperson’s laptop, and off the salesperson goes to
pay a visit to the VP of a client company. After a little wining, dining, and
18 holes on a pretty exclusive golf course, the VP’s ready to place that mil-
lion-dollar order. The salesperson fires up the laptop, goes to place the
order, and to his horror, gets an error: “database not found.” Sitting in the
golf club’s posh restaurant, our plucky salesperson suddenly pales, turns
to the VP, and says, “Hey, um, can we go back to your office so I can bor-
row your network?”

Assuming the VP actually lets our intrepid salesperson make use of her
network to connect back to the salesperson’s home network via VPN,
assuming the salesperson knows how to set that up on his laptop, assum-
ing the IT staff at home has opened a VPN in the corporate network, and
assuming the application actually works with any speed over the VPN
connection, the salesperson’s credibility is taking a pretty serious beating
here. On top of this, the VP has every reason to refuse the salesperson the
network connection entirely—it’s something of a security risk, after all,
to let foreign machines onto the network behind the firewall. And the
IT staff at home has every reason to keep the database as far away from
the “outside world” as possible, VPN or no VPN. By the time the sales-
person returns to the home office to place the order (scribbled on the
napkin from the posh restaurant), the VP may have changed her mind, or
the salesperson may have forgotten to get some important detail onto
the napkin, and so on. (It’s for reasons like these that salespeople are

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 262 $

262 Chapter5 State Management

trained to place the order as quickly as possible as soon as the customer
approves it.)

In some circles, this is called the traveling salesman problem (not to be
confused with the problem-solving cheapest-way-to-travel version of
the problem commonly discussed in artificial intelligence textbooks). The
core of the problem is simple: you can’t always assume the network will
be available. In many cases, you want to design the application to make
sure it can run without access to the network, in a disconnected mode.
This isn’t the same as offering up a well-formatted, nicely handled
SQLException when the router or hub hiccups; this is designing the
application to take the salesperson’s order on the standalone laptop with
no network anywhere in sight anytime soon. When designing for this sit-
uation, ask yourself how the application will behave when users are
37,000 feet in the air, trying to sell widgets to somebody they just met on
the airplane.

One of the easiest ways to accommodate this scenario is to keep a local-
ized database running, with a complete data dump of the centralized
database on the same machine as the client (which, by the way, should
probably be a rich-client application since the network won’t be there to
connect to the HTTP server, either—see Item 51). When the machine is
connected via the network to the remote database, it updates itself with
the latest-and-greatest data from the centralized database. Not necessarily
the complete schema, mind you, but enough to be able to operate without
requiring the remote database. For example, in the hypothetical sales
application, just the order inventory, detail information, and prices would
probably be enough—a complete dump of open sales, their history, and
shipping information probably doesn’t need to be captured locally. Then,
when new orders are placed, the application can update the local tables
running on the same machine.

Some of you are undoubtedly cringing at the entire suggestion. “Not con-
nected to the remote database? Inconceivable! How do we avoid data
integrity errors? That’s why we centralized the database in the first place!
After all, if there are only 100 widgets left, and both Susan and Steve sell
those last 100 widgets to different clients via their laptop systems, we have
an obvious concurrency issue when we sync their data up against the cen-
tralized system. Any system architect knows that!”

Take a deep breath. Ask yourself how you're going to handle this scenario
anyway, because whether it happens at the time the salesperson places the

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 263 $

Item 45: Never assume you own the data or the database =263

order or when the order goes into the database, the same problem is still
happening. Then go take a look at Item 33 as one way to solve it.

Normally, in a connected system, inventory checking occurs when the
salesperson places the order—if the requested number of widgets isn’t
available on the shelves, we want to key the order with some kind of red
flag and either not let the order be placed or somehow force the salesper-
son to acknowledge that the inventory isn’t available at the moment. In
the connected version of the application, this red flag often comes via a
message box or alert window—how would this be any different from
doing it later, when the salesperson is synchronizing the data against the
centralized system? In fact, this may be a preferable state of affairs,
because that alert window could potentially ruin the sale. If the VP sees
the message she may rethink placing the order: “Well, T'll bet your com-
petitor has them in stock, and we need these widgets right now,” even if
“right now” means “we can use only 50 a week.” Instead, when the red flag
goes off back at the office, the salesperson can do a little research (diffi-
cult, if not impossible, to do sitting in the client VP’s office) before calling
the customer to tell them the news. (“Well, we had only 50 widgets here in
the warehouse, but Dayton has another 50, and I'm having them express-
mailed to you, no charge.”)

While the remote database has obvious advantages for enterprise sys-
tems—after all, part of our working definition of an enterprise system is
that it manages access to resources that must be shared, which implies
centralization—the remote database doesn’t necessarily serve as the best
repository for certain kinds of data (like per-user settings, configuration
options, or other nonshared data) or for certain kinds of applications,
particularly those that desire or need to run in a disconnected fashion.

Item 45: Never assume you own the data or the database

Remember that one of our fundamental assumptions about enterprise
software (from Chapter 1) is that an enterprise software system is one in
which some or all of its resources are shared. In fact, the core of the enter-
prise system—the data—is most frequently the shared resource in ques-
tion. Most of the time, we assume that the extent of the sharing occurs
among the various users of the enterprise system. However, it doesn’t stop
there—many enterprise databases count other enterprise systems as part

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 264 $

264 Chapter5 State Management

of their userbase, and unfortunately those “users” have much more strin-
gent requirements than usual.

Some of these other systems making use of your database aren’t strangers;
it’s not uncommon, for example, to design or purchase a reporting engine
to allow end users to create their own reports from the database. This is a
good thing; without that, the need to create the logic and nicely formatted
output will fall into developers’laps. While constantly changing reports to
keep up with user whims is one way to stay employed for the rest of your
life, it also means you never get to do anything else on the project, and
that’s not my idea of an interesting job. Those reporting engines typically
work directly against the database schema, and here’s where we need to be
careful.

If multiple systems or agents share a resource, the format or schema of
that resource cannot change at the whim of one of those systems or
agents without causing a ripple effect through the rest. Alterations to the
schema, excessive database locks, and relocation of the database instance
are changes that may seem localized to just your codebase but will in turn
create problems and issues with these other systems. In fact, this is what
keeps legacy systems alive for so long—it’s extremely difficult to track
down every client for a given resource or repository within the company
(particularly large companies), much less figure out all the data depend-
encies of a given client against a single system. As a result, it’s far easier to
just leave the legacy system in place and create adapters, translators, and
proxies than to replace the legacy system with something new.

To the J2EE developer, this has some sobering, if not chilling, implica-
tions: you do not own your database, nor do you own the data within it.
Even if you are building the database entirely from scratch for this proj-
ect, even if the project seems to be tucked away in a little corner of the
business where nobody else will have any interest in it, you don’t own that
database. It’s only a matter of time before somebody else within the com-
pany hears about your little system and wants to gain access to that data,
so you start setting up back-end data feeds, direct connections, and so on.
Or worse, somebody else on your team sets them up without telling you.
Before long, you make a schema change, and people you’ve never even
heard of, much less met, are howling into your phone demanding to
know why you broke their application.

The conclusion here is clear: your schema, once designed, is in far
greater danger of being locked in than your code. This is where having an

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 265 $

Item 45: Never assume you own the data or the database =265

encapsulation layer between the users and the database (as discussed in
Item 42) becomes so critical—by forcing clients (any clients, including
your own code) to go through some kind of encapsulatory barrier, such
as a stored procedure layer or Web Service endpoint layer, to gain access to
the data, you essentially plan for the future and the fact that others will
need access to the data even as you modify the underlying schema and
data description definitions.

This also means that the database schema shouldn’t be optimized for
the J2EE case: be careful when building your schema not to tie it too
closely to your object model, be extremely careful about storing serial-
ized Java objects in Binary Large Object (BLOB) fields since doing so
means that data cannot be used as part of a SQL query (unless your data-
base supports it, in which case the query will perform extremely slowly),
and don’t store “magic values” in the database. For example, although it
might be convenient to store Java Date objects as long integers (the
underlying value held in a java.util.Date, accessible via getTime, and
the only nondeprecated way to construct a java.util.Date), other
languages will have little to no idea what to do with a value like that, and
converting it into a date value acceptable to them is difficult. Some data-
bases may try to implicitly convert an integer value into a date, for ex-
ample, but how they convert the value will be entirely different for each
database. Despite the greater work in Java, it’s far better to store the date
in the database in either a string-based format or as an ANSI-standard
DATETIME.

In fact, because your database is likely to become a shared database fairly
quickly, and because J2EE isn’t slated to take over the entire world any
time soon (the .NET and PHP programmers may have a few words for
those who think it will), you'll generally prefer to put whatever con-
straints you can into the database, rather than relying on J2EE code to
enforce restrictions. For example, given the choice between checking
to see whether an incoming string is fewer than 40 characters long before
storing it to the database, go ahead and simply rely on database integrity
constraints on the table to check the length of the string, rather than
doing it in J2EE and setting the column’s size to be something larger than
that. Since the database is going to go through the size-constraint check
anyway, why do it twice? Similarly, model any sort of relationship be-
tween tables/entities in the database directly within the database, using
foreign-key constraints to ensure that both sides of the constraint are in
fact present within the database.

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 266 $

266 Chapter 5 State Management

It may seem easier, at first blush, to go ahead and encode this sort of logic
directly within your object model and/or domain logic—after all, Java
is probably your first language, and it’s a natural human tendency to
want to solve problems using the tools we’re most comfortable with.
Resist. The database provides a lot of functionality that can’t be easily—or
as universally—applied in your J2EE code. For example, most database
products support the concept of triggers, blocks of database code that can
be executed on any sort of row- or table-based access, giving you the abil-
ity to apply domain logic after the row has been inserted, updated,
deleted, or whatever. Trying to build this into a J2EE application, which
would have to be universally applied across all parts of the system,
requires either building a complex notification mechanism into your
code (keeping in mind the drawbacks of an RPC-based callback mecha-
nism, as described in Item 20) or hand-coding directly into your domain
object representations of the database entities themselves, leading you
down a scary road of maintenance nightmares over time.

While it may seem convenient and entirely plausible to take shortcuts in
the database layer to make it easier for you as a J2EE developer, resist the
urge. Ultimately, it’s just going to create more problems if you don’t—
when the inevitable question, “Hey, we noticed you were capturing some
data we were interested in, and we want to get at it, so how can we?” comes
up, it’s going to be up to you to make that happen, and it’ll be a lot easier
to take care of at the front of the project than at the back.

Iltem 46: Lazy-load infrequently used data

Given the cost of a trip across the network to the remote database, it fol-
lows that we don’t want to actually pull any data across the network
unless we need it.

This seems like a simple idea, but it’s remarkable how often it gets left
behind in systems that try to hide the database from the programmer—
for example, naive object-relational mapping mechanisms often map
objects to tables in a one-to-one fashion, so that any request to retrieve a
particular object from the database means every column for a particular
row gets pulled across to completely fill out the object in question.

In many cases, this is obviously a bad situation: consider the canonical
drill-down scenario, where I want to present a list of items to the user

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 267 $

Item 46: Lazy-load infrequently used data 267

from which he or she selects one (or more) for a more complete examina-
tion. If a large number of items must be presented to the user in a sum-
mary view for selection, say, 10,000 persons that meet the initial search
criteria, pulling each one back in its entirety means 10,000 X N bytes of
data must be sent across the network, where N is the complete size of a
single row from the table. If the row has foreign-key relations that must in
turn be retrieved as part of this object retrieval (the Person has 0. .*
Address instances associated with it, perhaps), that number easily bloats
to unmanageable proportions.

For these reasons, many object-relational mechanisms choose not to
retrieve all of the data for a particular row as part of a standard fetch
operation but instead choose to lazy-load the data, preferring to take the
additional round-trip to the database in exchange for keeping this sum-
mary request down to manageable levels. In fact, this is such a common
scenario that it has been documented in several places already, most
notably as the Lazy Load pattern [Fowler, 200].

Take careful note: the key is to lazy-load infrequently used data, not just
data that hasn’t been used yet.

Here the entity beans portion of EJB tends to fall down in catastrophic
fashion, similar to the classic N+1 query problem. Many EJB entity bean
implementers decided that since we wanted to avoid pulling back any
data that wasn’t going to be used immediately, when retrieving an entity
bean from a Home-based finder method, nothing was going to be retrieved
from the actual data store (relational database), and instead only the pri-
mary key for the row would be stored in the entity bean inside the EJB
container. Then, when a client accessed a property method (get or set)
for that entity bean, a separate query would be issued to retrieve or
update that particular column value for that particular bean.

The dangerous part, of course, occurred if you wrote client-side code that
did something like this under the hood of the entity bean:

PersonHome personHome = getHomeFromSomewhere();

Person person = personHome.findByPrimaryKey(1234);

String firstName = person.getFirstName();
String lastName = person.getLastName();

int age = person.getAge();

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 268 $

268 Chapter 5 State Management

With such code, you were making requests like this:

SELECT primary_key FROM Person
WHERE primary_key = 1234;

SELECT first_name FROM Person
WHERE primary_key = 1234;

SELECT last_name FROM Person
WHERE primary_key = 1234;

SELECT age FROM Person WHERE primary_key = 1234;

In addition to this being a phenomenal waste of CPU cycles (parsing each
query, projecting a query plan for each, marshaling the returned column
in a relational tuple, and so on), as well as flooding the cache to the point
of irrelevancy, you’re also taking a huge risk that the data doesn’t change
between bean method calls—remember, each of those calls represents a
separate EJB-driven transaction, thus leaving open the possibility that
a different client could change the same row between calls (see Item 31).
For these reasons and more, two patterns were born: the Session Facade
[Alur/Crupi/Malks, 341] and the Data Transfer Object [Fowler, 401].

The problem, however, isn’t necessarily with the idea of lazy-loading; the
problem is knowing what data to lazy-load. In the case of a container-
managed entity bean implementation, where all details of SQL are hidden
from the EJB developer, the E]JB container has no way to know which data
elements are more likely to be used than others, so it makes the more
drastic assumption that all of them won’t necessarily be used. In retro-
spect, this is probably a bad decision, one that’s only slightly better than
the other alternative left to the container implementor, that of assuming
that all of the columns will be used. The ideal situation would be for the
entity bean implementor to allow you to provide some kind of usage
hints about which fields should be pulled back as part of pulling the ini-
tial bean state across and which ones would be best retrieved lazily, but
such things are vendor-dependent and reduce your portability signifi-
cantly (if you care—see Item 11).

If you're writing your own relational access code, such as writing a BMP
entity bean or just writing plain-vanilla JDBC or SQL/J code, the deci-
sion of what to pull back falls into your lap once again. Here, as with any
SQL access, you should be explicit about precisely what data you want:

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 269 $

Item 46: Lazy-load infrequently used data 269

nothing more, nothing less. This means avoiding SQL queries that look
like this one:

SELECT * FROM Person
WHERE ...

Although it may not seem all that important at the time you write this
query, you're pulling back every column in the Person table when this
code gets executed. If, at first, the definition of the Person table happens
to match the exact list of data you want, it seems so much easier and sim-
pler to use the wildcard * to retrieve all columns, but remember—you
don’t own the database (see Item 45). Several things can happen to the
database definition that will create problems in your code if you use the
wildcard.

» Additional columns may get added. Hey, updates happen, and unless
you want the thankless job of going back through every line of SQL
code you've ever written to make sure you’re dealing with the addi-
tional columns, you're going to be pulling back data you didn’t want.

» Wildcard SELECT statements don’t specify a column order. Unfortu-
nately, the order of columns returned in a SELECT * query isn’t guaran-
teed by the SQL standard, and in some cases not even by the database
product youre using—this means that your underlying JDBC code,
which relies on an implicit order of columns returned, will be treated
to a whole host of SQLException instances when trying to retrieve the
first_name column as an int. Worse yet, this kind of problem won’t
show up in your development database because the database adminis-
trator isn’t tweaking and toying with the database definitions to try to
improve performance—it will only show up in production systems,
leaving you scratching your head in confusion with little to go on when
trying to ascertain precisely what the problem is.

» The implicit documentation hint is lost. Let’s be honest, it’s just clearer
to be explicit about what you're retrieving when you list the columns.
It also means one less comment in your Java code to maintain; when-
ever possible, it’s better to create situations where code speaks for itself.

Despite the additional typing required, it’s almost always preferable to list
the columns explicitly. Fortunately, it’s also something that’s fairly easy to
generate via a code-generation tool, should the opportunity arise.

Lazy-loading isn’t just restricted to loading columns from the query, how-
ever. There are other opportunities to apply the same principle to larger

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 270 $

270 Chapter 5 State Management

scales. For example, go back to the canonical drill-down scenario. In most
thin-client applications, when retrieving search results, we often display
only the first 10, 20, maybe 50 results to the user, depending on the size of
the results window. We don’t want to display to the user the complete set
of results—which sometimes stretches into the thousands of items when
the user provides particularly vague criteria. Reasons for this are varied
but boil down to the idea that the user will typically either find the desired
result in the first 10 or 20 items or go back and try the search again, this
time with more stringent criteria.

So what happened to the other 990 rows you retrieved as part of that
request? Wasted space, wasted CPU cycles, wasted bandwidth.

There are a couple of ways to control how much data gets pulled back as
part of the SQL query. One is at the JDBC level, by setting setFetchSize
to retrieve only a number of items equivalent to the display window you
wish to present to the user: if youre showing only the first 10 items
retrieved, then use setFetchSize(10) on the ResultSet before retriev-
ing the first row via next. This way, you're certain that only that number
of rows is retrieved, and you know that you're making one round-trip to
retrieve this data you know you’re going to use. Alternatively, you can let
the driver try to keep what it believes to be the optimal fetch size for that
driver/database combination, and instead choose to limit the absolute
number of rows returned from this statement by calling setMaxRows; any
additional rows beyond the number passed in to setMaxRows will be
silently dropped and never sent.

Another approach, supported by some databases, is to use the TOP quali-
fier as part of the request itself, as in SELECT TOP 5 first_name,
last_name FROM Person WHERE. . . . Only the first five rows that meet the
predicate will be returned from the database. Although a nonstandard
extension, it’s still useful and is supported by a number of the database
vendors. TOP is SQL Server syntax; other databases use terms like FIRST
(Informix), LIMIT (MySQL), or SAMPLE (Oracle). All work similarly.

Again, the idea is simple: only pull back what data is required at this time,
on the grounds that you want to avoid pulling back excessive amounts
of data that won’t be used. Be careful, however; youre standing on a
slippery slope when you start thinking about lazy-loading, and if you're
not aware of it, it’s easy to find yourself in a situation where you’re exces-
sively lazy-loading data elements across the wire, resulting in what Fowler

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 271 $

Item 47: Eager-load frequently used data = 271

calls “ripple-loading” or as it’s more commonly known, the N+1 query
problem [Fowler, 270]. In those situations, sometimes it’s better to eager-
load the data (see Item 47) in order to avoid network traffic.

Iltem 47: Eager-load frequently used data

Eager-loading is the opposite of lazy-loading (see Item 46): rather than
taking the additional network round-trip to retrieve data later, when it’s
needed, we decide to pull extra data across the wire now and just hold it
on the database client on the grounds that we’ll need it eventually.

This idea has a couple of implications. First, the payoff—actually access-
ing the extra data—has to justify the cost of marshaling it across the
wire from server to client. If the data never gets used, eager-loading it is a
waste of network bandwidth and hurts scalability. For a few columns in
a single-row retrieval query, this is probably an acceptable loss compared
with the cost of making the extra round-trip back to the database for
those same columns. For 10,000 rows, each unused column just plain hurts,
particularly if more than one client executes this code simultaneously.

Second, we’re also implicitly assuming the cost of actually moving the
data across the wire isn’t all that excessive. For example, if we’re talking
about pulling a large BLOB column across, make sure that this column
will be needed, since most databases aren’t particularly optimal about
retrieving and sending BLOBs across.

You don’t hear much about eager-loading data because to many develop-
ers it conjures up some horrific images of early object databases and their
propensity to eager-load objects when some “root” object was requested.
For example, if a Company holds zero to many Department objects, and
each Department holds zero to many Employee objects, and each
Employee holds zero to many PerformanceReview objects .. .owell,
imagine how many objects will be retrieved when asking for a list of all
the Company objects currently stored in the database. If all we were inter-
ested in is a list of Company names, all the Department, Employee, and
PerformanceReview objects are obviously a huge waste of time and
energy to send across the wire.

In fact, eager-loading has nothing to do with object databases (despite the
fact that they were blamed for it)—I’ve worked with object-relational

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 272 $

272 Chapter 5 State Management

layers that did exactly the same thing, with exactly the same kind of results.
The problem, although “solved” differently, is the same as that for lazy-
loading: the underlying plumbing layer just doesn’t know which data to
pull back when retrieving object state. So, in the case of the eager-loading
system, we err on the side of fewer network round-trips and pull it all back.

Despite the obvious bandwidth consumption, eager-loading does have a
number of advantages to it that lazy-loading can’t match.

First, eager-loading the complete set of data you'll need helps tremen-
dously with concurrency situations. Remember, in the lazy-loaded sce-
nario, it was possible (without Session Fagade [Alur/Crupi/Malks, 341] in
place) for clients to see semantically corrupt data because each entity
bean access resulted in a separate SQL query under separate transactions.
This meant that another client could modify that row between transac-
tions, thus effectively invalidating everything that had been retrieved
before, without us knowing about it. When eager-loading data, we can
pull across a complete dump of the row as part of a single transaction,
thus obviating the need for another trip to the database and eliminating
the corrupt semantic data possibility—there’s no “second query” to
return changed data. In essence, eager-loading fosters a pass-by-value
dynamic, as opposed to lazy-loading’s pass-by-reference approach.

This has some powerful implications for lock windows (see Item 29),
too. The container won’t have to hold a lock against the row (or page, or
table, depending on your database’s locking defaults) for the entire dura-
tion of the session bean’s transaction, if accessed via EJB, or the explicit
transaction maintained either through a JTA Transaction or JDBC
Connection. Shorter lock windows mean lower contention, which means
better scalability.

Of course, eager-loading all the data also means there’s a window of
opportunity for other clients to modify the data, since youre no longer
holding a transactional lock against it, but this can be solved through a
variety of means, including explicit transactional locks, pessimistic con-
currency models (see Item 34), and optimistic concurrency models (see
Item 33).

Second, as already implied, eager-loading data can drastically reduce the
total time spent on the wire retrieving data for a given collection if that
data can be safely assumed to be needed. Consider, for example, user pref-
erences: data that individual users can define in order to customize their

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 273 $

Item 47: Eager-load frequently used data = 273

use of the application in a variety of ways, such as background images for
the main window, whether to use the “basic” or “advanced” menus, and so
on. This is data that may not be needed immediately at the time the user
logs in, but it’s a fair bet that all of it will be used at some point or another
within the application. We could lazy-load the data, but considering that
each data element (configuration item) will probably be needed inde-
pendently of the others, we’re looking at, again, an N+1 query problem, in
this case retrieving each individual data element rather than individual
row. Go ahead and pull the entire set across at once, and just hold it
locally for use by the code that needs to consult user preferences when
deciding how to render output, windowing decorations, or whatever.

Eager-loading isn’t just for pulling back columns in a row, either. As with
lazy-loading, you can apply eager-loading principles at scopes larger than
just individual rows. For example, we can apply eager-loading principles
across tables and dependent data, so that if a user requests a Person
object, we load all of the associated Address, PerformanceReview, and
other objects associated with this Person, even though it might mean
multiple queries executed in some kind of single-round-trip batch form
(see Item 48).

While we're at it, there’s never any reason why a table that holds read-only
values shouldn’t be eager-loaded. For example, many systems put inter-
nationalized text (like days of the week, months of the year, and so on)
into tables in the database for easy modification at the client site. Since the
likelihood of somebody changing the names of the days of the week is
pretty low, go ahead and read the entirety of this table once and hold the
results in some kind of in-process collection class or RowSet for later con-
sultation. Granted, it might make system startup take a bit longer, but end
users will see faster access on each request-response trip. (In many
respects, this is just a flavor of Item 4.)

In the end, eager-loading data is just as viable and useful an optimization
as lazy-loading data, despite its ugly reputation. In fact, in many cases it’s
a far more acceptable tradeoff than the lazy-loading scenario, given the
relatively cheap cost of additional memory compared with the expensive
and slow network access we currently live under. As always, be sure to
profile (see Item 10) before doing either lazy- or eager-loading optimiza-
tions, but if an eager-load can save you a couple of network accesses, it’s
generally worth the extra bandwidth on the first trip and the extra mem-
ory to hold the eager-loaded data.

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 274 $

274 Chapter 5 State Management

Item 48: Batch SQL work to avoid round-trips

Given the cost of moving across the network, we need to minimize the
number of times we travel across the network connection to another
machine. Unfortunately, the default behavior of the JDBC driver is to
work with a one-statement, one-round-trip model: each time execute
(or one of its variations, executeUpdate Or executeQuery) runs, the
driver marshals up the request and sends it to the database where it is
parsed, executed, and returned. This tedious process consumes many
CPU cycles in pure overhead on each trip. By batching statements
together, we can send several SQL statements in a single round-trip to the
database, thus avoiding some of that overhead.

Bear in mind that while this is predominantly a state management issue,
trying to improve performance by reducing the number of times we have
to hit the network, it also applies to transactional processing. We're likely
to be in a situation where we’re holding open transactional locks, and
therefore we want to minimize the amount of time those locks are held
open (see Item 29).

There’s another element to this, however; sometimes multiple statements
need to be executed in a group in order to carry out a logical request. Nor-
mally, you would want to do all this under a single transaction (thus requir-
ing that you setAutoCommit(false) on the Connection youre using),
but that doesn’t imply that the driver will do it all as part of a single round-
trip. It’s entirely plausible that the driver will send each statement over indi-
vidually, all while holding the transactional lock open. Therefore, since it’s
all happening under a single transaction, it’s far better to execute them as a
group. The transaction itself is an all-or-nothing situation anyway.

Connection conn = getConnectionFromSomeplace();
conn.setAutoCommit(false);

Statement stmt = conn.createStatement();

// Step 1: insert the person

stmt.addBatch("INSERT INTO person (id, f_name, 1_name) " +
“VALUES (" + id + ", '" 4+ firstName + "', '" +
lastName + "')");

// Step 2: insert the person's account

stmt.addBatch("INSERT INTO account (personID, type) " +
"VALUES (" + id + ", 'SAVINGS')");

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 275 $

Item 48: Batch SQL work to avoid round-trips = 275

// Execute the batch
int[] results = stmt.executeBatch();
// Check the batched results
boolean completeSuccess = true;
for (int i=0; i<results.length; i++)
{
if (results[i] >= 0 || results[i] ==
Statement.SUCCESS_NO_INFO)
/* Do nothing-statement was successful */ ;
else
{
/* Something went wrong; alert user? */

completeSuccess = false;

if (completeSuccess)
conn.commit();
else

conn.rollback();

In this code, we create a Statement and use it to execute two non-SELECT
SQL statements against the database. (Batching doesn’t work with SELECT
statements.) In this case, we're adding a person to the database and add-
ing information about the person’s new savings account. Note that the
key to executing in batch here is to use the executeBatch method on
Statement; this tells the driver to send the statements over to the data-
base en masse.

The executeBatch method returns an array of integers as a way to indi-
cate the success or failure of each of the batched methods. Each element
in the array corresponds to one batched statement; a zero or positive
number indicates the “update count” result (the number of rows affected
by the call), and a value of SUCCESS_NO_INFO indicates the call succeeded
but didn’t have an update count.

In the event one of the statements fails, JDBC allows the driver to take one
of several options. It can throw an exception and halt execution of state-
ments at that point, or it can continue processing statements, in which
case the integer in the results array will be set to EXECUTE_FATLED.

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 276 $

276 Chapter 5 State Management

Note that executing in batch doesn’t imply transactional boundaries—the
two statements have executed, but because AutoCommit is turned off, they
have not yet committed to the database. Therefore, we need to either com-
mit or roll back the work done; in this case, we commit only if all the state-
ments executed successfully, a reasonable policy. If you call commit before
calling executeBatch, the batched statements will be sent over as if you'd
called executeBatch just prior to commit. If you try to batch with Auto
Commit set to true, the results are undefined by the JDBC Specification—
which is shorthand for “quite likely to yield some kind of exception.”

Using JDBC’s executeBatch method isn’t the only way to batch execu-
tion, however. Because many databases support some kind of logical line
termination character, thus creating the ability to execute multiple SQL
statements as part of one logical line of input, it’s possible to write JDBC

calls like this:
Connection conn = ...; // Obtain from someplace
Statement stmt = conn.createStatement();

stmt.execute("SELECT first_name, last_name FROM Person " +
"WHERE primary_key = 1234; " +
"SELECT ci.content, ci.type " +
"FROM ContactInfo ci, PerConLookup pc " +
"WHERE ci.primary_key = pc.contactInfo_key " +
"AND pc.person_key = 1234");
ResultSet personRS = stmt.getResultSet();
// The first SELECT

if (stmt.getMoreResults())
{

// The other SELECT

ResultSet contactInfoRS = stmt.getResultSet();
}

Although more awkward to work with,”> batching statements this way
carries the advantage of working for both SELECT statements as well as
INSERT, UPDATE, and DELETE statements, all while furthering the basic
goal, that of trying to amortize the cost of several SQL queries by running
them in a single request-response cycle against the database.

5. In production code you should check the Boolean return value from execute to make sure
the first SELECT statement produced results, rather than ignore it as I have here for clarity.

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 277 $

Item 49: Know your JDBC provider = 277

Item 49: Know your JDBC provider

Despite all the revisions and years behind it, the JDBC Specification still
doesn’t mandate a large number of particulars—deliberately. For example,
when a ResultSet is created, typically (although again, this is purely
by convention, not a requirement) the ResultSet holds only the first
N rows, where N is some number that sounded good to your JDBC ven-
dor. For some of the major vendors, this N value is—I'm not kidding
you—one. Fortunately, this value is not only discoverable but also config-
urable via getFetchSize and setFetchSize on the ResultSet API, but
the point still remains: Do you know what the default is, and is it accept-
able? Be sure to check the Boolean return value from setFetchSize to
ensure you aren’t asking for a fetch size that’s larger than what the driver
and/or the database supports.

Many features of JDBC aren’t available, depending on the capabilities of
the driver, and your decision regarding how to build the JDBC code using
the driver could be deeply affected based on this information. For ex-
ample, when retrieving data from the ResultSet, there appear to be two
entirely equivalent ways to obtain the data: either by ordinal position
within the ResultSet or by column name. Is there any real difference
between them, besides perhaps programmer convenience?

It turns out that there’s a very real difference between them, depending
entirely on your JDBC driver implementation. The first release of the
JDBC Specification (the version that shipped with JDK 1.1) only man-
dated that JDBC drivers provide firehose cursor support—that is, once a
row or column has been pulled from the cursor, it can never be obtained
again. This has huge implications when retrieving data out of the
ResultSet, in that if you pull a column’s data in anything other than the
order in which it was declared in the SQL statement, you'll be skipping
past columns that can then never be retrieved:

ResultSet rs =
stmt.executeQuery("SELECT id, first_name, last_name " +
"FROM person");

while (rs.next())
{

String firstName = rs.getString("first_name");

String lastName = rs.getString("last_name");

int id = rs.getInt("id");

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 278 $

278 Chapter 5 State Management

// Error! This will throw a SQLException in a JDBC 1.0
// driver

3

Say you've been working with a JDBC 2.0 or better driver up until this
point. If somebody deploys your code to use the JDBC-ODBC driver
(which is a bad idea from the beginning, since the JDBC-ODBC driver
is an unsupported, bug-ridden 1.0 driver that is incredibly slow and is
rumored to leak memory in some ODBC driver configurations), sud-
denly your code will start tossing SQLException instances for no appar-
ent reason.

Now, if you are truly concerned about writing portable J2EE code, you
need to account for the possibility of a 1.0 driver by ensuring that this
particular scenario never occurs; therefore, you need to always retrieve
data in its exact order, and the easiest way to do this is to use the ordinal
form of the methods:

ResultSet rs =

Stmt.executeQuery("SELECT id, first_name, last_name
"FROM person");

+

while (rs.next())
{
int age = rs.getInt(l);
String firstName = rs.getString(2);
String lastName = rs.getString(3);
¥

Although not overly painful to write, this code does have several draw-
backs. First, if a programmer (or, potentially worse, a database adminis-
trator unfamiliar with this little quirk of the JDBC 1.0 API) ever modifies
the SQL statement, the corresponding data-retrieval code in the loop
will need to be updated to reflect the change in order of columns, or
SQLException instances will start to get thrown left and right. (By the
way, it’s true that using the ordinal form of the functions is slightly faster
than using the column-based form, but changing your code to use the
ordinal form purely for performance reasons is a micro-optimization and
should be avoided, particularly since you lose the inherent documenta-
tion hint that using the column names give. If you find yourself tempted
to do so, a large number of other optimizations will likely yield a better
return, so bypass this one.)

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 279 $

Item 49: Know your JDBC provider = 279

It’s not just a simple matter of keeping track of the order of columns
(which, by the way, argues against ever issuing a SQL SELECT statement that
uses * instead of the individual column names). You need to know whether
your driver supports statement batching (see Item 48) and isolation levels
(see Item 35), which scalar functions it might support, and so on. Much of
this information is available via the DatabaseMetaData class, an instance
of which is obtained from a Connection, or to a lesser degree from the
ResultSetMetaData class, obtained from a given ResultSet. SQL Perfor-
mance Tuning [Gulutzan/Pelzer] provides several charts describing the
results returned from eight vendor databases (IBM, Informix, Ingres, Inter-
Base, Microsoft SQL Server, MySQL, Oracle, and Sybase), but you'll want to
run some tests regardless—you can’t be certain the chart will be true for
your particular database, even if it’s one of the vendors listed, because capa-
bilities can change from one release to the next.

Another area of interest to the JDBC programmer is that of thread safety:
Is it safe to invoke the driver from multiple threads? Do you need to
synchronize on Connection, Statement, or ResultSet objects when
accessing them from multiple threads? For example, the JDBC-ODBC
driver isn’t thread safe, so it’s up to you to ensure that the driver is never
accessed by more than one thread at a time; otherwise you run the risk of
some Seriously Bad Things happening in the ODBC driver underneath
your Java code. (Which once again underscores that there’s never a good
reason to use the JDBC-ODBC driver for production code.)

One of the classic performance- and scalability-driven suggestions made
in numerous JDBC and J2EE books is the PreparedStatement-over-
Statement idea: that you should always prefer to use a Prepared
Statement instead of a regular Statement. The argument is simple: be-
cause each call out to the database requires a certain amount of work
(parsing the SQL, creating a query plan, and running it all through the
optimizer, and so forth), it’s better to amortize that overhead by keeping
those preparations around from one call to the next, assuming the same
call will be made again. A PreparedStatement will “prepare” the SQL
call once (minus the parameters you want to pass in, since those aren’t
known vyet, so it can’t prepare those) and thus you'll get better perfor-
mance on subsequent calls.

While using PreparedStatement is a necessity from a security stand-
point (see Item 61), from a performance and/or scalability standpoint, it’s
not quite so clear. For example, the JDBC Specification states that when a

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 280 $

280 Chapter5 State Management

Connection is closed, the corresponding Statement objects associ-
ated with that Connection also implicitly close. So when you return a
Connection obtained from a connection pool back to the connection
pool, does that in turn close the PreparedStatement obtained from that
Connection, or will the underlying physical connection remain open,
thus leaving the PreparedStatement alive and ready to receive addi-
tional requests? What about a CallableStatement, since it inherits from
PreparedStatement and therefore should obey the same contract as
given for PreparedStatement?

Unfortunately, while I could wave my hands here and state that “obvi-
ously, REAL drivers would keep the pooled statement around, only a
simpleton or moron wouldn’t do this,” the fact remains that sometimes
you have to use software written by simpletons and morons, and the only
way to know for certain whether your database and/or database driver is
in that category is to test and find out.

This discussion of PreparedStatement takes a sharp left turn, by the
way, when discussing some database vendors (most notably PostgreSQL)
that cause a PreparedStatement to become unprepared when a trans-
action end (COMMIT) occurs; that is, the following code [Gulutzan/Pelzer,
336] won’t work as expected, despite the JDBC Specification’s insistence
that it should:

PreparedStatement pstmt =

connection.prepareStatement(". . .");
boolean autocommit =

connection.getAutoCommit(); // Let's assume it's true
pstmt.executeUpdate();

// COMMIT happens automatically, since autocommit == true
pstmt.executeUpdate();

// FAILS! PreparedStatement pstmt is no longer prepared

If that doesn’t convince you that you need to know what your JDBC
driver does under the hood, then I wish you the best of luck.

The easiest way, in many respects, to know what your driver does is to fire
up your database’s query-execution profiler tool and have a look at what
actually happens when the JDBC query executes. In some circles, this is
known as exploration testing and is more extensively documented by Stu
Halloway (http://www.relevancellc.com); put simply, write a series of
JUnit-based tests that exercise your assumptions regarding what happens

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 281 $

Item 50: Tune your SQL = 281

when you execute a sequence of calls (such as the PreparedsStatement
code shown earlier), and rerun those tests against a variety of scenarios,
such as different JDBC drivers, different vendor databases, or even differ-
ent versions of the same vendor’s database. Far better to be surprised dur-
ing an exploration test run than to be surprised during deployment into
production, at the client site, or in the middle of the night after the data-
base administrators upgrade the database without your knowledge (or
consent).

Item 50: Tune your SQL

Quiz time: When are two logically equivalent SQL statements not equiva-
lent? Consider the following pair of logically equal SQL statements:

SELECT * FROM Table WHERE columnl='A' AND column2='B'

SELECT * FROM Table WHERE column2='B' AND columnl='A'
Which would you say executes faster?®

Answer: You can’t tell, and neither can the optimizer in most databases.
But if you happen to know, for your particular database schema, this par-
ticular client, and/or this particular query, that the likelihood of column2
being B is a lot less likely, then the second SQL statement will execute
faster than the first, even though the two are logically equivalent. (By
the way, never do this for Oracle databases when using the cost-based
optimizer—it will do exactly the wrong thing.)

Or, as another example, how about these two statements?
SELECT * FROM Table WHERE columnl=5 AND

NOT (column3=7 OR columnl=column?2)
SELECT * FROM Table WHERE columnl=5 AND column3<>7 AND

column2<>5

Answer: For five of eight popular databases, the second turns out to be
faster.” Again, these are logically identical statements, so the actual results

6. This example appears in SQL Performance Tuning [Gulutzan/Pelzer, 24].
7. This example appears in SQL Performance Tuning [Gulutzan/Pelzer, 16].

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 282 CF

282 Chapter 5 State Management

returned will be the same; it’s just that the database optimizer treats the
second one in a different fashion than the first, thereby yielding a better
response time.

Tuning SQL remains the number one optimization you can make when
working with a relational database. Despite what JDO and entity bean ven-
dors have been trying to achieve for the last five years, we’re still in an era
where SQL matters. Yes, vendors have made huge strides in making their
objects-first persistence models not suck as badly as they first did, but the
fact remains that if the database itself can’t tell the difference between the
two statements, it’s highly unlikely that your object-relational layer will
be able to. This is why it’s crucial for an object-relational system to offer
you, at the least, some kind of hook point (see Item 6) to pass in raw SQL
that you can tune and optimize as necessary for those queries executed
most often.

By the way, bear in mind that for some databases, these two statements
are considered to be entirely different and therefore require reparsing,
replanning, and reexecution:

SELECT columnl*4 FROM Tablel WHERE COLUMN1=COLUMN2 + 7

SELECT Columnl * 4 FROM Tablel WHERE columnl=(column2 + 7)

That is to say, even though these statements are precisely identical in what
they’re doing, because the capitalization and whitespace used within them
are different, the database treats them as separate and unrelated state-
ments. With a tool generating your queries, we would hope that they’re
being generated in a consistent style, but can you be certain? (Ideally,
you'd know whether this sort of thing bothers your database before wor-
rying about it too much, but that means you’re OK with a priori vendor
awareness like that; see Item 11.)

In many cases, you need to know what SQL is actually being executed
against your database before you can think about trying to tune it. For
some object-relational systems this can be a difficult prospect if they
don’t expose the actual generated or dynamically constructed SQL code
to you. Fortunately, an answer is only a short step away.

First, most database products offer some kind of database-based view of
queries being executed against a given database instance, so it’s usually
pretty easy to fire up the database profiler tool and take a look at the
actual SQL. (While you're at it, assuming your database provides query

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 283 $

Item 50: Tune your SQL = 283

analysis as part of that same profiler, take the SQL queries and run them
against the profiler to see how the database will attack executing this par-
ticular query; see Item 10.) This should tell you how your favorite object-
relational tool is generating the SQL queries and thereby give you a good
idea whether SQL optimization is in order.

If you're working with a database that doesn’t provide such a tool (time to
get a new database, in my opinion, but sometimes you have to work with
the tools at hand), assuming your object-relational layer is still going
through JDBC to talk to the database itself, you can play a small trick on
the object-relational layer by handing it a JDBC driver that “leaks” the
actual queries being fed through it. It’s the P6Spy driver, available from
http://www.p6spy.com, and its operation is deceptively simple: it exposes
the same JDBC driver interface that every other JDBC driver on the
planet provides, but it doesn’t do any actual work, instead delegating that
to a JDBC driver for which you provide configuration data. Instead, the
P6Spy driver simply echoes the SQL queries to multiple sources, includ-
ing Log4] logging streams.

For those situations where your object-relational layer isn’t doing the
optimal SQL thing and the object-relational layer doesn’t provide some
kind of hook point to pass in optimal SQL, you have a few options.

» Switch tools. There are plenty of other object-relational tools out there,
both commercial and open-source, that you shouldn’t feel “stuck” with
one that doesn’t give you the necessary optimization hook points.

m Follow the Fast Lane pattern [Alur/Crupi/Malks, 1st ed.], which advo-
cates the idea of doing direct JDBC access against the database,
thereby giving you direct control over the SQL being sent. In the case
of EJB-based access, this means either doing direct JDBC calls from
your session beans or rewriting your CMP entity beans as BMP
beans. Unfortunately, this pattern has a number of direct drawbacks
(which is probably why it’s not present in the second edition),
including the fact that if the object-relational layer is doing any sort
of cache management, you'll be bypassing that cache management
and any implicit Identity Map [Fowler, 195] that’s being maintained.
Perhaps you can live with the loss of the caching behavior; however,
if the Identity Map [Fowler, 195] is being maintained in order to
allow the object-relational layer to hold off sending any uncommit-
ted changes to the data, you'll bypass that and create a nasty little
concurrency problem for yourself.

e

Neward ch05.gxd.ps 7/27/04 1:45 PM Page 284 $

284 Chapter 5 State Management

» Pull a bait-and-switch with your object-relational tool, taking a cue
from the P6Spy driver (a classic Decorator [GOF, 175] if ever there
was one). Write a JDBC driver look-alike—that is, a class that imple-
ments the JDBC driver interfaces—that listens for particular queries
that match the queries you want to optimize, and replace those
queries with hand-tuned, optimized SQL before handing the query
off to the real JDBC driver you’ve wrapped around. You do take an
extra layer of method calls as a hit to the driver, but assuming you've
done your homework (see Item 10), the gains from the tuned SQL
will more than offset the cost of the additional method call.

Whichever method you choose, before you start caching off JNDI lookup
results as an optimization, take a hard look at the SQL being executing on
your behalf—more often than not, optimizations in the SQL can yield a
far greater return on your investment in time and energy than anything
else you attempt. Even if your CMP entity bean layer is doing some kind
of adaptive SQL generation scheme, you'll want to know about it and
make sure that your database administrator is doing his or her part not to
work against that.

